Of <scp>ITIM</scp>s, <scp>ITAM</scp>s, and <scp>ITA Fc receptor signaling

Immunological Reviews 268, 66-73 DOI: 10.1111/imr.12336

Citation Report

#	Article	IF	CITATIONS
1	Structural analysis of Fc/Fcl ³ R complexes: a blueprint for antibody design. Immunological Reviews, 2015, 268, 201-221.	6.0	68
2	Fc Receptors: Introduction. Immunological Reviews, 2015, 268, 1-5.	6.0	12
3	Fc ^{Î3} RIIB-Independent Mechanisms Controlling Membrane Localization of the Inhibitory Phosphatase SHIP in Human B Cells. Journal of Immunology, 2016, 197, 1587-1596.	0.8	13
4	Regulation of neutrophil functions through inhibitory receptors: an emerging paradigm in health and disease. Immunological Reviews, 2016, 273, 140-155.	6.0	62
5	The life cycle of phagosomes: formation, maturation, and resolution. Immunological Reviews, 2016, 273, 156-179.	6.0	239
6	Immunoreceptors on neutrophils. Seminars in Immunology, 2016, 28, 94-108.	5.6	69
7	Regulation of Monoclonal Antibody Immunotherapy by FcÎ ³ RIIB. Journal of Clinical Immunology, 2016, 36, 88-94.	3.8	12
8	Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic target. European Journal of Immunology, 2017, 47, 932-945.	2.9	87
9	Antiâ€Fc <i>γ</i> <scp>RIIB</scp> (<scp>CD</scp> 32) Antibodies Differentially Modulate Murine <scp>FVIII</scp> â€&pecific Recall Response <i>inÂvitro</i> . Scandinavian Journal of Immunology, 2017, 86, 91-99.	2.7	8
10	The Immunoregulatory Roles of Antibody Glycosylation. Trends in Immunology, 2017, 38, 358-372.	6.8	259
11	Macrophages: micromanagers of antagonistic signaling nanoclusters. Journal of Cell Biology, 2017, 216, 871-873.	5.2	0
12	Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nature Communications, 2017, 8, 246.	12.8	87
13	Phagocytosis: A Fundamental Process in Immunity. BioMed Research International, 2017, 2017, 1-18.	1.9	360
14	C-reactive protein (CRP) but not the related pentraxins serum amyloid P and PTX3 inhibits the proliferation and induces apoptosis of the leukemia cell line Mono Mac 6. BMC Immunology, 2017, 18, 47.	2.2	14
15	Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field. Current HIV Research, 2017, 15, 202-215.	0.5	28
16	Susceptibility to Hypertensive Renal Disease in the Spontaneously Hypertensive Rat Is Influenced by 2 Loci Affecting Blood Pressure and Immunoglobulin Repertoire. Hypertension, 2018, 71, 700-708.	2.7	15
17	New revelations from an old receptor: Immunoregulatory functions of the inhibitory Fc gamma receptor, Fcî³RIIB (CD32B). Journal of Leukocyte Biology, 2018, 103, 1077-1088.	3.3	17
18	Nonâ€lgE mediated mast cell activation. Immunological Reviews, 2018, 282, 87-113.	6.0	143

