Body wave extraction and tomography at Long Beach, Cinterferometry

Journal of Geophysical Research: Solid Earth 120, 1159-1173

DOI: 10.1002/2015jb011870

Citation Report

#	Article	IF	CITATIONS
1	5. Seismic Interferometry., 2014, , Q1-1-Q1-41.		6
2	Geographical distribution of shear wave anisotropy within marine sediments in the northwestern Pacific. Progress in Earth and Planetary Science, 2015, 2, .	3.0	8
3	Stochastic characterization of mesoscale seismic velocity heterogeneity in Long Beach, California. Geophysical Journal International, 2015, 203, 2049-2054.	2.4	36
4	Rayleigh-wave tomography using traffic noise at Long Beach, CA. , 2015, , .		O
5	Damage Detection of a Building Caused by the 2011 Tohokuâ€Oki Earthquake with Seismic Interferometry. Bulletin of the Seismological Society of America, 2015, 105, 2411-2419.	2.3	15
6	4-D noise-based seismology at volcanoes: Ongoing efforts and perspectives. Journal of Volcanology and Geothermal Research, 2016, 321, 182-195.	2.1	39
7	Toward 4D Noiseâ€Based Seismic Probing of Volcanoes: Perspectives from a Largeâ€∢i>NExperiment on Piton de la Fournaise Volcano. Seismological Research Letters, 2016, 87, 15-25.	1.9	45
8	3-D shear wave velocity model of Mexico and South US: bridging seismic networks with ambient noise cross-correlations (<i>C</i> <csup>1) and correlation of coda of correlations (<i>C</i><csup>3). Geophysical Journal International, 2016, 206, 1795-1813.</csup></csup>	2.4	49
9	Near-surface S-wave velocities estimated from traffic-induced Love waves using seismic interferometry with double beamforming. Interpretation, 2016, 4, SQ23-SQ31.	1.1	28
10	Regional Ambient Noise Tomography in the Eastern Alps of Europe. Pure and Applied Geophysics, 2016, 173, 2813-2840.	1.9	20
11	Focal spot imaging based on zero lag crossâ€correlation amplitude fields: Application to dense array data at the San Jacinto fault zone. Journal of Geophysical Research: Solid Earth, 2016, 121, 8048-8067.	3.4	45
12	Beyond basin resonance: characterizing wave propagation using a dense array and the ambient seismic field. Geophysical Journal International, 2016, 206, 1261-1272.	2.4	44
13	Higher-mode ambient-noise Rayleigh waves in sedimentary basins. Geophysical Journal International, 2016, 206, 1634-1644.	2.4	25
14	Body and surface wave reconstruction from seismic noise correlations between arrays at Piton de la Fournaise volcano. Geophysical Research Letters, 2016, 43, 1047-1054.	4.0	70
15	Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise. Geophysical Journal International, 2016, 204, 1503-1517.	2.4	11
16	High-frequency Rayleigh-wave tomography using traffic noise from Long Beach, California. Geophysics, 2016, 81, B43-B53.	2.6	37
17	Monitoring the tidal response of a sea levee with ambient seismic noise. Journal of Applied Geophysics, 2017, 138, 255-263.	2.1	25
18	Monitoring the stability of tailings dam walls with ambient seismic noise. The Leading Edge, 2017, 36, 350a1-350a6.	0.7	25

#	ARTICLE	IF	CITATIONS
19	Ambient noise tomography across Mount St. Helens using a dense seismic array. Journal of Geophysical Research: Solid Earth, 2017, 122, 4492-4508.	3.4	56
20	Pre-processing ambient noise cross-correlations with equalizing the covariance matrix eigenspectrum. Geophysical Journal International, 2017, 210, 1432-1449.	2.4	31
21	Mining and Geothermal and Near Surface Complete Session. , 2017, , .		0
22	Ambient Seismic Source Inversion in a Heterogeneous Earth: Theory and Application to the Earth's Hum. Journal of Geophysical Research: Solid Earth, 2017, 122, 9184-9207.	3.4	37
23	Passive Seismic Complete Session. , 2017, , .		0
24	Near-surface velocity imaging using traffic-induced high-frequency ground motion. , 2017, , .		0
26	Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake. Science Advances, 2017, 3, e1700813.	10.3	48
