Interference between Coulombic and CT-mediated coup J-aggregate transformation in perylene-based π-stacks

Journal of Chemical Physics 143, 244707 DOI: 10.1063/1.4938012

Citation Report

#	Article	IF	CITATIONS
1	Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering. Nature Communications, 2016, 7, 13622.	5.8	157
2	Excitonâ€Vibrational Couplings in Homo―and Heterodimer Stacks of Perylene Bisimide Dyes within Cyclophanes: Studies on Absorption Properties and Theoretical Analysis. Chemistry - A European Journal, 2016, 22, 15011-15018.	1.7	17
3	Extended-Charge-Transfer Excitons in Crystalline Supramolecular Photocatalytic Scaffolds. Journal of the American Chemical Society, 2016, 138, 11762-11774.	6.6	91
4	Optical properties of regioregular poly(3-hexylthiophene) aggregates from fully atomistic investigations. CrystEngComm, 2016, 18, 7297-7304.	1.3	8
5	Determining the spatial coherence of excitons from the photoluminescence spectrum in charge-transfer J-aggregates. Chemical Physics, 2016, 481, 262-271.	0.9	14
6	Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials. Accounts of Chemical Research, 2017, 50, 341-350.	7.6	441
7	Solvent-Templated Folding of Perylene Bisimide Macrocycles into Coiled Double-String Ropes with Solvent-Sensitive Optical Signatures. Journal of the American Chemical Society, 2017, 139, 2014-2021.	6.6	43
8	Enhanced Davydov Splitting in Crystals of a Perylene Diimide Derivative. Journal of Physical Chemistry Letters, 2017, 8, 1118-1123.	2.1	37
9	Poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] Oligomer Single-Crystal Nanowires from Supercritical Solution and Their Anisotropic Exciton Dynamics. Journal of Physical Chemistry Letters, 2017, 8, 2984-2989.	2.1	2
10	Improving the Quantum Yields of Perylene Diimide Aggregates by Increasing Molecular Hydrophobicity in Polar Media. ChemPhysChem, 2017, 18, 2430-2441.	1.0	10
11	Enhancing Singlet Fission Dynamics by Suppressing Destructive Interference between Charge-Transfer Pathways. Journal of Physical Chemistry Letters, 2017, 8, 2480-2488.	2.1	35
12	pH-Directed Aggregation to Control Photoconductivity in Self-Assembled Perylene Bisimides. CheM, 2017, 2, 716-731.	5.8	53
13	Characterization of Excimer Relaxation via Femtosecond Shortwave- and Mid-Infrared Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 784-792.	1.1	42
14	Quantum Interference in Singlet Fission: J- and H-Aggregate Behavior. Journal of Physical Chemistry Letters, 2017, 8, 5105-5112.	2.1	37
15	Disentangling "Bright―and "Dark―Interactions in Ordered Assemblies of Organic Semiconductors. Nano Letters, 2017, 17, 6949-6953.	4.5	5
16	Allâ€Polymer Photonic Microcavities Doped with Perylene Bisimide Jâ€Aggregates. Advanced Optical Materials, 2017, 5, 1700523.	3.6	51
17	Exciton Transport in Molecular Aggregates – From Natural Antennas to Synthetic Chromophore Systems. Advanced Energy Materials, 2017, 7, 1700236.	10.2	249
18	Rational design of doubly-bridged chromophores for singlet fission and triplet–triplet annihilation. RSC Advances, 2017, 7, 34830-34845.	1.7	15