#	Article	IF	CITATIONS
19	SHIP negatively regulates type II immune responses in mast cells and macrophages. Journal of Leukocyte Biology, 2018, 103, 1053-1064.	3.3	17
20	The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Human Vaccines and Immunotherapeutics, 2018, 14, 815-831.	3.3	35
21	Anti-FcγRIIB mAb suppresses murine IgG-dependent anaphylaxis by Fc domain targeting of FcγRIII. Journal of Allergy and Clinical Immunology, 2018, 141, 1373-1381.e5.	2.9	11
22	The Roles of Genetic Factors in Kawasaki Disease: A Systematic Review and Meta-analysis of Genetic Association Studies. Pediatric Cardiology, 2018, 39, 207-225.	1.3	36
23	Molecular mechanisms of macrophage Toll-like receptor–Fc receptor synergy. F1000Research, 2018, 7, 21.	1.6	15
24	Holding All the CARDs: How MALT1 Controls CARMA/CARD-Dependent Signaling. Frontiers in Immunology, 2018, 9, 1927.	4.8	66
25	The Rare Anaphylaxis-Associated FcγRIIa3 Exhibits Distinct Characteristics From the Canonical FcγRIIa1. Frontiers in Immunology, 2018, 9, 1809.	4.8	7
26	Novel Concepts of Altered Immunoglobulin G Galactosylation in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 553.	4.8	76
27	Generation and characterization of a high affinity anti-human FcRn antibody, rozanolixizumab, and the effects of different molecular formats on the reduction of plasma IgG concentration. MAbs, 2018, 10, 1-20.	5.2	57
28	Selection and characterization of FcεRI phospho-ITAM specific antibodies. MAbs, 2019, 11, 1206-1218.	5.2	7
29	Neutrophil Activation by Antibody Receptors. , 0, , .		3
30	Membrane Organization and Physical Regulation of Lymphocyte Antigen Receptors: A Biophysicist's Perspective. Journal of Membrane Biology, 2019, 252, 397-412.	2.1	15
31	C-Reactive Protein Promotes the Expansion of Myeloid Derived Cells With Suppressor Functions. Frontiers in Immunology, 2019, 10, 2183.	4.8	27
32	Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer, 2019, 19, 568-586.	28.4	557
33	Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector Function. Frontiers in Immunology, 2019, 10, 697.	4.8	55
34	The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a036996.	6.2	24
35	The Complex Association of FcγRIIb With Autoimmune Susceptibility. Frontiers in Immunology, 2019, 10, 2061.	4.8	31
36	Enterohemorrhagic <i>Escherichia coli</i> Tir inhibits TAK1 activation and mediates immune evasion. Emerging Microbes and Infections, 2019, 8, 734-748.	6.5	11

#	Article	IF	CITATIONS
37	Scrodentoid A Inhibits Mast Cell–Mediated Allergic Response by Blocking the Lyn–FcεRIβ Interaction. Frontiers in Immunology, 2019, 10, 1103.	4.8	13
38	C-Reactive Protein Promotes Inflammation through FcγR-Induced Glycolytic Reprogramming of Human Macrophages. Journal of Immunology, 2019, 203, 225-235.	0.8	30
39	Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools. Frontiers in Immunology, 2019, 10, 811.	4.8	179
40	Potent Fc Receptor Signaling by IgA Leads to Superior Killing of Cancer Cells by Neutrophils Compared to IgG. Frontiers in Immunology, 2019, 10, 704.	4.8	95
41	CD89 Is a Potent Innate Receptor for Bacteria and Mediates Host Protection from Sepsis. Cell Reports, 2019, 27, 762-775.e5.	6.4	19
42	Signalling circuits that direct early B-cell development. Biochemical Journal, 2019, 476, 769-778.	3.7	13
43	Inside-Out Control of Fc-Receptors. Frontiers in Immunology, 2019, 10, 544.	4.8	39
44	The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Frontiers in Immunology, 2019, 10, 464.	4.8	111
45	Contribution of FcÎ ³ Receptor-Mediated Immunity to the Pathogenesis Caused by the Human Respiratory Syncytial Virus. Frontiers in Cellular and Infection Microbiology, 2019, 9, 75.	3.9	10
46	Antiviral Functions of Monoclonal Antibodies against Chikungunya Virus. Viruses, 2019, 11, 305.	3.3	32
47	The alternatively spliced porcine Fcl ³ RI regulated PRRSV-ADE infection and proinflammatory cytokine production. Developmental and Comparative Immunology, 2019, 90, 186-198.	2.3	14
48	IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nature Communications, 2020, 11, 120.	12.8	141
49	Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Frontiers in Immunology, 2020, 11, 592329.	4.8	5
50	Syk inhibitor attenuates inflammation in lupus mice from FcgRIIb deficiency but not in pristane induction: the influence of lupus pathogenesis on the therapeutic effect. Lupus, 2020, 29, 1248-1262.	1.6	26
51	Mechanisms determining a differential threshold for sensing Src family kinase activity by B and T cell antigen receptors. Journal of Biological Chemistry, 2020, 295, 12935-12945.	3.4	5
52	Editorial: The Role of Inhibitory Receptors in Inflammation and Cancer. Frontiers in Immunology, 2020, 11, 633686.	4.8	7
53	Macrophage phagocytosis assay with reconstituted target particles. Nature Protocols, 2020, 15, 2230-2246.	12.0	33
54	Harnessing the immune system <i>via</i> FcγR function in immune therapy: a pathway to nextâ€gen mAbs. Immunology and Cell Biology, 2020, 98, 287-304.	2.3	47