27	On the reliability of direct Rayleigh-wave estimation from multicomponent cross-correlations. Geophysical Journal International, 2017, 210, 1388-1393.	2.4	15
28	Seismic Noise Correlation on Heterogeneous Supercomputers. Seismological Research Letters, 2017, 88, 1141-1145.	1.9	9
29	Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes. Geophysical Journal International, 0, , .	2.4	17
30	Generalized interferometry – I: theory for interstation correlations. Geophysical Journal International, 2017, 208, 603-638.	2.4	71
31	Using graph clustering to locate sources within a dense sensor array. Signal Processing, 2017, 132, 110-120.	3.7	19
32	Ambient noise tomography with non-uniform noise sources and low aperture networks: case study of deep geothermal reservoirs in northern Alsace, France. Geophysical Journal International, 2017, 208, 193-210.	2.4	34
33	Anatomy of the Colima volcano magmatic system, Mexico. Earth and Planetary Science Letters, 2017, 459, 1-13.	4.4	43
34	Real-Time Data Analysis and Autonomous Steering of Synchrotron Light Source Experiments. , 2017, , .		21
35	A Seismic Shift in Scalable Acquisition Demands New Processing: Fiber-Optic Seismic Signal Retrieval in Urban Areas with Unsupervised Learning for Coherent Noise Removal. IEEE Signal Processing Magazine, 2018, 35, 31-40.	5.6	59
36	Empirical Green's tensor retrieved from ambient noise cross-correlations at The Geysers geothermal field, Northern California. Geophysical Journal International, 2018, 213, 340-369.	2.4	11
37	6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications. Geophysical Journal International, 2018, 213, 77-97.	2.4	38

#	Article	IF	CITATIONS
38	Fault Zone Imaging from Correlations of Aftershock Waveforms. Pure and Applied Geophysics, 2018, 175, 2643-2667.	1.9	9
39	Support for equatorial anisotropy of Earth's inner-inner core from seismic interferometry at low latitudes. Physics of the Earth and Planetary Interiors, 2018, 276, 247-257.	1.9	12
40	Site characterization at Groningen gas field area through joint surface-borehole H/V analysis. Geophysical Journal International, 2018, 212, 412-421.	2.4	27
41	Preface to the Focus Section on Geophone Array Seismology. Seismological Research Letters, 2018, 89, 1597-1600.	1.9	32
42	Upperâ€Crustal Shearâ€Wave Velocity Structure of the Southâ€Central Rio Grande Rift above the Socorro Magma Body Imaged with Ambient Noise by the Largeâ€N Sevilleta Seismic Array. Seismological Research Letters, 2018, 89, 1708-1719.	1.9	12
43	Sensitivity of Seismic Noise Correlation Functions to Global Noise Sources. Journal of Geophysical Research: Solid Earth, 2018, 123, 6911-6921.	3.4	20
44	The Ambient Seismic Field at Groningen Gas Field: An Overview from the Surface to Reservoir Depth. Seismological Research Letters, 2018, 89, 1450-1466.	1.9	23
45	Microseismic Event Detection Using Multiple Geophone Arrays in Southwestern Utah. Seismological Research Letters, 2018, 89, 1660-1670.	1.9	7
46	Recovery of P Waves from Ambientâ€Noise Interferometry of Borehole Seismic Data around the San Andreas Fault in Central California. Bulletin of the Seismological Society of America, 2018, 108, 51-65.	2.3	2
47	Temporal change in seismic velocity associated with an offshore MW 5.9 Off-Mie earthquake in the Nankai subduction zone from ambient noise cross-correlation. Progress in Earth and Planetary Science, 2018, 5, .	3.0	21
48	A Community Experiment to Record the Full Seismic Wavefield in Oklahoma. Seismological Research Letters, 2018, 89, 1923-1930.	1.9	28
49	Passive body-wave interferometric imaging with directionally constrained migration. Geophysical Journal International, 2018, 215, 1022-1036.	2.4	3
50	On the Nature of Higherâ€Order Ambient Seismic Field Correlations. Journal of Geophysical Research: Solid Earth, 2018, 123, 7969-7982.	3.4	15
51	Characteristics of Airplanes and Helicopters Recorded by a Dense Seismic Array Near Anza California. Journal of Geophysical Research: Solid Earth, 2018, 123, 4783-4797.	3.4	50