ARTICLE IF CITATIONS # Using Heterodyne-Detected Electronic Sum Frequency Generation To Probe the Electronic Structure 1.5 24 19 of Buried Interfaces. Journal of Physical Chemistry C, 2017, 121, 18653-18664. Solvatochromism in perylene diimides; experiment and theory. Physical Chemistry Chemical Physics, 1.3 2017, 19, 31781-31787. Spotlight on Excitonic Coupling in Polymorphic and Textured Anilino Squaraine Thin Films. Crystal 21 1.4 36 Growth and Design, 2017, 17, 6455-6466. Intermolecular states in organic dye dispersions: excimers vs. aggregates. Journal of Materials Chemistry C, 2017, 5, 8380-8389. Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and 23 23.0 1,033 Intermolecular Charge Transfer. Chemical Reviews, 2018, 118, 7069-7163. Molecular design for efficient singlet fission. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 34, 85-120. 5.6 99 Low-lying excited states in crystalline perylene. Proceedings of the National Academy of Sciences of 25 3.3 35 the United States of America, 2018, 115, 284-289. Chargeâ€Transfer Character in a Covalent Diketopyrrolopyrrole Dimer: Implications for Singlet Fission. 1.5 26 37 ChemPhotoChem, 2018, 2, 223-233. Singlet Fission Involves an Interplay between Energetic Driving Force and Electronic Coupling in 27 6.6 167 Perylenediimide Films. Journal of the American Chemical Society, 2018, 140, 814-826. Null Exciton Splitting in Chromophoric Greek Crossâ€...(+) Aggregate. Angewandte Chemie, 2018, 130, 1.6 15922-15927 Null Exciton Splitting in Chromophoric Greek Crossâ€...(+) Aggregate. Angewandte Chemie - International 29 7.2 68 Edition, 2018, 57, 15696-15701. The role of the charge-transfer states in the ultrafast excitonic dynamics of the DTDCTB dimers embedded in a crystal environment. Chemical Physics, 2018, 515, 603-613. Hierarchical Self-Assembly of BODIPY Dyes as a Tool to Improve the Antitumor Activity of Capsaicin in $\mathbf{31}$ 7.2 39 Prostate Cancer. Angewandte Chemie - International Edition, 2018, 57, 17235-17239. Selbstanordnung von BODIPYâ€Farbstoffen als Werkzeug, um die Antitumoraktivitävon Capsaicin bei Prostatakrebs zu erhöhen. Angewandte Chemie, 2018, 130, 17481-17485. 1.6 Evolution of HJ Coupling in Nanoscale Molecular Self-Assemblies. Journal of Physical Chemistry C, 33 1.5 6 2018, 122, 15723-15728. Discrete i€-Stacks of Perylene Bisimide Dyes within Folda-Dimers: Insight into Long- and Short-Range 34 136 Exciton Coupling. Journal of the American Chemical Society, 2018, 140, 9986-9995. Solvent and Structural Fluctuations Induced Symmetry-Breaking Charge Transfer in a Porphyrin Triad. 35 1.532 Journal of Physical Chemistry C, 2018, 122, 19409-19415. The hierarchical and perturbative forms of stochastic Schrödinger equations and their applications to carrier dynamics in organic materials. Wiley Interdisciplinary Reviews: Computational Molecular 6.2 Science, 2019, 9, e1375.

#	Article	IF	CITATIONS
37	Perylene Diimide-Based Hj- and hJ-Aggregates: The Prospect of Exciton Band Shape Engineering in Organic Materials. Journal of Physical Chemistry C, 2019, 123, 20567-20578.	1.5	91
38	Insight into the self-assembly of water-soluble perylene bisimide derivatives through a combined computational and experimental approach. Nanoscale, 2019, 11, 15917-15928.	2.8	13
39	Vibronic coupling models for donor-acceptor aggregates using an effective-mode scheme: Application to mixed Frenkel and charge-transfer excitons in oligothiophene aggregates. Journal of Chemical Physics, 2019, 150, 244114.	1.2	26
40	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.	1.4	41
41	Self-Assembly of a β-Cyclodextrin Bis-Inclusion Complex into a Highly Crystalline Fiber Network. An Effective Strategy for Null Aggregate Design. Journal of Physical Chemistry B, 2019, 123, 8131-8139.	1.2	9
42	Non-Kasha Behavior in Quadrupolar Dye Aggregates: The Red-Shifted H-Aggregate. Journal of Physical Chemistry C, 2019, 123, 3203-3215.	1.5	56
43	Coherent Charge Transfer Exciton Formation in Regioregular P3HT: A Quantum Dynamical Study. Journal of Physical Chemistry Letters, 2019, 10, 3326-3332.	2.1	35
44	Oxidation Pathways Involving a Sulfide-Endcapped Donor–Acceptor–Donor π-Conjugated Molecule and Antimony(V) Chloride. Journal of Physical Chemistry B, 2019, 123, 3866-3874.	1.2	7
45	Probing the Evolution of Molecular Packing Underlying HJ-Aggregate Transition in Organic Semiconductors Using Solvent Vapor Annealing. Journal of Physical Chemistry C, 2019, 123, 28948-28957.	1.5	3
46	Unusual Non-Kasha Photophysical Behavior of Aggregates of Push–Pull Donor–Acceptor Chromophores. Journal of Physical Chemistry C, 2020, 124, 2146-2159.	1.5	22
47	FMOxFMO: Elucidating Excitonic Interactions in the Fenna–Matthews–Olson Complex with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation, 2020, 16, 1175-1187.	2.3	12
48	Excitons and Polarons in Organic Materials. Accounts of Chemical Research, 2020, 53, 2201-2211.	7.6	63
49	Balancing Charge Transfer and Frenkel Exciton Coupling Leads to Excimer Formation in Molecular Dimers: Implications for Singlet Fission. Journal of Physical Chemistry A, 2020, 124, 8478-8487.	1.1	31
50	Symmetry-Breaking Charge Separation in the Solid State: Tetra(phenoxy)perylenediimide Polycrystalline Films. Journal of the American Chemical Society, 2020, 142, 18243-18250.	6.6	44
51	Effect of charge-transfer states on the vibrationally resolved absorption spectra and exciton dynamics in ZnPc aggregates: Simulations from a non-Makovian stochastic SchrĶdinger equation. Journal of Chemical Physics, 2020, 153, 034116.	1.2	18
52	Large Exciton Diffusion Coefficients in Two-Dimensional Covalent Organic Frameworks with Different Domain Sizes Revealed by Ultrafast Exciton Dynamics. Journal of the American Chemical Society, 2020, 142, 14957-14965.	6.6	68
53	Correlating structural changes with the photophysics of terrylenediimide films during spontaneous annealing. Journal of Materials Chemistry C, 2020, 8, 15189-15198.	2.7	2
54	Modeling nonlocal electron–phonon coupling in organic crystals using interpolative maps: The spectroscopy of crystalline pentacene and 7,8,15,16-tetraazaterrylene. Journal of Chemical Physics, 2020, 153, 124113.	1.2	7