#	ARTICLE Anti-CD20 rituximab IgG1, IgG3, and IgG4 but not IgG2 subclass trigger Ca2+ mobilization and	IF	CITATIONS
55 56	cytotoxicity in human NK cells. Journal of Leukocyte Biology, 2020, 108, 1409-1423. Fc Gamma Receptors and Their Role in Antigen Uptake, Presentation, and T Cell Activation. Frontiers in	3.3	2
57	Immunology, 2020, 11, 1393. Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNÎ ³ +LPS), M(II -4) and M(II -10) phenotypes, Journal of Immunological Methods, 2020, 478, 112721	1.4	81
58	Activation of Fc gamma receptor IIb up-regulates the production of interferon-alpha and interferon-gamma in porcine alveolar macrophages during PRRSV infection. Developmental and Comparative Immunology 2020, 109, 103696	2.3	3
59	Platelet Activation through GPVI Receptor: Variability of the Response. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2021, 15, 73-81.	0.6	0
60	lgA and FcαRI: Versatile Players in Homeostasis, Infection, and Autoimmunity. ImmunoTargets and Therapy, 2020, Volume 9, 351-372.	5.8	33
61	MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Medicinal Research Reviews, 2021, 41, 2388-2422.	10.5	13
62	Design of TCR Structural Variants That Retain or Invert the Normal Activation Signal. ImmunoHorizons, 2021, 5, 349-359.	1.8	3
63	Physiological and Pathological Inflammation Induced by Antibodies and Pentraxins. Cells, 2021, 10, 1175.	4.1	9
64	Putting the brakes on phagocytosis: "don'tâ€eatâ€me―signaling in physiology and disease. EMBO Reports, 2021, 22, e52564.	4.5	43
66	Blockage of Fc Gamma Receptors Alleviates Neuronal and Microglial Toxicity Induced by Palmitic Acid. Journal of Alzheimer's Disease, 2021, 82, 1315-1332.	2.6	4
67	Extending traditional antibody therapies: Novel discoveries in immunotherapy and clinical applications. Molecular Therapy - Oncolytics, 2021, 22, 166-179.	4.4	17
68	Topical Application of the PI3KÎ ² -Selective Small Molecule Inhibitor TGX-221 Is an Effective Treatment Option for Experimental Epidermolysis Bullosa Acquisita. Frontiers in Medicine, 2021, 8, 713312.	2.6	5
69	Regulation of dendritic cell function by Fc-γ-receptors and the neonatal Fc receptor. Molecular Immunology, 2021, 139, 193-201.	2.2	10
70	Engineering Anti-Tumor Monoclonal Antibodies and Fc Receptors to Enhance ADCC by Human NK Cells. Cancers, 2021, 13, 312.	3.7	43
72	Neutrophil FcγRIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. Journal of Clinical Investigation, 2017, 127, 3810-3826.	8.2	48
73	Complement Receptor-Mediated Phagocytosis Induces Proinflammatory Cytokine Production in Murine Macrophages. Frontiers in Immunology, 2019, 10, 3049.	4.8	39
74	FCRL1 Regulates B Cell Receptor–Induced ERK Activation through GRB2. Journal of Immunology, 2021, 207, 2688-2698.	0.8	2

