Functional drug screening reveals anticonvulsants as en autophagic killing of <i>Mycobacterium tuberculosis</i

EMBO Molecular Medicine 7, 127-139 DOI: 10.15252/emmm.201404137

Citation Report

#	Article	IF	CITATIONS
1	Autophagy in Mycobacterium tuberculosis and HIV infections. Frontiers in Cellular and Infection Microbiology, 2015, 5, 49.	1.8	39
2	New TB treatments hiding in plain sight. EMBO Molecular Medicine, 2015, 7, 125-126.	3.3	6
3	Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. Journal of Experimental Medicine, 2015, 212, 979-990.	4.2	176
4	Exploring the potential of adjunct therapy in tuberculosis. Trends in Pharmacological Sciences, 2015, 36, 506-513.	4.0	43
5	Why should cell biologists study microbial pathogens?. Molecular Biology of the Cell, 2015, 26, 4295-4301.	0.9	23
6	Autophagy Modulation for Organelle-Targeting Therapy. , 0, , .		3
7	Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination. Frontiers in Immunology, 2016, 7, 577.	2.2	18
8	CCT complex restricts neuropathogenic protein aggregation via autophagy. Nature Communications, 2016, 7, 13821.	5.8	107
9	Sharpening nature's tools for efficient tuberculosis control: A review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Advanced Drug Delivery Reviews, 2016, 102, 33-54.	6.6	29
10	Autophagy in leukocytes and other cells: mechanisms, subsystem organization, selectivity, and links to innate immunity. Journal of Leukocyte Biology, 2016, 100, 969-978.	1.5	38
11	Loperamide Restricts Intracellular Growth of <i>Mycobacterium tuberculosis</i> in Lung Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 837-847.	1.4	42
12	Autophagy in Pulmonary Diseases. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1196-1207.	2.5	62
13	Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science, 2016, 354, 751-757.	6.0	462
14	Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Medicine, 2016, 14, 89.	2.3	57
15	Impaired Mitochondrial Dynamics and Mitophagy in Neuronal Models of Tuberous Sclerosis Complex. Cell Reports, 2016, 17, 1053-1070.	2.9	125
16	The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Molecular and Cellular Biology, 2016, 36, 1464-1479.	1.1	22
17	Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infectious Diseases, The, 2016, 16, e47-e63.	4.6	265
18	Metabolic crosstalk between host and pathogen: sensing, adapting and competing. Nature Reviews Microbiology, 2016, 14, 221-234.	13.6	166