#	Article	IF	CITATIONS
55	Exciton Isolation in Cross-Pentacene Architecture. Journal of the American Chemical Society, 2020, 142, 17393-17402.	6.6	15
56	Vibronic exciton model for low bandgap donor–acceptor polymers. Journal of Chemical Physics, 2020, 153, 244901.	1.2	19
57	Light-directed trapping of metastable intermediates in a self-assembly process. Nature Communications, 2020, 11, 6260.	5.8	15
58	Transition from H-Aggregate Nanotubes to J-Aggregate Nanoribbons. Journal of Physical Chemistry C, 2020, 124, 11722-11729.	1.5	8
59	Selfâ€5orting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetraâ€Bayâ€Acyloxy Perylene Bisimide. Angewandte Chemie - International Edition, 2020, 59, 17084-17090.	7.2	50
60	Selfâ€Sorting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetraâ€Bayâ€Acyloxy Perylene Bisimide. Angewandte Chemie, 2020, 132, 17232-17238.	1.6	18
61	Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nature Photonics, 2020, 14, 570-577.	15.6	237
62	A Molecular Strategy to Lockâ€in the Conformation of a Perylene Bisimideâ€Derived Supramolecular Polymer. Angewandte Chemie - International Edition, 2020, 59, 7487-7493.	7.2	25
63	A Molecular Strategy to Lockâ€in the Conformation of a Perylene Bisimideâ€Derived Supramolecular Polymer. Angewandte Chemie, 2020, 132, 7557-7563.	1.6	5
64	Supramolecularly Engineered J-Aggregates Based on Perylene Bisimide Dyes. Accounts of Chemical Research, 2021, 54, 642-653.	7.6	143
65	Polymorphism and Optoelectronic Properties in Crystalline Supramolecular Polymers. Chemistry of Materials, 2021, 33, 706-718.	3.2	16
66	Mutually exclusive hole and electron transfer coupling in cross stacked acenes. Chemical Science, 2021, 12, 5064-5072.	3.7	14
67	Organic Semiconductor Micro/Nanocrystals for Laser Applications. Molecules, 2021, 26, 958.	1.7	7
68	Perspectives in Dye Chemistry: A Rational Approach toward Functional Materials by Understanding the Aggregate State. Journal of the American Chemical Society, 2021, 143, 4500-4518.	6.6	149
69	Coexistence of Parallel and Rotary Stackings in the Lamellar Crystals of a Perylene Bisimide Dyad for Temperature-Sensitive Bicomponent Emission. Journal of Physical Chemistry Letters, 2021, 12, 3373-3378.	2.1	5
70	Vibrationally Resolved Absorption Spectra and Exciton Dynamics in Zinc Phthalocyanine Aggregates: Effects of Aggregation Lengths and Remote Exciton Transfer. Journal of Physical Chemistry A, 2021, 125, 2932-2943.	1.1	11
71	Bright Frenkel Excitons in Molecular Crystals: A Survey. Chemistry of Materials, 2021, 33, 3368-3378.	3.2	22
72	Polymorphism in Squaraine Dye Aggregates by Selfâ€Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus Jâ€Aggregate Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 11949-11958.	7.2	58