#	Article	IF	CITATIONS
75	Phosphorylation of human CEACAM1-LF by PKA and GSK3β promotes its interaction with β-catenin. Journal of Biological Chemistry, 2021, 297, 101305.	3.4	2
76	CD32a receptor in health and disease. Medical Immunology (Russia), 2020, 22, 433-442.	0.4	0
77	Detection and functional resolution of soluble immune complexes by an FcγR reporter cell panel. EMBO Molecular Medicine, 2022, 14, e14182.	6.9	5
78	The therapeutical approaches for rare diseases through the immune processes of IgG Fc Receptors. Global Journal of Medical and Clinical Case Reports, 2020, , 070-071.	0.1	0
79	Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations. Annual Review of Biomedical Engineering, 2022, 24, 249-274.	12.3	20
80	The association between Fc gamma RIIb expression levels and chronic hepatitis B virus infection progression. BMC Infectious Diseases, 2021, 21, 1235.	2.9	1
90	Targeting tumor-associated macrophages for cancer immunotherapy. International Review of Cell and Molecular Biology, 2022, , 61-108.	3.2	13
91	Targeting the high affinity receptor, Fcl̂³Rl, in autoimmune disease, neuropathy, and cancer. Immunotherapy Advances, 2022, 2, .	3.0	6
92	LILRB2-mediated TREM2 signaling inhibition suppresses microglia functions. Molecular Neurodegeneration, 2022, 17, .	10.8	12
93	Relevance of Fc Gamma Receptor Polymorphisms in Cancer Therapy With Monoclonal Antibodies. Frontiers in Oncology, 0, 12, .	2.8	3
94	Heterogeneity in lgG D16 signaling in infectious disease outcomes*. Immunological Reviews, 2022, 309, 64-74.	6.0	9
95	Allergen-Specific IgA Antibodies Block IgE-Mediated Activation of Mast Cells and Basophils. Frontiers in Immunology, 0, 13, .	4.8	14
96	FcγRIIB controls antibody-mediated target cell depletion by ITIM-independent mechanisms. Cell Reports, 2022, 40, 111099.	6.4	9
97	Afucosylated IgG responses in humans – structural clues to the regulation of humoral immunity. Trends in Immunology, 2022, 43, 800-814.	6.8	21
98	KIR3DL3-HHLA2 and TMIGD2-HHLA2 pathways: The dual role of HHLA2 in immune responses and its potential therapeutic approach for cancer immunotherapy. Journal of Advanced Research, 2023, 47, 137-150.	9.5	8
99	Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox. Cancers, 2022, 14, 5657.	3.7	4
100	Intravenous immunoglobulin (IVIG) promotes brain repair and improves cognitive outcomes after traumatic brain injury in a Fcl³RIIB receptor-dependent manner. Brain, Behavior, and Immunity, 2023, 109, 37-50.	4.1	3
101	Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Frontiers in Immunology, 0, 14, .	4.8	3

	Ο ΓΙΤΑΤΙΟΝ Ι	CITATION REPORT	
#	Article	IF	CITATIONS
102	The DAMP-Driven Host Immune Defense Program Against Pathogens. , 2023, , 203-284.		0
104	Multistep IgE Mast Cell Desensitization Is a Dose- and Time-Dependent Process Partially Regulated by SHIP-1. Journal of Immunology, 2023, 210, 709-720.	0.8	5
106	Role of FcÎ ³ RIII in the nasal cavity of BALB/c mice in the primary amebic meningoencephalitis protection model. Parasitology Research, 2023, 122, 1087-1105.	1.6	1
107	Multi-targeted immunotherapeutics to treat B cell malignancies. Journal of Controlled Release, 2023, 358, 232-258.	9.9	0
108	Activating Fcl ³ R function depends on endosomal-signaling platforms. IScience, 2023, 26, 107055.	4.1	0
109	Microglial MHC-I induction with aging and Alzheimer's is conserved in mouse models and humans. GeroScience, 2023, 45, 3019-3043.	4.6	3
110	Human neutrophil Fc gamma receptors: Different buttons for different responses. Journal of Leukocyte Biology, 0, , .	3.3	0
111	A Review: Understanding Molecular Mechanisms of Antibody-Dependent Enhancement in Viral Infections. Vaccines, 2023, 11, 1240.	4.4	2
112	An agonistic anti-signal regulatory protein α antibody for chronic inflammatory diseases. Cell Reports Medicine, 2023, , 101130.	6.5	1
113	Antibodyâ€mediated phagocytosis in cancer immunotherapy. Immunological Reviews, 2023, 319, 128-141.	6.0	3
114	Don't eat me/eat me signals as a novel strategy in cancer immunotherapy. Heliyon, 2023, 9, e20507.	3.2	1
115	Engineering therapeutic monoclonal antibodies. Journal of Allergy and Clinical Immunology, 2024, 153, 539-548.	2.9	2
116	Understanding Fc function for rational vaccine design against pathogens. MBio, 2024, 15, .	4.1	0
117	Counteracting immunotyrosine-based signaling motifs augment zebrafish leukocyte immune-type receptor-mediated phagocytic activity. Developmental and Comparative Immunology, 2024, 153, 105121.	2.3	0