CITATION REPORT

#	Article	IF	CITATIONS
19	Protection and pathology in TB: learning from the zebrafish model. Seminars in Immunopathology, 2016, 38, 261-273.	2.8	104
20	Bioinformatics approach to prioritize known drugs towards repurposing for tuberculosis. Medical Hypotheses, 2017, 103, 39-45.	0.8	16
21	Novel drug–drug cocrystals of carbamazepine with para-aminosalicylic acid: screening, crystal structures and comparative study of carbamazepine cocrystal formation thermodynamics. CrystEngComm, 2017, 19, 4273-4286.	1.3	52
22	Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. European Journal of Cell Biology, 2017, 96, 154-163.	1.6	28
23	Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic <i>X. laevis</i> Models of Retinitis Pigmentosa. Journal of Neuroscience, 2017, 37, 1039-1054.	1.7	31
24	Analysis of host-pathogen modulators of autophagy during <i>Mycobacterium Tuberculosis</i> infection and therapeutic repercussions. International Reviews of Immunology, 2017, 36, 271-286.	1.5	14
25	Striking the right immunological balance prevents progression of tuberculosis. Inflammation Research, 2017, 66, 1031-1056.	1.6	11
26	Regulation of phagocyte triglyceride by a STAT-ATG2 pathway controls mycobacterial infection. Nature Communications, 2017, 8, 14642.	5.8	55
27	Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opinion on Drug Discovery, 2017, 12, 909-923.	2.5	9
28	Autophagy in <i>Dictyostelium</i> : Mechanisms, regulation and disease in a simple biomedical model. Autophagy, 2017, 13, 24-40.	4.3	74
29	Studying Autophagy in Zebrafish. Cells, 2017, 6, 21.	1.8	59
30	The Role of Secretory Autophagy in Zika Virus Transfer through the Placental Barrier. Frontiers in Cellular and Infection Microbiology, 2016, 6, 206.	1.8	62
31	Morphoproteomic-Guided Host-Directed Therapy for Tuberculosis. Frontiers in Immunology, 2017, 8, 78.	2.2	12
32	Macrophage Autophagy and Bacterial Infections. Frontiers in Immunology, 2017, 8, 1483.	2.2	135
33	Host-Directed Therapeutic Strategies for Tuberculosis. Frontiers in Medicine, 2017, 4, 171.	1.2	109
34	Modeling Infectious Diseases in the Context of a Developing Immune System. Current Topics in Developmental Biology, 2017, 124, 277-329.	1.0	55
35	Repurposing carbamazepine for the treatment of amyotrophic lateral sclerosis in SOD1â€G93A mouse model. CNS Neuroscience and Therapeutics, 2018, 24, 1163-1174.	1.9	33
36	Combined chemical genetics and data-driven bioinformatics approach identifies receptor tyrosine kinase inhibitors as host-directed antimicrobials. Nature Communications, 2018, 9, 358.	5.8	47

		.PORT	
#	Article	IF	CITATIONS
37	Aberrant regulation of autophagy in mammalian diseases. Biology Letters, 2018, 14, 20170540.	1.0	56
38	Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat) in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis. International Journal of Infectious Diseases, 2018, 69, 78-84.	1.5	31
39	Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases. Metabolic Brain Disease, 2018, 33, 989-1008.	1.4	65
40	Whole-organism phenotypic screening for anti-infectives promoting host health. Nature Chemical Biology, 2018, 14, 331-341.	3.9	14
41	News on therapeutic management of MDR-tuberculosis: a literature review. Journal of Chemotherapy, 2018, 30, 1-15.	0.7	11
42	Host-directed therapies for bacterial and viral infections. Nature Reviews Drug Discovery, 2018, 17, 35-56.	21.5	512
43	Xenophagic pathways and their bacterial subversion in cellular self-defense – πατα Ï¥µÎ¹ – everything is in flux. International Journal of Medical Microbiology, 2018, 308, 185-196.	1.5	6
44	Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handbook of Experimental Pharmacology, 2018, 259, 221-260.	0.9	12
45	Chemical Biology Strategies to Study Autophagy. Frontiers in Cell and Developmental Biology, 2018, 6, 160.	1.8	5
46	Glibenclamide Reduces Primary Human Monocyte Functions Against Tuberculosis Infection by Enhancing M2 Polarization. Frontiers in Immunology, 2018, 9, 2109.	2.2	20
47	Seeing is believing: methods to monitor vertebrate autophagy <i>in vivo</i> . Open Biology, 2018, 8, .	1.5	32
48	Tolerating the Unwelcome Guest; How the Host Withstands Persistent Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 2094.	2.2	20
49	Biochanin a Enhances the Defense Against Salmonella enterica Infection Through AMPK/ULK1/mTOR-Mediated Autophagy and Extracellular Traps and Reversing SPI-1-Dependent Macrophage (MΦ) M2 Polarization. Frontiers in Cellular and Infection Microbiology, 2018, 8, 318.	1.8	47
50	The Troika Host–Pathogen–Extrinsic Factors in Tuberculosis: Modulating Inflammation and Clinical Outcomes. Frontiers in Immunology, 2018, 8, 1948.	2.2	24
51	Innate Immune Responses in Leprosy. Frontiers in Immunology, 2018, 9, 518.	2.2	68
52	Host Directed Therapies for Tuberculosis: Futures Strategies for an Ancient Disease. Chemotherapy, 2018, 63, 172-180.	0.8	75
53	How to prevent secondary infections by bacteria in heart disease patients. European Journal of Preventive Cardiology, 2018, 25, 1433-1433.	0.8	0
54	Zebrafish modeling of intestinal injury, bacterial exposures, and medications defines epithelial in vivo responses relevant to human inflammatory bowel disease. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	30

