Enhancing disease surveillance with novel data streams

EPJ Data Science

4,

DOI: 10.1140/epjds/s13688-015-0054-0

Citation Report

#	Article	IF	CITATIONS
1	A Supervised Learning Process to Validate Online Disease Reports for Use in Predictive Models. Big Data, 2015, 3, 230-237.	2.1	8
2	Results from the centers for disease control and prevention's predict the 2013–2014 Influenza Season Challenge. BMC Infectious Diseases, 2016, 16, 357.	1.3	144
3	A novel web informatics approach for automated surveillance of cancer mortality trends. Journal of Biomedical Informatics, 2016, 61, 110-118.	2.5	12
4	Trends in the Mechanistic and Dynamic Modeling of Infectious Diseases. Current Epidemiology Reports, 2016, 3, 212-222.	1.1	27
5	The need for data science in epidemic modelling. Physics of Life Reviews, 2016, 18, 102-104.	1.5	2
6	Mind the Scales: Harnessing Spatial Big Data for Infectious Disease Surveillance and Inference. Journal of Infectious Diseases, 2016, 214, S409-S413.	1.9	59
7	A data-driven model for influenza transmission incorporating media effects. Royal Society Open Science, 2016, 3, 160481.	1.1	24
8	Epidemic Forecasting is Messier Than Weather Forecasting: The Role of Human Behavior and Internet Data Streams in Epidemic Forecast. Journal of Infectious Diseases, 2016, 214, S404-S408.	1.9	76
9	Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. Journal of Infectious Diseases, 2016, 214, S380-S385.	1.9	109
10	Fine-grained dengue forecasting using telephone triage services. Science Advances, 2016, 2, e1501215.	4.7	24
11	Forecasting Seasonal Influenza Fusing Digital Indicators and a Mechanistic Disease Model. , 2017, , .		47
12	Public Health Surveillance Systems: Recent Advances in Their Use and Evaluation. Annual Review of Public Health, 2017, 38, 57-79.	7.6	196
13	Public health awareness of autoimmune diseases after the death of a celebrity. Clinical Rheumatology, 2017, 36, 1911-1917.	1.0	52
14	Robust clustering of languages across Wikipedia growth. Royal Society Open Science, 2017, 4, 171217.	1.1	14
15	Disparities in digital reporting of illness: A demographic and socioeconomic assessment. Preventive Medicine, 2017, 101, 18-22.	1.6	13
16	Google Trends can improve surveillance of Type 2 diabetes. Scientific Reports, 2017, 7, 4993.	1.6	50
17	Big Data in the Era of Health Information Exchanges: Challenges and Opportunities for Public Health. Informatics, 2017, 4, 39.	2.4	2
18	Clobal reaction to the recent outbreaks of Zika virus: Insights from a Big Data analysis. PLoS ONE, 2017, 12, e0185263.	1.1	51

