Site amplification, attenuation, and scattering from noi dense array in Long Beach, CA

Geophysical Research Letters 42, 1360-1367 DOI: 10.1002/2014gl062662

Citation Report

#	Article	IF	CITATIONS
1	The fine structure of doubleâ€frequency microseisms recorded by seismometers in North America. Journal of Geophysical Research: Solid Earth, 2015, 120, 1677-1691.	3.4	69
2	Automated detection and location of microseismicity at Mount St. Helens with a largeâ€N geophone array. Geophysical Research Letters, 2015, 42, 7390-7397.	4.0	70
3	Basinâ€scale Green's functions from the ambient seismic field recorded by MeSOâ€net stations. Journal of Geophysical Research: Solid Earth, 2016, 121, 2507-2520.	3.4	22
4	High-frequency Rayleigh-wave tomography using traffic noise from Long Beach, California. Geophysics, 2016, 81, B43-B53.	2.6	37
5	Retrieving impulse response function amplitudes from the ambient seismic field. Geophysical Journal International, 2017, 210, 210-222.	2.4	19
6	Shear wave velocity versus quality factor: results from seismic noise recordings. Geophysical Journal International, 2017, , .	2.4	1
7	Ambient Seismic Source Inversion in a Heterogeneous Earth: Theory and Application to the Earth's Hum. Journal of Geophysical Research: Solid Earth, 2017, 122, 9184-9207.	3.4	37
8	Amplification and Attenuation Across USArray Using Ambient Noise Wavefront Tracking. Journal of Geophysical Research: Solid Earth, 2017, 122, 10,086.	3.4	27
9	Using graph clustering to locate sources within a dense sensor array. Signal Processing, 2017, 132, 110-120.	3.7	19
10	Empirical Green's tensor retrieved from ambient noise cross-correlations at The Geysers geothermal field, Northern California. Geophysical Journal International, 2018, 213, 340-369.	2.4	11
11	Strong Shaking Predicted in Tokyo From an Expected M7+ Itoigawaâ€ S hizuoka Earthquake. Journal of Geophysical Research: Solid Earth, 2018, 123, 3968-3992.	3.4	14
12	Can broad-band earthquake site responses be predicted by the ambient noise spectral ratio? Insight from observations at two sedimentary basins. Geophysical Journal International, 2018, 215, 1442-1454.	2.4	47
13	Microseismic Event Detection Using Multiple Geophone Arrays in Southwestern Utah. Seismological Research Letters, 2018, 89, 1660-1670.	1.9	7
14	A Community Experiment to Record the Full Seismic Wavefield in Oklahoma. Seismological Research Letters, 2018, 89, 1923-1930.	1.9	28
15	Temporally weighting a time varying noise field to improve Green function retrieval. Journal of the Acoustical Society of America, 2018, 143, 3706-3719.	1.1	12
16	Observations and Modeling of Longâ€Period Groundâ€Motion Amplification Across Northeast China. Geophysical Research Letters, 2018, 45, 5968-5976.	4.0	4
17	High-resolution seismic tomography of Long Beach, CA using machine learning. Scientific Reports, 2019, 9, 14987.	3.3	27
18	Longâ€Period Ground Motions from Past and Virtual Megathrust Earthquakes along the Nankai Trough, Japan. Bulletin of the Seismological Society of America, 2019, 109, 1312-1330.	2.3	7