52	Reservoir Imaging Using Ambient Noise Correlation From a Dense Seismic Network. Journal of Geophysical Research: Solid Earth, 2018, 123, 6671-6686.	3.4	46
53	Broad-band ambient noise characterization by joint use of cross-correlation and MUSIC algorithm. Geophysical Journal International, 2018, 215, 760-779.	2.4	4
54	Passive processing of active nodal seismic data: estimation of & amp;lt;i>V <i>V_{V<i>V<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub>V<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub&l< td=""><td>lt;/i&ॄ 2.8</td><td>۶t;<su< td=""></su<></td></lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub<lsub&l<></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></lsub></amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<amp;gt;v<lsub></i>}</i>	lt;/i&ॄ 2.8	۶t; <su< td=""></su<>
55	Train Traffic as a Powerful Noise Source for Monitoring Active Faults With Seismic Interferometry. Geophysical Research Letters, 2019, 46, 9529-9536.	4.0	78

#	ARTICLE	IF	Citations
56	Isolating and Suppressing the Spurious Nonâ€Diffuse Contributions to Ambient Seismic Field Correlations. Journal of Geophysical Research: Solid Earth, 2019, 124, 9653-9663.	3.4	6
57	Atmospheric Processes Modulating Noise in Fairfield Nodal 5ÂHz Geophones. Seismological Research Letters, 0, , .	1.9	8
58	Data-driven dispersive surface-wave prediction and mode separation using high-resolution dispersion estimation. Journal of Applied Geophysics, 2019, 171, 103867.	2.1	6
59	High-resolution seismic tomography of Long Beach, CA using machine learning. Scientific Reports, 2019, 9, 14987.	3.3	27
60	Ground motion simulation and validation of the 2008 Chino Hills earthquake in scattering media. Geophysical Journal International, 2019, 219, 1836-1850.	2.4	13
61	Toward Creating a Subsurface Camera. Sensors, 2019, 19, 301.	3.8	20
62	3D S-wave velocity imaging of a subsurface disturbed by mining using ambient seismic noise. Engineering Geology, 2019, 251, 115-127.	6.3	18
63	Automatic 3D illumination-diagnosis method for large- $\langle i \rangle N \langle j \rangle$ arrays: Robust data scanner and machine-learning feature provider. Geophysics, 2019, 84, Q13-Q25.	2.6	13
64	Ambient noise multimode Rayleigh and Love wave tomography to determine the shear velocity structure above the Groningen gas field. Geophysical Journal International, 2019, 218, 1781-1795.	2.4	41
65	Rayleigh-wave multicomponent cross-correlation-based source strength distribution inversion. Part 1: Theory and numerical examples. Geophysical Journal International, 2019, 218, 1761-1780.	2.4	20
66	Finiteâ€Frequency Inversion of Crossâ€Correlation Amplitudes for Ambient Noise Source Directivity Estimation. Journal of Geophysical Research: Solid Earth, 2019, 124, 6653-6665.	3.4	15
67	Retrieval of Interstation Local Body Waves From Teleseismic Coda Correlations. Journal of Geophysical Research: Solid Earth, 2019, 124, 2957-2969.	3.4	6
68	Rayleigh wave amplitude distortions above a reservoir: new insights from elastic modelling. Geophysical Journal International, 2019, 217, 1267-1289.	2.4	2
69	Monitoring of fields using body and surface waves reconstructed from passive seismic ambient noise. , 2019, , .		0
70	Monitoring of fields using body and surface waves reconstructed from passive seismic ambient noise. , $2019, \ldots$		2
71	Improving the quality of empirical Green's functions, obtained by cross-correlation of high-frequency ambient seismic noise. Solid Earth, 2019, 10, 1621-1634.	2.8	10
72	Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 2019, 10, 5778.	12.8	245
73	Rotation and strain ambient noise interferometry. Geophysical Journal International, 2019, 216, 1938-1952.	2.4	23

#	Article	IF	Citations
74	Shallow three-dimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array. Geophysical Journal International, 2019, 216, 896-905.	2.4	58