	CITATION RE	PORT	
#	Article	IF	CITATIONS
19	Design Strategies for Efficient Arbovirus Surveillance. Emerging Infectious Diseases, 2017, 23, 642-644.	2.0	14
20	Applicability of internet search index for asthma admission forecast using machine learning. International Journal of Health Planning and Management, 2018, 33, 723-732.	0.7	5
21	Epidemic forecasts as a tool for public health: interpretation and (re)calibration. Australian and New Zealand Journal of Public Health, 2018, 42, 69-76.	0.8	22
22	Inferences about spatiotemporal variation in dengue virus transmission are sensitive to assumptions about human mobility: a case study using geolocated tweets from Lahore, Pakistan. EPJ Data Science, 2018, 7, 16.	1.5	33
23	Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization. Sustainability, 2018, 10, 3414.	1.6	10
24	Promoting the Science and Practice of Implementation Evaluation in Public Health. Preventing Chronic Disease, 2018, 15, E163.	1.7	3
25	The Surveillance of Chikungunya Virus in a Temperate Climate: Challenges and Possible Solutions from the Experience of Lazio Region, Italy. Viruses, 2018, 10, 501.	1.5	17
26	The added value of online user-generated content in traditional methods for influenza surveillance. Scientific Reports, 2018, 8, 13963.	1.6	25
27	Evaluation of Nowcasting for Detecting and Predicting Local Influenza Epidemics, Sweden, 2009–2014. Emerging Infectious Diseases, 2018, 24, 1868-1873.	2.0	12
28	Monitoring public interest toward pertussis outbreaks: an extensive Google Trends–based analysis. Public Health, 2018, 165, 9-15.	1.4	44
29	Comparison of crowd-sourced, electronic health records based, and traditional health-care based influenza-tracking systems at multiple spatial resolutions in the United States of America. BMC Infectious Diseases, 2018, 18, 403.	1.3	36
30	Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLoS ONE, 2018, 13, e0195065.	1.1	49
31	Sensing and Modeling Human Behavior Using Social Media and Mobile Data. , 2018, , 313-319.		2
32	Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is ("Isolate–Inactivate–Injectâ€) Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Frontiers in Public Health, 2018, 6, 62.	1.3	56
33	Harnessing Big Data for Communicable Tropical and Sub-Tropical Disorders: Implications From a Systematic Review of the Literature. Frontiers in Public Health, 2018, 6, 90.	1.3	35
34	Understanding emerging forms of cannabis use through an online cannabis community: An analysis of relative post volume and subjective highness ratings. Drug and Alcohol Dependence, 2018, 188, 364-369.	1.6	61
35	Reappraising the utility of Google Flu Trends. PLoS Computational Biology, 2019, 15, e1007258.	1.5	65
36	SleepOMICS: How Big Data Can Revolutionize Sleep Science. International Journal of Environmental Research and Public Health, 2019, 16, 291.	1.2	32

#	Article	IF	CITATIONS
37	Computational socioeconomics. Physics Reports, 2019, 817, 1-104.	10.3	87
38	Modeling Relational Drug-Target-Disease Interactions via Tensor Factorization with Multiple Web Sources. , 2019, , .		19
39	What can urban mobility data reveal about the spatial distribution of infection in a single city?. BMC Public Health, 2019, 19, 656.	1.2	18
40	The future of influenza forecasts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2802-2804.	3.3	55
41	Topic Clustering of E-Cigarette Submissions Among Reddit Communities: A Network Perspective. Health Education and Behavior, 2019, 46, 59S-68S.	1.3	18
42	Harnessing digital data and data science to achieve 90–90–90 goals to end the HIV epidemic. Current Opinion in HIV and AIDS, 2019, 14, 481-485.	1.5	7
43	Social Media– and Internet-Based Disease Surveillance for Public Health. Annual Review of Public Health, 2020, 41, 101-118.	7.6	164
44	GeoDenStream: An improved DenStream clustering method for managing entity data within geographical data streams. Computers and Geosciences, 2020, 144, 104563.	2.0	4
45	Crowdsourcing in Crisis: Rising to the Occasion. JCO Clinical Cancer Informatics, 2020, 4, 551-554.	1.0	8
46	Big Data Analytics in the Fight against Major Public Health Incidents (Including COVID-19): A Conceptual Framework. International Journal of Environmental Research and Public Health, 2020, 17, 6161.	1.2	54
47	A Google–Wikipedia–Twitter Model as a Leading Indicator of the Numbers of Coronavirus Deaths. Intelligent Systems in Accounting, Finance and Management, 2020, 27, 151-158.	2.8	27
48	The impact of news exposure on collective attention in the United States during the 2016 Zika epidemic. PLoS Computational Biology, 2020, 16, e1007633.	1.5	22
49	Socioeconomic bias in influenza surveillance. PLoS Computational Biology, 2020, 16, e1007941.	1.5	18
50	Trending on Social Media: Integrating Social Media into Infectious Disease Dynamics. Bulletin of Mathematical Biology, 2020, 82, 86.	0.9	19
51	Social media surveillance for perceived therapeutic effects of cannabidiol (CBD) products. International Journal of Drug Policy, 2020, 77, 102688.	1.6	28
52	Recommendations for Cardiovascular Health and Disease Surveillance for 2030 and Beyond: A Policy Statement From the American Heart Association. Circulation, 2020, 141, e104-e119.	1.6	58
53	Asynchronous dual-pipeline deep learning framework for online data stream classification. Integrated Computer-Aided Engineering, 2020, 27, 101-119.	2.5	41
54	Prominent Features in Sleep Disorder Disease in Bioinformatics Using Relevant Data Sets. Lecture Notes in Networks and Systems, 2021, , 459-466.	0.5	0