#	Article	IF	CITATIONS
55	A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells, 2019, 8, 674.	1.8	154
56	Simvastatin Enhances the Immune Response Against Mycobacterium tuberculosis. Frontiers in Microbiology, 2019, 10, 2097.	1.5	31
57	Histone deacetylase inhibitors impair the host immune response against Mycobacterium tuberculosis infection. Tuberculosis, 2019, 118, 101861.	0.8	13
58	Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy. International Journal of Molecular Sciences, 2019, 20, 2868.	1.8	47
59	Chemical Screening Approaches Enabling Drug Discovery of Autophagy Modulators for Biomedical Applications in Human Diseases. Frontiers in Cell and Developmental Biology, 2019, 7, 38.	1.8	37
60	Exploring the Drug Repurposing Versatility of Valproic Acid as a Multifunctional Regulator of Innate and Adaptive Immune Cells. Journal of Immunology Research, 2019, 2019, 1-24.	0.9	48
61	AMPK-Targeted Effector Networks in Mycobacterial Infection. Frontiers in Microbiology, 2019, 10, 520.	1.5	20
62	Therapeutic modulation of autophagy: which disease comes first?. Cell Death and Differentiation, 2019, 26, 680-689.	5.0	48
63	Valproic acid promotes a decrease in mycobacterial survival by enhancing nitric oxide production in macrophages stimulated with IFN-γ. Tuberculosis, 2019, 114, 123-126.	0.8	14
64	Agephagy – Adapting Autophagy for Health During Aging. Frontiers in Cell and Developmental Biology, 2019, 7, 308.	1.8	43
65	Autophagy-activating strategies to promote innate defense against mycobacteria. Experimental and Molecular Medicine, 2019, 51, 1-10.	3.2	43
66	The treatment of melioidosis: is there a role for repurposed drugs? A proposal and review. Expert Review of Anti-Infective Therapy, 2019, 17, 957-967.	2.0	11
67	Autophagy: A new strategy for host-directed therapy of tuberculosis. Virulence, 2019, 10, 448-459.	1.8	113
68	Modulation of Inflammation to Control Tuberculosis Disease. , 2019, , 133-152.		1
69	Levels of miR-125a-5p are altered in Mycobacterium avium-infected macrophages and associate with the triggering of an autophagic response. Microbes and Infection, 2020, 22, 31-39.	1.0	19
70	The roles of microRNAs in regulation of autophagy during bacterial infection. Seminars in Cell and Developmental Biology, 2020, 101, 51-58.	2.3	22
71	Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Antibiotics, 2020, 9, 21.	1.5	28
72	Interplay Between NLRP3 Inflammasome and Autophagy. Frontiers in Immunology, 2020, 11, 591803.	2.2	264