#	Article	IF	CITATIONS
73	Polymorphism in Squaraine Dye Aggregates by Selfâ€Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus Jâ€Aggregate Nanosheets. Angewandte Chemie, 2021, 133, 12056-12065.	1.6	19
74	Singlet Fission Dynamics of Colloidal Nanoparticles of a Perylenediimide Derivative in Solutions. Journal of Physical Chemistry B, 2021, 125, 7967-7974.	1.2	5
75	Intermolecular Charge-Transfer-Induced Strong Optical Emission from Herringbone H-Aggregates. Nano Letters, 2021, 21, 5394-5400.	4.5	20
76	Competition between the Photothermal Effect and Emission in Potential Phototherapy Agents. Journal of Physical Chemistry B, 2021, 125, 8733-8741.	1.2	7
77	Regulation of Thermally Activated Delayed Fluorescence to Roomâ€Temperature Phosphorescent Emission Channels by Controlling the Excitedâ€States Dynamics via J―and Hâ€Aggregation. Angewandte Chemie - International Edition, 2021, 60, 18059-18064.	7.2	109
78	Excited-State Dynamics of Perylene-Based Chromophore Assemblies on Nanoporous Anodic Aluminum Oxide Membranes. Journal of Physical Chemistry C, 2021, 125, 14843-14853.	1.5	4
79	Regulation of Thermally Activated Delayed Fluorescence to Roomâ€Temperature Phosphorescent Emission Channels by Controlling the Excitedâ€States Dynamics via J―and Hâ€Aggregation. Angewandte Chemie, 2021, 133, 18207-18212.	1.6	15
80	Null Exciton-Coupled Chromophoric Dimer Exhibits Symmetry-Breaking Charge Separation. Journal of the American Chemical Society, 2021, 143, 13769-13781.	6.6	57
81	Distance Matters: Biasing Mechanism, Transfer of Asymmetry, and Stereomutation in N-Annulated Perylene Bisimide Supramolecular Polymers. Journal of the American Chemical Society, 2021, 143, 13281-13291.	6.6	43
82	Ultrafast Fluctuations in PM6 Domains of Binary and Ternary Organic Photovoltaic Thin Films Probed with Two-Dimensional White-Light Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 8972-8979.	2.1	3
83	Elucidating Inner Workings of Naturally Sourced Organic Optoelectronic Materials with Ultrafast Spectroscopy. Chemistry - A European Journal, 2021, , .	1.7	5
84	Design and Control of Perylene Supramolecular Polymers through Imide Substitutions. Chemistry - A European Journal, 2022, 28, .	1.7	14
85	Freeing Organic Semiconductor Nanowires from Nanoporous Aluminum Oxide Templates: Effects on Morphology, Crystal Structure, and Molecular Aggregation. Crystal Growth and Design, 2021, 21, 721-728.	1.4	3
86	Unraveling the effect of defects, domain size, and chemical doping on photophysics and charge transport in covalent organic frameworks. Chemical Science, 2021, 12, 8373-8384.	3.7	23
87	Solvent independent symmetry-breaking charge separation in terrylenediimide guanine-quadruplex nanoparticles. Journal of Chemical Physics, 2020, 153, 204302.	1.2	4
88	Enhancement of charge transfer in thermally-expanded and strain-stabilized TIPS-pentacene thin films. Physical Review Research, 2020, 2, .	1.3	6
89	Slipâ€ S tacked Jâ€Aggregate Materials for Organic Solar Cells and Photodetectors. Advanced Materials, 2022, 34, e2104678.	11.1	77
90	Towards efficient photochemistry from upper excited electronic states: detection of long S2 lifetime of perylene. Journal of Chemical Physics, 2021, 155, 191102.	1.2	3