ARTICLE IF CITATIONS # Imaging the Deep Subsurface Plumbing of Old Faithful Geyser From Lowâ€Frequency Hydrothermal 19 4.0 24 Tremor Migration. Geophysical Research Letters, 2019, 46, 7315-7322. On the Feasibility of Using the Dense MyShake Smartphone Array for Earthquake Location. Seismological Résearch Letters, 2019, 90, 1209-1218. Shear wave structure of a transect of the Los Angeles basin from multimode surface waves and H/V21 2.4 14 spectral ratio analysis. Geophysical Journal International, 2020, 220, 415-427. Quantifying the Effects of Nondiffuse Noise on Ballistic and Coda Wave Amplitude From Variances of Seismic Noise Interferometry in Southern California. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017617. Distributed Acoustic Sensing Turns Fiberâ€Optic Cables into Sensitive Seismic Antennas. Seismological 23 1.9 159 Research Letters, 2020, 91, 1-15. Improving the Retrieval of Offshoreâ€Onshore Correlation Functions With Machine Learning. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019730. 3.4 Eikonal Tomography Using Coherent Surface Waves Extracted From Ambient Noise by Iterative Matched Filteringâ€"Application to the Largeâ€N Maupasacq Array. Journal of Geophysical Research: Solid 26 3.4 9 Earth, 2020, 125, e2020JB019363. Globalâ€Scale Fullâ€Waveform Ambient Noise Inversion. Journal of Geophysical Research: Solid Earth, 28 3.4 2020, 125, e2019JB018644. Retrieval of amplitude and attenuation from ambient seismic noise: synthetic data and practical 29 2.4 2 considerations. Geophysical Journal International, 2020, 222, 544-559. NoisePy: A New High-Performance Python Tool for Ambient-Noise Seismology. Seismological Research Letters, 2020, 91, 1853-1866. 3â€D Sedimentary Structures Beneath Southeastern Australia Constrained by Passive Seismic Array Data. 31 3.4 6 Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB019998. Shallow Damage Zone Structure of the Wasatch Fault in Salt Lake City from Ambient-Noise Double Beamforming with a Temporary Linear Array. Seismological Research Letters, 2021, 92, 2453-2463. Imaging the Subsurface Plumbing Complex of Steamboat Geyser and Cistern Spring With Hydrothermal Tremor Migration Using Seismic Interferometry. Journal of Geophysical Research: Solid Earth, 2021, 33 3.4 13 126, e2020JB021128. Determination of Near Surface Shearâ€Wave Velocities in the Central Los Angeles Basin With Dense Arrays. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021369. 34 3.4 Modelling<i>P</i>waves in seismic noise correlations: advancing fault monitoring using train traffic 35 9 2.4 sources. Geophysical Journal International, 2021, 228, 1556-1567. High-frequency Rayleigh-wave tomography using traffic noise from Long Beach, California. Geophysics, 2016, 81, B1-B11. Deep Clustering to Identify Sources of Urban Seismic Noise in Long Beach, California. Seismological 37 1.9 17 Research Letters, 2021, 92, 1011-1022. Introducing noisi: a Python tool for ambient noise cross-correlation modeling and noise source 38 2.8 inversion. Solid Earth, 2020, 11, 1597-1615.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
41	Parsimonious Velocity Inversion Applied to the Los Angeles Basin, CA. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	4
42	A review of near-surface QS estimation methods using active and passive sources. Journal of Seismology, 2022, 26, 823-862.	1.3	8
43	Highâ€Resolution Imaging of Complex Shallow Fault Zones Along the July 2019 Ridgecrest Ruptures. Geophysical Research Letters, 2022, 49, .	4.0	5
44	Isolating and Tracking Noise Sources across an Active Longwall Mine Using Seismic Interferometry. Bulletin of the Seismological Society of America, 0, , .	2.3	2
45	A multitask encoder–decoder to separate earthquake and ambient noise signal in seismograms. Geophysical Journal International, 2022, 231, 1806-1822.	2.4	4
46	Reworking of ancient tectonic amalgamation belt beneath the central north of North China Craton revealed by dense seismic observations. Frontiers in Earth Science, 0, 10, .	1.8	0
47	Pronounced Seismic Anisotropy in Kanto Sedimentary Basin: A Case Study of Using Dense Arrays, Ambient Noise Seismology, and Multiâ€Modal Surfaceâ€Wave Imaging. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	9
48	Seismic imaging of reservoir heterogeneity using a network with high station density at The Geysers geothermal reservoir, CA, USA. Geophysics, 2023, 88, WB11-WB22.	2.6	1
49	Seismic stereometry: an alternative two-station algorithm to seismic interferometry for analysing car-generated seismic signals. Geophysical Journal International, 2023, 235, 853-861.	2.4	1
50	Ambient noise multimode surface wave tomography. Progress in Earth and Planetary Science, 2024, 11, .	3.0	0
51	Estimation of Seismic Attenuation from Ambient Noise Coda Waves: Application to the Hellenic Subduction Zone. Bulletin of the Seismological Society of America, 0, , .	2.3	0