#	Article	IF	CITATIONS
73	RNF186 regulates EFNB1 (ephrin B1)-EPHB2-induced autophagy in the colonic epithelial cells for the maintenance of intestinal homeostasis. Autophagy, 2021, 17, 3030-3047.	4.3	23
74	Autophagy and Lc3-Associated Phagocytosis in Zebrafish Models of Bacterial Infections. Cells, 2020, 9, 2372.	1.8	21
75	The Role of Autophagy for the Regeneration of the Aging Liver. International Journal of Molecular Sciences, 2020, 21, 3606.	1.8	32
76	Potentiation of rifampin activity in a mouse model of tuberculosis by activation of host transcription factor EB. PLoS Pathogens, 2020, 16, e1008567.	2.1	8
77	When to Die Is the Question: Need and Manipulation of Cell Death by Mycobacterium. Current Molecular Biology Reports, 2020, 6, 103-115.	0.8	0
78	<i>Streptococcus pneumoniae</i> PepO promotes host anti-infection defense via autophagy in a Toll-like receptor 2/4 dependent manner. Virulence, 2020, 11, 270-282.	1.8	16
79	Drugs against Mycobacterium tuberculosis. , 2020, , 139-170.		1
80	Recent advancement and future perspective for the treatment of multidrug-resistant tuberculosis. , 2020, , 231-250.		1
81	Role of Autophagy in Lung Inflammation. Frontiers in Immunology, 2020, 11, 1337.	2.2	43
82	Analysis tools to quantify dissemination of pathology in zebrafish larvae. Scientific Reports, 2020, 10, 3149.	1.6	14
83	Autophagy-mediated regulation of neutrophils and clinical applications. Burns and Trauma, 2020, 8, tkz001.	2.3	22
84	The autophagic response to <i>Staphylococcus aureus</i> provides an intracellular niche in neutrophils. Autophagy, 2021, 17, 888-902.	4.3	49
85	Soybean lectin induces autophagy through P2RX7 dependent activation of NF-κB-ROS pathway to kill intracellular mycobacteria. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129806.	1.1	10
86	The ULK1 kinase, a necessary component of the pro-regenerative and anti-aging machinery in Hydra. Mechanisms of Ageing and Development, 2021, 194, 111414.	2.2	2
87	Organelle-Specific Autophagy in Cellular Aging and Rejuvenation. Advances in Geriatric Medicine and Research, 2021, 3, .	0.6	6
88	Modulation of Autophagy: A Novel "Rejuvenation―Strategy for the Aging Liver. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-30.	1.9	9
89	The Macrophage Response to Mycobacterium tuberculosis and Opportunities for Autophagy Inducing Nanomedicines for Tuberculosis Therapy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 618414.	1.8	33
90	From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis. Microbiology (United Kingdom), 2021, 167, .	0.7	15

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
91	Autophagy as a Target for Drug Development Of Skin Infection Caused by Mycobacteria. Frontiers in Immunology, 2021, 12, 674241.	2.2	2
92	Autophagy Induction as a Host-Directed Therapeutic Strategy against Mycobacterium tuberculosis Infection. Medicina (Lithuania), 2021, 57, 522.	0.8	8
93	Advances in hostâ€based screening for compounds with intracellular antiâ€mycobacterial activity. Cellular Microbiology, 2021, 23, e13337.	1.1	6
94	Something Old, Something New: Ion Channel Blockers as Potential Anti-Tuberculosis Agents. Frontiers in Immunology, 2021, 12, 665785.	2.2	9
95	A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed?. Translational Neurodegeneration, 2021, 10, 29.	3.6	32
96	The autophagyâ€enhancing drug carbamazepine improves neuropathology and motor impairment in mouse models of Machado–Joseph disease. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	15
97	Rapamycin modulates pulmonary pathology in a murine model of <i>Mycobacterium tuberculosis</i> infection. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	7
98	Targeting Autophagy as a Strategy for Developing New Vaccines and Host-Directed Therapeutics Against Mycobacteria. Frontiers in Microbiology, 2020, 11, 614313.	1.5	15
99	Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Review of Anti-Infective Therapy, 2020, 18, 741-757.	2.0	29
100	Tissue specific diversification, virulence and immune response to <i>Mycobacterium bovis</i> BCG in a patient with an IFN-Î ³ R1 deficiency. Virulence, 2020, 11, 1656-1673.	1.8	5
101	Evaluating the Effectiveness of GTM-1, Rapamycin, and Carbamazepine on Autophagy and Alzheimer Disease. Medical Science Monitor, 2017, 23, 801-808.	0.5	52
102	Targeting Molecular Inflammatory Pathways in Granuloma as Host-Directed Therapies for Tuberculosis. Frontiers in Immunology, 2021, 12, 733853.	2.2	20
104	Autophagy as a Target for Host-Directed Therapy Against Tuberculosis. , 2021, , 71-95.		1
105	Novel Assay Platform to Evaluate Intracellular Killing of Mycobacterium tuberculosis: In Vitro and In Vivo Validation. Frontiers in Immunology, 2021, 12, 750496.	2.2	10
106	Autophagy Dysfunction as a Phenotypic Readout in hiPSC-Derived Neuronal Cell Models of Neurodegenerative Diseases. Methods in Molecular Biology, 2021, , 103-136.	0.4	4
107	Phagosome maturation and modulation of macrophage effector function by intracellular pathogens: target for therapeutics. Future Microbiology, 2022, 17, 59-76.	1.0	2
108	Bi-Directional Relationship Between Autophagy and Inflammasomes in Neurodegenerative Disorders. Cellular and Molecular Neurobiology, 2023, 43, 115-137.	1.7	3
109	Shedding Light on Autophagy During Human Tuberculosis. A Long Way to Go. Frontiers in Cellular and Infection Microbiology, 2021, 11, 820095.	1.8	8