75	Direct migration of ambient seismic data. Geophysical Prospecting, 2020, 68, 270-292.	1.9	6
76	Automated processing strategies for ambient seismic data. Geophysical Prospecting, 2020, 68, 293-312.	1.9	11
77	Ambient-noise tomography of the Greater Geneva Basin in a geothermal exploration context. Geophysical Journal International, 2020, 220, 370-383.	2.4	30
78	Shear wave structure of a transect of the Los Angeles basin from multimode surface waves and H/V spectral ratio analysis. Geophysical Journal International, 2020, 220, 415-427.	2.4	14
79	Distributed Acoustic Sensing Turns Fiberâ€Optic Cables into Sensitive Seismic Antennas. Seismological Research Letters, 2020, 91, 1-15.	1.9	159
80	Separating the scattered wavefield from teleseismic P using curvelets on the long beach array data set. Geophysical Journal International, 2020, 220, 1112-1127.	2.4	8
82	Ambient Noise Surface Wave Reverse Time Migration for Fault Imaging. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020381.	3.4	7
83	Directionality of ambient noise in the Mississippi embayment. Geophysical Journal International, 2020, 223, 1100-1117.	2.4	3
84	Optimal processing for seismic noise correlations. Geophysical Journal International, 2020, 223, 1548-1564.	2.4	19
85	Phase-velocity inversion from data-based diffraction kernels: seismic Michelson interferometer. Geophysical Journal International, 2020, 224, 1287-1300.	2.4	2
86	Characteristics of the Ambient Seismic Field on a Large-N Seismic Array in the Vienna Basin. Seismological Research Letters, 2020, 91, 2803-2816.	1.9	14
87	Using Ambient Noise Seismic Interferometry and Local and Teleseismic Earthquakes to Determine Crustal Thickness and Moho Structure of the Northwestern Gulf of Mexico Margin. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008970.	2.5	3
88	Processing seismic ambient noise data with the continuous wavelet transform to obtain reliable empirical Green's functions. Geophysical Journal International, 2020, 222, 1224-1235.	2.4	16
89	Rayleigh-wave multicomponent crosscorrelation-based source strength distribution inversions. Part 2: a workflow for field seismic data. Geophysical Journal International, 2020, 222, 2084-2101.	2.4	11
90	A detailed image of the continent-borderland transition beneath Long Beach, California. Geophysical Journal International, 2020, 222, 2102-2107.	2.4	2
91	Virtual Sources of Body Waves from Noise Correlations in a Mineral Exploration Context. Seismological Research Letters, 2020, 91, 2278-2286.	1.9	14
92	Seismic characterization of a rapidly-rising j \tilde{A} ¶kulhlaup cycle at the A.P. Olsen Ice Cap, NE-Greenland. Journal of Glaciology, 2020, 66, 329-347.	2.2	5

#	ARTICLE	IF	CITATIONS
93	Noise-based ballistic wave passive seismic monitoring – Part 2: surface waves. Geophysical Journal International, 2020, 221, 692-705.	2.4	23
94	Imaging the Subsurface with Ambient Noise Autocorrelations. Seismological Research Letters, 2020, 91, 930-935.	1.9	20
95	Using a Timeâ€Based Subarray Method to Extract and Invert Noiseâ€Derived Body Waves at Long Beach, California. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018855.	3.4	23
96	Spatiotemporal Seismic Structure Variations Associated With the 2018 Kīlauea Eruption Based on Temporary Dense Geophone Arrays. Geophysical Research Letters, 2020, 47, e2019GL086668.	4.0	18
97	Noise-based ballistic wave passive seismic monitoring. Part 1: body waves. Geophysical Journal International, 2020, 221, 683-691.	2.4	23
98	On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring. Cryosphere, 2020, 14, 1139-1171.	3.9	20
99	NoisePy: A New High-Performance Python Tool for Ambient-Noise Seismology. Seismological Research Letters, 2020, 91, 1853-1866.	1.9	31
100	Understanding Seismic Waves Generated by Train Traffic via Modeling: Implications for Seismic Imaging and Monitoring. Seismological Research Letters, 2021, 92, 287-300.	1.9	18
