Environmental advantage by choice: Ex-ante LCA for a polypropylene composite in comparison to reference m

Composites Part B: Engineering 79, 197-203 DOI: 10.1016/j.compositesb.2015.04.038

Citation Report

#	Article	IF	CITATIONS
1	The effect of gelation and curing temperatures on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites. Fibers and Polymers, 2015, 16, 2645-2651.	1.1	9
2	Semichemical fibres of Leucaena collinsii reinforced polypropylene: Macromechanical and micromechanical analysis. Composites Part B: Engineering, 2016, 91, 384-391.	5.9	44
3	Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Composites Part B: Engineering, 2017, 114, 101-110.	5.9	109
4	Integration of LCA in R&D by applying the concept of payback period: case study of a modified multilayer wood parquet. International Journal of Life Cycle Assessment, 2017, 22, 307-316.	2.2	17
5	Injection moulding unit process for LCA: Energy intensity of manufacturing different materials at different scales. Journal of Reinforced Plastics and Composites, 2017, 36, 338-346.	1.6	5
6	Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option. Resources, Conservation and Recycling, 2017, 117, 235-248.	5.3	106
7	Are functional fillers improving environmental behavior of plastics? A review on LCA studies. Science of the Total Environment, 2018, 626, 927-940.	3.9	67
8	Function-driven Investigation of Non-renewable Energy Use and Greenhouse Gas Emissions for Material Selection in Food Packaging Applications: Case Study of Yoghurt Packaging. Procedia CIRP, 2018, 69, 728-733.	1.0	8
9	Composites from poly(lactic acid) and bleached chemical fibres: Thermal properties. Composites Part B: Engineering, 2018, 134, 169-176.	5.9	57
10	From Wood to Resin—Identifying Sustainability Levers through Hotspotting Lignin Valorisation Pathways. Sustainability, 2018, 10, 2745.	1.6	28
11	Environmental and economic prospects of biomaterials in the automotive industry. Clean Technologies and Environmental Policy, 2019, 21, 1535-1548.	2.1	25
12	Deducing targets of emerging technologies based on ex ante life cycle thinking: Case study on a chlorine recovery process for polyvinyl chloride wastes. Resources, Conservation and Recycling, 2019, 151, 104500.	5.3	19
13	Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity. Journal of Industrial Ecology, 2020, 24, 11-25.	2.8	103
14	Packaging Functions and Their Role in Technical Development of Food Packaging Systems: Functional Equivalence in Yoghurt Packaging. Procedia CIRP, 2020, 90, 405-410.	1.0	7
15	Comparing the incomparable? A review of methodical aspects in the sustainability assessment of wood in vehicles. International Journal of Life Cycle Assessment, 2020, 25, 2217-2240.	2.2	10
16	Prospective sustainability assessment: the case of wood in automotive applications. International Journal of Life Cycle Assessment, 2020, 25, 2027-2049.	2.2	17
17	A critical view on the current application of LCA for new technologies and recommendations for improved practice. Journal of Cleaner Production, 2020, 259, 120904.	4.6	151
18	A literature review on life cycle tools fostering holistic sustainability assessment: An application in biocomposite materials. Journal of Environmental Management, 2020, 262, 110308.	3.8	34

CITATION REPORT

#	ARTICLE	IF	CITATIONS
19	Barriers and incentives for the use of lignin-based resins: Results of a comparative importance performance analysis. Journal of Cleaner Production, 2020, 256, 120520.	4.6	25
20	Method of Metallurgical Production Waste Processing. Solid State Phenomena, 0, 316, 1055-1060.	0.3	0
21	Study of structures made of composite materials used in automotive industry. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 2574-2587.	0.7	2
22	Comparative Analysis of the Physical and Mechanical Properties of Composites with Functional Fillers Based on Waste. Defect and Diffusion Forum, 0, 410, 668-673.	0.4	0
23	Comparative Life Cycle Assessment of Coffee Capsule Recycling Process and Its Composites Reinforced with Natural Fibers. Journal of Polymers and the Environment, 2022, 30, 1380-1390.	2.4	2
24	What would potential future opinion leaders like to know? An explorative study on the perceptions of four wood-based innovations. Bodenkultur, 2018, 69, 47-59.	0.1	5
25	Recycling of Wood-Polymer Composites in Relation to Substrates and Finished Products. IOP Conference Series: Materials Science and Engineering, 2020, 960, 022053.	0.3	2
26	Environmental impact analysis of plant fibers and their composites relative to their synthetic counterparts based on life cycle assessment approach. , 2022, , 741-781.		2
27	The sustainability of phytomass-derived materials: thermodynamical aspects, life cycle analysis and research perspectives. Green Chemistry, 2022, 24, 2653-2679.	4.6	3
28	Developing future visions for bio-plastics substituting PET – A backcasting approach. Sustainable Production and Consumption, 2022, 31, 370-383.	5.7	22
29	Yapı Malzemelerine SürdürA҄¼rlėbilir Mimarlık BaÄŸlamında Bütüncül Bir Bakış: Duvar Malzer Çevresel Etkilerinin ve Enerji Performansının Belirlenmesi. European Journal of Science and Technology, 0, , .	nelerinin 0.5	0
30	Environmental and Economic Assessment of Repairable Carbon-Fiber-Reinforced Polymers in Circular Economy Perspective. Materials, 2022, 15, 2986.	1.3	8
31	Advances in polymeric nanocomposites for automotive applications: A review. Polymers for Advanced Technologies, 2022, 33, 3023-3048.	1.6	23
32	Ex-ante life cycle assessment of a partially reusable packaging system for dry-cured ham slices. Clean Technologies and Recycling, 2022, 2, 119-135.	1.3	2
33	Experimental Study of the Coefficient of Thermal Conductivity for MAT Composite Materials Used in Automotive Engineering. Lecture Notes in Networks and Systems, 2023, , 174-182.	0.5	0
34	Study of the Properties of Some Composite Materials Used in the Automotive Industry. Lecture Notes in Networks and Systems, 2023, , 161-173.	0.5	0
35	Physical and Chemical Foam Injection Moulding of Natural-Fibre-Reinforced Polypropylene—Assessment of Weight-Reduction Potential and Mechanical Properties. Journal of Composites Science, 2023, 7, 144.	1.4	1
36	How Green are Redox Flow Batteries?. ChemSusChem, 2023, 16, .	3.6	6

#	Article	IF	CITATIONS
38	Proposing a Multi-level Assessment Framework for Social LCA and Its Contribution to the Sustainable Development Goals. Sustainable Production, Life Cycle Engineering and Management, 2023, , 103-129.	0.2	0