0		 n	
	ΙΤΔΤ	REPC	١DT
\sim		ICLI C	

#	Article	IF	CITATIONS
110	Role of Academia: Drug Repurposing to Induce Autophagy for Treatment of Neurodegenerative Diseases. RSC Drug Discovery Series, 2022, , 14-23.	0.2	0
111	Toxicometabolomics and Biotransformation Product Elucidation in Single Zebrafish Embryos Exposed to Carbamazepine from Environmentally-Relevant to Morphologically Altering Doses. Chemical Research in Toxicology, 2022, 35, 431-439.	1.7	4
112	Host-directed therapies for malaria and tuberculosis: common infection strategies and repurposed drugs. Expert Review of Anti-Infective Therapy, 2022, 20, 849-869.	2.0	3
113	Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic <i>X. laevis</i> Models of Retinitis Pigmentosa. Journal of Neuroscience, 2017, 37, 1039-1054.	1.7	6
118	Recent Advances in Host-Directed Therapies for Tuberculosis andÂMalaria. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	6
120	Insights into innovative therapeutics for drug-resistant tuberculosis: Host-directed therapy and autophagy inducing modified nanoparticles. International Journal of Pharmaceutics, 2022, 622, 121893.	2.6	5
121	Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm, 2022, 3,	3.1	30
122	Harmol hydrochloride dihydrate induces autophagy in neuro cells and promotes the degradation of α‧yn by Atg5/Atg12â€dependent pathway. Food Science and Nutrition, 2022, 10, 4371-4379.	1.5	0
123	FDA-Approved Amoxapine Effectively Promotes Macrophage Control of Mycobacteria by Inducing Autophagy. Microbiology Spectrum, 2022, 10, .	1.2	4
124	Different modalities of host cell death and their impact on <i>Mycobacterium tuberculosis</i> infection. American Journal of Physiology - Cell Physiology, 2022, 323, C1444-C1474.	2.1	18
125	Interactions of Autophagy and the Immune System in Health and Diseases. , 2022, 1, 438-515.		4
126	Host-Directed Therapies for Tuberculosis. Pathogens, 2022, 11, 1291.	1.2	7
127	Identification of Autophagy as a Functional Target Suitable for the Pharmacological Treatment of Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN) In Vitro. Pharmaceutics, 2023, 15, 267.	2.0	3
128	Advances in immunomodulatory strategies for host-directed therapies in combating tuberculosis. Biomedicine and Pharmacotherapy, 2023, 162, 114588.	2.5	1
129	The crosslinks between ferroptosis and autophagy in asthma. Frontiers in Immunology, 0, 14, .	2.2	2