101	An Efficient Approach of Data Adaptive Polarization Filter to Extract Teleseismic Phases from the Ocean-Bottom Seismograms. Seismological Research Letters, 2021, 92, 528-542.	1.9	4
102	A linear algorithm for ambient seismic noise double beamforming without explicit crosscorrelations. Geophysics, 2021, 86, F1-F8.	2.6	3
103	Analysis of Local Seismic Events near a Large-N Array for Moho Reflections. Seismological Research Letters, 2021, 92, 408-420.	1.9	1
104	Detection of urban hidden faults using group-velocity ambient noise tomography beneath Zhenjiang area, China. Scientific Reports, $2021, 11, 987$.	3.3	6
105	Automatic Image-Based Event Detection for Large-N Seismic Arrays Using a Convolutional Neural Network. Remote Sensing, 2021, 13, 389.	4.0	7
106	Humming Trains in Seismology: An Opportune Source for Probing the Shallow Crust. Seismological Research Letters, 2021, 92, 623-635.	1.9	19
107	On the Retrievability of Seismic Waves From High-Speed-Train-Induced Vibrations Using Seismic Interferometry. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	9
108	Distributed Acoustic Sensing Using a Large-Volume Airgun Source and Internet Fiber in an Urban Area. Seismological Research Letters, 2021, 92, 1950-1960.	1.9	12
109	Near-Field Body-Wave Extraction From Ambient Seafloor Noise in the Nankai Subduction Zone. Frontiers in Earth Science, 2021, 8 , .	1.8	4
110	Seismic Ambient Noise Analyses Reveal Changing Temperature and Water Signals to 10s of Meters Depth in the Critical Zone. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005823.	2.8	9

#	Article	IF	CITATIONS
111	Network analysis of earthquake ground motion spatial correlation: a case study with the San Jacinto seismic nodal array. Geophysical Journal International, 2021, 225, 1704-1713.	2.4	5
112	Shallow Damage Zone Structure of the Wasatch Fault in Salt Lake City from Ambient-Noise Double Beamforming with a Temporary Linear Array. Seismological Research Letters, 2021, 92, 2453-2463.	1.9	4
113	Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization. Scientific Reports, 2021, 11, 5613.	3.3	49
114	Characterization of drilling-related noise and curvelet-based evaluation of seismic-interferometric reflections for imaging of iron-bearing formations in Pilbara, Western Australia. Geophysical Journal International, 2021, 226, 377-404.	2.4	2
115	Seismic detection and characterization of a man-made karst analog — A feasibility study. Geophysics, 2021, 86, WA35-WA48.	2.6	1
116	Determination of Near Surface Shearâ€Wave Velocities in the Central Los Angeles Basin With Dense Arrays. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021369.	3.4	16
117	Effects of high-speed train traffic characteristics on seismic interferometry. Geophysical Journal International, 2021, 227, 16-32.	2.4	15
118	Rayleigh-wave H/V ratio measurement from ambient noise cross-correlations and its sensitivity to VP: a numerical study. Geophysical Journal International, 2021, 227, 472-482.	2.4	3
119	Simultaneous retrieval of body and surface waves in the Dehdasht area, Iran, from the seismic ambient field and the observation of spurious artefacts. Geophysical Journal International, 2021, 227, 1193-1203.	2.4	3
120	Shallow Shear-Wave Velocity Structure beneath the West Lake Area in Hangzhou, China, from Ambient-Noise Tomography. Remote Sensing, 2021, 13, 2845.	4.0	3
121	Improving the retrieval of high-frequency surface waves from ambient noise through multichannel-coherency-weighted stack. Geophysical Journal International, 2021, 227, 776-785.	2.4	15
122	Highâ€Resolution Ambient Noise Imaging of Geothermal Reservoir Using 3C Dense Seismic Nodal Array and Ultraâ€ 5 hort Observation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021827.	3.4	23