CITATION REPORT

#	Article	IF	CITATIONS
55	Forecasting Influenza Based on Autoregressive Moving Average and Holt-Winters Exponential Smoothing Models. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2021, 25, 138-144.	0.5	4
56	Data-Driven Surveillance: Effective Collection, Integration, and Interpretation of Data to Support Decision Making. Frontiers in Veterinary Science, 2021, 8, 633977.	0.9	8
57	Emerging Applications of Machine Learning in Food Safety. Annual Review of Food Science and Technology, 2021, 12, 513-538.	5.1	52
58	Forecasting influenza-like illness trends in Cameroon using Google Search Data. Scientific Reports, 2021, 11, 6713.	1.6	14
59	Harnessing Social Media in the Modelling of Pandemics—Challenges and Opportunities. Bulletin of Mathematical Biology, 2021, 83, 57.	0.9	12
60	Turn to the Internet First? Using Online Medical Behavioral Data to Forecast COVID-19 Epidemic Trend. Information Processing and Management, 2021, 58, 102486.	5.4	31
61	Data-driven methods for present and future pandemics: Monitoring, modelling and managing. Annual Reviews in Control, 2021, 52, 448-464.	4.4	28
62	Predicting seasonal influenza using supermarket retail records. PLoS Computational Biology, 2021, 17, e1009087.	1.5	5
63	Methodological approaches for the prediction of opioid use-related epidemics in the United States: a narrative review and cross-disciplinary call to action. Translational Research, 2021, 234, 88-113.	2.2	13
64	What can internet users' behaviours reveal about the mental health impacts of the COVID-19 pandemic? A systematic review. Public Health, 2021, 198, 44-52.	1.4	43
65	Cell-phone traces reveal infection-associated behavioral change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
66	Survey data and human computation for improved flu tracking. Nature Communications, 2021, 12, 194.	5.8	7
67	Early warnings of COVID-19 outbreaks across Europe from social media. Scientific Reports, 2021, 11, 2147.	1.6	44
68	Infectious Disease Forecasting for Public Health. , 2020, , 45-68.		4
70	In search of art: rapid estimates of gallery and museum visits using Google Trends. EPJ Data Science, 2020, 9, .	1.5	7
71	Pokémon Go and Exposure to Mosquito-Borne Diseases: How Not to Catch â€~Em All. PLOS Currents, 2016, 8, .	1.4	8
72	Dengue Baidu Search Index data can improve the prediction of local dengue epidemic: A case study in Guangzhou, China. PLoS Neglected Tropical Diseases, 2017, 11, e0005354.	1.3	64
73	Internet-based biosurveillance methods for vector-borne diseases: Are they novel public health tools or just novelties?. PLoS Neglected Tropical Diseases, 2017, 11, e0005871.	1.3	27

