A Rewritable, Random-Access DNA-Based Storage Syste

Scientific Reports 5, 14138

DOI: 10.1038/srep14138

Citation Report

#	Article	IF	Citations
1	How DNA could store all the world's data. Nature, 2016, 537, 22-24.	27.8	79
2	New Trends of Digital Data Storage in DNA. BioMed Research International, 2016, 2016, 1-14.	1.9	51
3	Encoding movies and data in DNA storage. , 2016, , .		0
4	On the number of DNA sequence profiles for practical values of read lengths. , 2016, , .		1
5	Codes for DNA Sequence Profiles. IEEE Transactions on Information Theory, 2016, 62, 3125-3146.	2.4	77
6	A DNA-Based Archival Storage System. , 2016, , .		147
7	Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequence oded Polymer Barcodes. Angewandte Chemie, 2016, 128, 10880-10883.	2.0	18
8	Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequenceâ€Coded Polymer Barcodes. Angewandte Chemie - International Edition, 2016, 55, 10722-10725.	13.8	67
9	Weakly mutually uncorrelated codes. , 2016, , .		6
10	Minimal reversible circuit synthesis on a DNA computer. Natural Computing, 2017, 16, 463-472.	3.0	8
11	Exact Reconstruction From Insertions in Synchronization Codes. IEEE Transactions on Information Theory, 2017, 63, 2428-2445.	2.4	55
12	Photoâ€Induced Click Chemistry for DNA Surface Structuring by Direct Laser Writing. Chemistry - A European Journal, 2017, 23, 4990-4994.	3.3	14
13	DNA Fountain enables a robust and efficient storage architecture. Science, 2017, 355, 950-954.	12.6	543
14	A Coding Scheme for Nucleic Acid Memory (NAM). , 2017, 2017, .		3
15	Gene memories. Nature Materials, 2017, 16, 393-393.	27.5	0
16	Addressable configurations of DNA nanostructures for rewritable memory. Nucleic Acids Research, 2017, 45, 11459-11465.	14.5	66
17	Portable and Error-Free DNA-Based Data Storage. Scientific Reports, 2017, 7, 5011.	3.3	222
18	Advances in DNA storage. , 2017, , .		O

#	ARTICLE	IF	Citations
20	Defining the Field of Sequenceâ€Controlled Polymers. Macromolecular Rapid Communications, 2017, 38, 1700582.	3.9	164
21	The Student's Forum: The future of long-term data storage: how I see it. Bios, 2017, 88, 129-131.	0.0	1
22	Reconstruction of sequences over non-identical channels. , 2017, , .		1
23	On unique decoding from insertion errors. , 2017, , .		2
24	Mutually uncorrelated codes for DNA storage. , 2017, , .		14
25	Novel combinatorial coding results for DNA sequencing and data storage. , 2017, , .		15
26	Biological HCI., 2018,,.		49
27	Random access in large-scale DNA data storage. Nature Biotechnology, 2018, 36, 242-248.	17.5	445
28	DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization. Nature Communications, 2018, 9, 281.	12.8	25
29	DNA as a digital information storage device: hope or hype?. 3 Biotech, 2018, 8, 239.	2.2	34
30	DNA-based construction at the nanoscale: emerging trends and applications. Nanotechnology, 2018, 29, 062001.	2.6	45
31	A highly parallel strategy for storage of digital information in living cells. BMC Biotechnology, 2018, 18, 64.	3.3	10
32	An Improved Iterated Hybrid Search for DNA Codes Design. , 2018, , .		2
33	Encoding information into polymers. Nature Reviews Chemistry, 2018, 2, 365-381.	30.2	150
34	Trends to store digital data in DNA: an overview. Molecular Biology Reports, 2018, 45, 1479-1490.	2.3	14
35	BIIIA: a bioinformatics-inspired image identification approach. Multimedia Tools and Applications, 2019, 78, 9537-9552.	3.9	9
36	DNA Molecular Storage System: Transferring Digitally Encoded Information through Bacterial Nanonetworks. IEEE Transactions on Emerging Topics in Computing, 2019, , 1-1.	4.6	12
37	A Characterization of the DNA Data Storage Channel. Scientific Reports, 2019, 9, 9663.	3.3	151