123	Imaging the shallow crustal velocity structure of the Qingchengzi ore field on the Liaodong Peninsula, China, with a short-period dense array using ambient noise tomography. Tectonophysics, 2021, 813, 228913.	2.2	12
124	Interferometric body-wave retrieval from ambient noise after polarization filtering: Application to shallow reflectivity imaging. Geophysics, 2021, 86, Q47-Q58.	2.6	4
125	Modelling <i>P</i> waves in seismic noise correlations: advancing fault monitoring using train traffic sources. Geophysical Journal International, 2021, 228, 1556-1567.	2.4	9
126	Towards real-time assessment of convergence criteria in seismic interferometry: Selective stacking of cross-correlations at the San Emidio geothermal field. Journal of Applied Geophysics, 2021, 193, 104426.	2.1	3
127	Imaging high-temperature geothermal reservoirs with ambient seismic noise tomography, a case study of the Hengill geothermal field, SW Iceland. Geothermics, 2021, 96, 102207.	3.4	14
128	Revisiting evidence for widespread seismicity in the upper mantle under Los Angeles. Science Advances, 2021, 7, .	10.3	8

#	Article	IF	CITATIONS
129	Spatial and temporal influence of rainfall on crustal pore pressure based on seismic velocity monitoring. Earth, Planets and Space, 2020, 72, .	2.5	22
130	High-frequency Rayleigh-wave tomography using traffic noise from Long Beach, California. Geophysics, 2016, 81, B1-B11.	2.6	6
131	Ambient noise interferometry across two-dimensional DAS arrays. , 2017, , .		15
132	Automatic noise exploration in urban areas. , 2017, , .		13
133	Use of ambient-noise surface-wave tomography in mineral resource exploration and evaluation. , 2018, , .		12
134	Observation of guided and reflection P-waves in urban ambient noise cross-correlograms. , 2020, , .		4
135	Retrievability of seismic waves from train traffic with seismic interferometry. , 2020, , .		1
136	Deep Clustering to Identify Sources of Urban Seismic Noise in Long Beach, California. Seismological Research Letters, 2021, 92, 1011-1022.	1.9	17
137	Fault detection by reflected surface waves based on ambient noise interferometry. Earthquake Research Advances, 2021, 1, 100035.	2.2	4
138	Imaging and monitoring tailings dam walls with ambient seismic noise. , 2018, , .		0
140	Ambient Noise Tomography of Upper Crustal Structures and Quaternary Faults in the Seoul Metropolitan Area and Its Geological Implications. Earth and Space Science, 2021, 8, e2021EA001983.	2.6	8
141	Pseudo arrivals generated by frequency normalization for seismic interferometry with scattered waves – Stationary-phase analysis. , 2020, , .		2
142	Overview of seismic methods for urban underground space. Interpretation, 2020, 8, SU19-SU30.	1.1	6
144	The Fineâ€Scale Structure of Long Beach, California, and Its Impact on Ground Motion Acceleration. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022462.	3.4	11
145	Sensing Shallow Structure and Traffic Noise with Fiber-optic Internet Cables in an Urban Area. Surveys in Geophysics, 2021, 42, 1401-1423.	4.6	21
147	Validation of seismic velocity models in southern California with full-waveform simulations. Geophysical Journal International, 2022, 229, 1232-1254.	2.4	7
148	Ambient high-frequency seismic surface waves in the firn column of central west Antarctica. Journal of Glaciology, 2022, 68, 785-798.	2.2	7
149	Multiple Leaking Mode Dispersion Observations and Applications From Ambient Noise Crossâ€Correlation in Oklahoma. Geophysical Research Letters, 2022, 49, .	4.0	17

#	Article	IF	CITATIONS
150	Passive Surface-Wave Waveform Inversion for Source-Velocity Joint Imaging. Surveys in Geophysics, 2022, 43, 853-881.	4.6	9
151	Teleseismic body waves extracted from ambient noise cross correlation between F-net and ChinArray phase II. Earthquake Research Advances, 2022, 2, 100068.	2.2	0
152	Enhancing body waves in passive seismic reflection exploration: A case study in Inner Mongolia, China. Interpretation, 2022, 10, B13-B24.	1.1	1