#	Article	IF	CITATIONS
91	Multiscale Evolution of Bulk Heterojunction Solar Cell Active Layers under Thermal Stress. Analytical Chemistry, 2021, 93, 1232-1236.	3.2	1
92	Fluorescent Carbon Nanostructures. , 2020, , 357-399.		0
93	Exciton Delocalization Counteracts the Energy Gap: A New Pathway toward NIR-Emissive Dyes. Journal of the American Chemical Society, 2021, 143, 19232-19239.	6.6	27
94	Modeling energy transfer and absorption spectra in layered metal-organic frameworks based on a Frenkel-Holstein Hamiltonian. Journal of Chemical Physics, 2022, 156, 044109.	1.2	1
95	A Holstein–Peierls Approach to Excimer Spectra: The Evolution from Vibronically Structured to Unstructured Emission. Journal of Physical Chemistry C, 2022, 126, 4067-4081.	1.5	20
96	How the Interplay among Conformational Disorder, Solvation, Local, and Charge-Transfer Excitations Affects the Absorption Spectrum and Photoinduced Dynamics of Perylene Diimide Dimers: A Molecular Dynamics/Quantum Vibronic Approach. Journal of Chemical Theory and Computation, 2022, 18, 3718-3736.	2.3	12
97	Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides. Journal of the American Chemical Society, 2022, 144, 368-376.	6.6	15
98	Advances in organic micro/nanocrystals with tunable physicochemical properties. Science China Materials, 2022, 65, 593-611.	3.5	5
99	Narcissistic self-sorting of <i>n</i> -acene nano-ribbons yielding energy-transfer and electroluminescence at p–n junctions. Nanoscale, 2022, 14, 8951-8958.	2.8	1
100	Optical Signatures of the Coupling between Excitons and Charge Transfer States in Linear Molecular Aggregates. Journal of Chemical Physics, 0, , .	1.2	1
101	Complete Set of Diketopyrrolopyrrole Centrosymmetrical Cofacial Stacked Pairs. ChemPhysChem, 2022, 23, .	1.0	6
102	DFT studies of aggregation induced energy splitting and excitonic diversification in benzene and anthracene multimers. Chemical Physics, 2022, 562, 111641.	0.9	2
103	Activating charge-transfer state formation in strongly-coupled dimers using DNA scaffolds. Chemical Science, 2022, 13, 13020-13031.	3.7	9
104	Intermolecular Charge Transfer in H- and J-Aggregates of Donor–Acceptor–Donor Chromophores: The Curious Case of Bithiophene-DPP. Journal of Physical Chemistry C, 2022, 126, 18784-18795.	1.5	7
105	Efficient Singlet Fission in Perylenediimide Derivative Nanocrystals. Journal of Physical Chemistry C, 2022, 126, 18767-18777.	1.5	0
106	Influence of core-twisted structure on singlet fission in perylenediimide film. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 438, 114473.	2.0	3
107	Aggregation of Charge Acceptors on Nanocrystal Surfaces Alters Rates of Photoinduced Electron Transfer. Journal of the American Chemical Society, 2022, 144, 22676-22688.	6.6	7
108	A time-resolved and visualized host–guest self-assembly behavior controlled through kinetic trapping. Journal of Materials Chemistry C, 2023, 11, 1742-1746.	2.7	5

#	Article	IF	CITATIONS
109	Research-Focused Approach for Introducing Undergraduate Students to Aromatic Organic Synthesis at a Community College. Journal of Chemical Education, 2023, 100, 572-580.	1.1	22
110	Supramolecular Tuning of Exciton Transport in Pi-Peptide Assemblies. Journal of Physical Chemistry C, 2023, 127, 1310-1319.	1.5	3
111	Symmetry-breaking charge transfer and intersystem crossing in copper phthalocyanine thin films. Physical Chemistry Chemical Physics, 2023, 25, 6847-6856.	1.3	2
112	Modulating the Differentiation of Kinetically Controlled Supramolecular Polymerizations through the Alkyl Bridge Length. Angewandte Chemie, 2023, 135, .	1.6	0
113	Modulating the Differentiation of Kinetically Controlled Supramolecular Polymerizations through the Alkyl Bridge Length. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
114	An <i>ab initio</i> method on large sized molecular aggregate system: Predicting absorption spectra of crystalline organic semiconducting films. Journal of Chemical Physics, 2023, 158, .	1.2	4
115	Exciton dispersion in two-dimensional organic perylene crystal indicates substantial charge-transfer exciton coupling. Physical Review B, 2023, 107, .	1.1	0
116	Tuning of Molecular Aggregation and Photoresponse of Narrow-band Organic Photodetectors. ACS Applied Electronic Materials, 2023, 5, 2375-2385.	2.0	5
117	Anomalous deep-red luminescence of perylene black analogues with strong π-π interactions. Nature Communications, 2023, 14, .	5.8	19
118	Aggregates of conjugated polymers: bottom-up control of mesoscopic morphology and photophysics. NPG Asia Materials, 2023, 15, .	3.8	1
127	Keeping the chromophores crossed: evidence for null exciton splitting. Chemical Society Reviews, 2023, 52, 6664-6679.	18.7	6