#	Article	IF	Citations
38	DNA assembly for nanopore data storage readout. Nature Communications, 2019, 10, 2933.	12.8	80
39	Set-Codes with Small Intersections and Small Discrepancies. , 2019, , .		1
40	LDPC Codes for Portable DNA Storage. , 2019, , .		15
41	Efficient and Explicit Balanced Primer Codes. , 2019, , .		7
42	Data storage in DNA with fewer synthesis cycles using composite DNA letters. Nature Biotechnology, 2019, 37, 1229-1236.	17.5	110
43	Nucleic Acid Databases and Molecular-Scale Computing. ACS Nano, 2019, 13, 6256-6268.	14.6	56
44	Driving the Scalability of DNA-Based Information Storage Systems. ACS Synthetic Biology, 2019, 8, 1241-1248.	3.8	56
45	Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nature Communications, 2019, 10, 2383.	12.8	133
46	Molecular digital data storage using DNA. Nature Reviews Genetics, 2019, 20, 456-466.	16.3	312
47	Combining Data Longevity with High Storage Capacity—Layerâ€by‣ayer DNA Encapsulated in Magnetic Nanoparticles. Advanced Functional Materials, 2019, 29, 1901672.	14.9	65
48	Bioproduction of pure, kilobase-scale single-stranded DNA. Scientific Reports, 2019, 9, 6121.	3.3	39
49	Reconstruction and Error-Correction Codes for Polymer-Based Data Storage. , 2019, , .		9
50	DNA Compression using an innovative Index based Coding Algorithm., 2019,,.		0
51	Sequence-Subset Distance and Coding for Error Control for DNA-based Data Storage. , 2019, , .		7
52	Improved read/write cost tradeoff in DNA-based data storage using LDPC codes. , 2019, , .		34
53	On Coding Over Sliced Information. , 2019, , .		13
54	Clustering-Correcting Codes., 2019,,.		10
55	BIIGA: Bioinformatics inspired image grouping approach. Multimedia Tools and Applications, 2019, 78, 14355-14377.	3.9	1

#	Article	IF	Citations
56	Reading and writing digital data in DNA. Nature Protocols, 2020, 15, 86-101.	12.0	81
57	Decoding DNA data storage for investment. Biotechnology Advances, 2020, 45, 107639.	11.7	10
58	Low-Bias Manipulation of DNA Oligo Pool for Robust Data Storage. ACS Synthetic Biology, 2020, 9, 3344-3352.	3.8	22
59	Construction of GC-Balanced DNA With Deletion/Insertion/Mutation Error Correction for DNA Storage System. IEEE Access, 2020, 8, 140972-140980.	4.2	12
60	Construction of Duplication Correcting Codes. IEEE Access, 2020, 8, 96150-96161.	4.2	1
61	Designing Uncorrelated Address Constrain for DNA Storage by DMVO Algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 866-877.	3.0	43
62	Error Rate-Based Log-Likelihood Ratio Processing for Low-Density Parity-Check Codes in DNA Storage. IEEE Access, 2020, 8, 162892-162902.	4.2	9
63	Robust Indexing - Optimal Codes for DNA Storage. , 2020, , .		6
64	Mass Error-Correction Codes for Polymer-Based Data Storage. , 2020, , .		12
65	Aerolysin nanopores decode digital information stored in tailored macromolecular analytes. Science Advances, 2020, 6, .	10.3	57
66	A Survey Paper on DNA-Based Data Storage. , 2020, , .		1
67	Efficient and Explicit Balanced Primer Codes. IEEE Transactions on Information Theory, 2020, 66, 5344-5357.	2.4	13
68	Dynamic and scalable DNA-based information storage. Nature Communications, 2020, 11, 2981.	12.8	52
69	Coded Trace Reconstruction. IEEE Transactions on Information Theory, 2020, 66, 6084-6103.	2.4	42
70	Overcoming High Nanopore Basecaller Error Rates for DNA Storage via Basecaller-Decoder Integration and Convolutional Codes., 2020,,.		21
71	Capacity of the Erasure Shuffling Channel. , 2020, , .		3
72	Sequence-Subset Distance and Coding for Error Control in DNA-Based Data Storage. IEEE Transactions on Information Theory, 2020, 66, 6048-6065.	2.4	9
73	Image Processing in DNA. , 2020, , .		8