153	Near-surface imaging from traffic-induced surface waves with dense linear arrays: An application in the urban area of Hangzhou, China. Geophysics, 2022, 87, B145-B158.	2.6	33
154	Likely Pâ€ŧo‧ Conversion at the Coreâ€Mantle Boundary Extracted From Array Processing of Noise Records. Geophysical Research Letters, 2022, 49, .	4.0	1
155	Dynamic Imaging of Glacier Structures at Highâ€Resolution Using Source Localization With a Dense Seismic Array. Geophysical Research Letters, 2022, 49, .	4.0	8
156	Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland. Solid Earth, 2022, 13, 705-723.	2.8	1
157	Teleseismic <i>P</i> -to-Rayleigh Conversions from Near-Surface Geological Structure along the Newport–Inglewood Fault Zone in Long Beach, California. Bulletin of the Seismological Society of America, 0, , .	2.3	1
158	Structure of the Western Jaz Murian Forearc Basin, Southeast Iran, Revealed by Autocorrelation and Polarization Analysis of Teleseismic P and S Waves. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	3
159	Subâ€Kilometer Correlation Between Nearâ€Surface Structure and Ground Motion Measured With Distributed Acoustic Sensing. Geophysical Research Letters, 2022, 49, .	4.0	30
162	Beyond Correlations: Deep Learning for Seismic Interferometry. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 3385-3396.	11.3	5
163	Infrasound single-channel noise reduction: application to detection and localization of explosive volcanism in Alaska using backprojection and array processing. Geophysical Journal International, 2022, 232, 1684-1712.	2.4	0
164	Big Data Seismology. Reviews of Geophysics, 2022, 60, .	23.0	24
165	Assessment of Seismic Vulnerability using the Ambient Noise Recordings in Cachar Fold Belt, Assam. Journal of the Geological Society of India, 2022, 98, 795-804.	1.1	1
166	Multimode dispersion measurement of surface waves extracted by multicomponent ambient noise cross-correlation functions. Geophysical Journal International, 2022, 231, 1196-1220.	2.4	6
167	P Waves Emerged From Ambient Noise Crossâ€Correlation Post the 2018 KıÌ,,lauea Eruption Revealing Middle Crust Velocity Discontinuities Beneath the Island of Hawai'i. Geophysical Research Letters, 2022, 49, .	4.0	4
168	Pronounced Seismic Anisotropy in Kanto Sedimentary Basin: A Case Study of Using Dense Arrays, Ambient Noise Seismology, and Multiâ€Modal Surfaceâ€Wave Imaging. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	9
169	Optimal stacking of noise cross-correlation functions. Geophysical Journal International, 2022, 232, 1600-1618.	2.4	6

#	Article	IF	CITATIONS
170	Low-frequency Ambient OBN Surface-wave Seismology: A Gulf of Mexico Case History. Geophysics, 0, , 1-97.	2.6	2
171	Green's function estimation by seismic interferometry from limited frequency samples. Signal Processing, 2023, 205, 108863.	3.7	2
172	Shallow Iceâ€Sheet Composite Structure Revealed by Seismic Imaging Near the West Antarctic Ice Sheet (WAIS) Divide Camp. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	0
173	Imaging shallow structures using interferometry of seismic body waves generated by train traffic. Geophysical Journal International, 2023, 233, 964-977.	2.4	1
174	Multi-Mode Surface Wave Tomography of a Water-Rich Layer of the Jizhong Depression Using Beamforming at a Dense Array. Remote Sensing, 2023, 15, 40.	4.0	0
175	Seeking Repeating Anthropogenic Seismic Sources: Implications for Seismic Velocity Monitoring at Fault Zones. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	4
176	Shallow subsurface imaging across the Himalayan Frontal Thrust (HFT) analysing ambient noise data from a riverine source. Journal of Applied Geophysics, 2023, 210, 104943.	2.1	0
177	Artifacts in High-Frequency Passive Surface Wave Dispersion Imaging: Toward the Linear Receiver Array. Surveys in Geophysics, 2023, 44, 1009-1039.	4.6	2