			2
#	ARTICLE	IF	CITATIONS
74	and Desktops in South Korea. PLoS ONE, 2016, 11, e0158539.	1.1	16
75	Leveraging Big Data for Exploring Occupational Diseases-Related Interest at the Level of Scientific Community, Media Coverage and Novel Data Streams: The Example of Silicosis as a Pilot Study. PLoS ONE, 2016, 11, e0166051.	1.1	41
76	Why do people use electronic nicotine delivery systems (electronic cigarettes)? A content analysis of Twitter, 2012-2015. PLoS ONE, 2017, 12, e0170702.	1.1	120
77	Link prediction on Twitter. PLoS ONE, 2017, 12, e0181079.	1.1	40
78	Forecasting influenza-like illness dynamics for military populations using neural networks and social media. PLoS ONE, 2017, 12, e0188941.	1.1	71
79	Modeling Spatiotemporal Factors Associated With Sentiment on Twitter: Synthesis and Suggestions for Improving the Identification of Localized Deviations. Journal of Medical Internet Research, 2019, 21, e12881.	2.1	14
80	Will Participatory Syndromic Surveillance Work in Latin America? Piloting a Mobile Approach to Crowdsource Influenza-Like Illness Data in Guatemala. JMIR Public Health and Surveillance, 2017, 3, e87.	1.2	16
81	Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis. JMIR Public Health and Surveillance, 2018, 4, e4.	1.2	85
82	Influenza Surveillance Using Wearable Mobile Health Devices. Online Journal of Public Health Informatics, 2019, 11, .	0.4	10
83	Wikipedia, Google Trends and Diet: Assessment of Temporal Trends in the Internet Users' Searches in Italy before and during COVID-19 Pandemic. Nutrients, 2021, 13, 3683.	1.7	14
85	Movement and Spatial Specificity Support Scaling in Ant Colonies and Immune Systems: Application to National Biosurveillance. Springer Proceedings in Complexity, 2019, , 355-366.	0.2	2
86	A re-organizing biosurveillance framework based on fog and mobile edge computing. Multimedia Tools and Applications, 2021, 80, 16805-16825.	2.6	31
87	A Social Media Time-Series Data Analytics Approach for Digital Epidemiology. , 2020, , .		1
88	New Means of Data Collection and Accessibility. Computers in Health Care, 2020, , 289-305.	0.2	0
92	Transient prophylaxis and multiple epidemic waves. AIMS Mathematics, 2022, 7, 5616-5633.	0.7	2
93	Identifying Health-Related Discussions of Cannabis Use on Twitter by Using a Medical Dictionary: Content Analysis of Tweets. JMIR Formative Research, 2022, 6, e35027.	0.7	6
94	Estimating the potential for global dissemination of pandemic pathogens using the global airline network and healthcare development indices. Scientific Reports, 2022, 12, 3070.	1.6	2
95	Rapid indicators of deprivation using grocery shopping data. Royal Society Open Science, 2021, 8, 211069.	1.1	3

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
96	NextGen Public Health Surveillance and the Internet of Things (IoT). Frontiers in Public Health, 2021, 9, 756675.	1.3	13
98	The Volume and Tone of Twitter Posts About Cannabis Use During Pregnancy: Protocol for a Scoping Review. JMIR Research Protocols, 2022, 11, e34421.	0.5	2
99	From "The Interpersonal Theory of Suicide" to "The Interpersonal Trust": an unexpected and effective resource to mitigate economic crisis-related suicide risk in times of Covid-19?. Acta Biomedica, 2021, 92, e2021417.	0.2	18
100	Challenges in the development of digital public health interventions and mapped solutions: Findings from a scoping review. Digital Health, 2022, 8, 205520762211022.	0.9	25
101	Addressing the socioeconomic divide in computational modeling for infectious diseases. Nature Communications, 2022, 13, .	5.8	20
102	Exploring the Relationship among Human Activities, COVID-19 Morbidity, and At-Risk Areas Using Location-Based Social Media Data: Knowledge about the Early Pandemic Stage in Wuhan. International Journal of Environmental Research and Public Health, 2022, 19, 6523.	1.2	4
103	Spatial aggregation choice in the era of digital and administrative surveillance data. , 2022, 1, e0000039.		4
104	Dynamic downscaling and daily nowcasting from influenza surveillance data. Statistics in Medicine, 2022, 41, 4159-4175.	0.8	1
106	Applications of Machine Learning in Food Safety. Advances in Computational Intelligence and Robotics Book Series, 2022, , 216-240.	0.4	0
107	State-Level COVID-19 Symptom Searches and Case Data: Quantitative Analysis of Political Affiliation as a Predictor for Lag Time Using Google Trends and Centers for Disease Control and Prevention Data. JMIR Formative Research, 2022, 6, e40825.	0.7	2
110	Mpox Panic, Infodemic, and Stigmatization of the Two-Spirit, Lesbian, Gay, Bisexual, Transgender, Queer or Questioning, Intersex, Asexual Community: Geospatial Analysis, Topic Modeling, and Sentiment Analysis of a Large, Multilingual Social Media Database. Journal of Medical Internet Research, 0, 25, e45108.	2.1	4
111	Secondary data for global health digitalisation. The Lancet Digital Health, 2023, 5, e93-e101.	5.9	18
112	Investigating How Liverpool City Council Use Big Data to Control Covid-19 Transmission. , 2023, , 551-561.		0
118	Real-time Hybrid Dashboard and App for Mpox Outbreak Surveillance. , 2023, , .		0