178	Using Dark Fiber and Distributed Acoustic Sensing to Characterize a Geothermal System in the Imperial Valley, Southern California. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	3
179	Capturing seismic velocity changes in receiver functions with optimal transport. Geophysical Journal International, 2023, 234, 1282-1306.	2.4	1
180	3-D body-wave tomography from the seismic ambient noise recorded by a dense array in the Dehdasht area, Iran. Geophysical Journal International, 2023, 234, 1332-1341.	2.4	0
181	Seismic imaging of reservoir heterogeneity using a network with high station density at The Geysers geothermal reservoir, CA, USA. Geophysics, 2023, 88, WB11-WB22.	2.6	1
182	é‡å•å‰ãfã,¤f—ãfã,µã,¤,¹è~録ã,'用ã,ãŸãfŽã,¤,°é™ůŽ»ã•è;¨å±¤»~è;'ã®é€Ÿåº¦ã®æŽ¨å®š. Journal of the Japanes	e Ass ociat	tion for Petro
183	Deep neural networks in the cloud: Review, applications, challenges and research directions. Neurocomputing, 2023, 545, 126327.	5.9	9
184	Three-Dimensional Processing of Reflections for Passive-Source Seismology Based on Geometric Design. Applied Sciences (Switzerland), 2023, 13, 6126.	2.5	0
185	Opportune detections of global P-wave propagation from microseisms interferometry. Comptes Rendus - Geoscience, 2024, 356, 1-16.	1.2	1
186	Seismic stereometry: an alternative two-station algorithm to seismic interferometry for analysing car-generated seismic signals. Geophysical Journal International, 2023, 235, 853-861.	2.4	1
187	Highâ€Resolution Nearâ€Surface Imaging at the Basin Scale Using Dark Fiber and Distributed Acoustic Sensing: Toward Site Effect Estimation in Urban Environments. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	0

#	Article	IF	CITATIONS
188	Spatiotemporal evaluation of Rayleigh surface wave estimated from roadside dark fiber DAS array and traffic noise., 2023, 2,.		0
189	Multi-source wavefield reconstruction combining interferometry and compressive sensing: application to a linear receiver array. Geophysical Journal International, 0, , .	2.4	1
190	Passive reconstruction of dispersion curve in plates via flow-induced random vibration: The effect of boundary reflection and sensor placement. Ultrasonics, 2024, 137, 107178.	3.9	0
191	Ambient seismic noise tomography of the Suwannee suture zone using cross-coherence interferometry and double beamforming. Geophysical Journal International, 2023, 236, 688-699.	2.4	0
192	Imaging CO reinjection into basalts at the CarbFix2 reinjection reservoir (Hellisheii, Iceland) with bodyâ€wave seismic interferometry. Geophysical Prospecting, 0, , .	1.9	1
193	Three-Dimensional Urban Subsurface Space Tomography with Dense Ambient Noise Seismic Array. Surveys in Geophysics, 0, , .	4.6	0
194	Flow-Induced Passive Random Guided Wave in a Thin-Plate and its Application on Dispersion Curve Estimation. , 2023, , .		0
195	On the retrieval of body waves from ambient noise based on regional seismic arrays. Geophysical Journal International, 2024, 237, 190-202.	2.4	0
197	Subsurface Imaging Using Interferometry of Distributed Acoustic Sensing Ambient Noise Measurement along a Dark Fiber Line: A Case Study in Downtown Reno, Nevada. Bulletin of the Seismological Society of America, 0, , .	2.3	0
198	Using high-precision travel time extraction to detect time deviation of seismic instruments. Measurement Science and Technology, 2024, 35, 056113.	2.6	0
199	Imaging Urban Hidden Faults with Ambient Noise Recorded by Dense Seismic Arrays. Seismological Research Letters, 0, , .	1.9	0
200	Depth of Sudden Velocity Changes Derived From Multiâ€Mode Rayleigh Waves. Journal of Geophysical Research: Solid Earth, 2024, 129, .	3.4	0
201	Advances in seismological methods for characterizing fault zone structure. Earthquake Science, 2024, 37, 122-138.	0.9	0
202	Weighted Compressive Sensing Applied to Seismic Interferometry: Wavefield Reconstruction Using Prior Information. Seismological Research Letters, 0, , .	1.9	0