#	Article	IF	CITATIONS
74	An Intelligent Optimization Algorithm for Constructing a DNA Storage Code: NOL-HHO. International Journal of Molecular Sciences, 2020, 21, 2191.	4.1	33
75	Nanopore-Based DNA Hard Drives for Rewritable and Secure Data Storage. Nano Letters, 2020, 20, 3754-3760.	9.1	88
76	Quantifying molecular bias in DNA data storage. Nature Communications, 2020, 11, 3264.	12.8	53
77	DNA storage: research landscape and future prospects. National Science Review, 2020, 7, 1092-1107.	9.5	106
78	DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nature Communications, 2020, 11, 1742.	12.8	70
79	Achieving the Capacity of the DNA Storage Channel. , 2020, , .		10
80	Data storage in cellular DNA: contextualizing diverse encoding schemes. Evolutionary Intelligence, 2021, 14, 331-343.	3.6	2
81	On conflict free DNA codes. Cryptography and Communications, 2021, 13, 143-171.	1.4	12
82	Robust Storage of Chinese Language in a Pool of Small Single-Stranded DNA Rings and Its Facile Reading-Out. Bulletin of the Chemical Society of Japan, 2021, 94, 53-59.	3.2	6
83	Design of Nonbinary Error Correction Codes With a Maximum Run-Length Constraint to Correct a Single Insertion or Deletion Error for DNA Storage. IEEE Access, 2021, 9, 135354-135363.	4.2	4
84	DNAQL: a query language for DNA sticker complexes. Natural Computing, 2021, 20, 161-189.	3.0	0
86	An Empirical Comparison of Preservation Methods for Synthetic DNA Data Storage. Small Methods, 2021, 5, e2001094.	8.6	34
87	Mini review: Enzyme-based DNA synthesis and selective retrieval for data storage. Computational and Structural Biotechnology Journal, 2021, 19, 2468-2476.	4.1	9
88	A Strong Non-overlapping Dyck Code. Lecture Notes in Computer Science, 2021, , 43-53.	1.3	2
89	Solving the Family Traveling Salesperson Problem in the Adleman–Lipton Model Based on DNA Computing. IEEE Transactions on Nanobioscience, 2022, 21, 75-85.	3.3	23
91	Uncertainties in synthetic DNA-based data storage. Nucleic Acids Research, 2021, 49, 5451-5469.	14.5	26
93	Reconstructing Mixtures of Coded Strings from Prefix and Suffix Compositions. , 2021, , .		5
94	Error-Correcting Codes for Noisy Duplication Channels. IEEE Transactions on Information Theory, 2021, 67, 3452-3463.	2.4	8

#	Article	IF	CITATIONS
95	High-density information storage and random access scheme using synthetic DNA. 3 Biotech, 2021, 11, 328.	2.2	4
97	IMG-DNA., 2021,,.		6
98	Promiscuous molecules for smarter file operations in DNA-based data storage. Nature Communications, 2021, 12, 3518.	12.8	19
99	The art of molecular computing: Whence and whither. BioEssays, 2021, 43, e2100051.	2.5	5
100	Large-Scale de novo Oligonucleotide Synthesis for Whole-Genome Synthesis and Data Storage: Challenges and Opportunities. Frontiers in Bioengineering and Biotechnology, 2021, 9, 689797.	4.1	34
101	Random access DNA memory using Boolean search in an archival file storage system. Nature Materials, 2021, 20, 1272-1280.	27. 5	68
102	Trellis BMA: Coded Trace Reconstruction on IDS Channels for DNA Storage. , 2021, , .		31
103	Capacity of the Torn Paper Channel with Lost Pieces. , 2021, , .		5
104	Research on constructing artificial neural networks using genetic circuits to realize neuromorphic computing. Chinese Science Bulletin, 2021, , .	0.7	0
105	Molecular-level similarity search brings computing to DNA data storage. Nature Communications, 2021, 12, 4764.	12.8	34
107	A self-contained and self-explanatory DNA storage system. Scientific Reports, 2021, 11, 18063.	3.3	9
109	Data Storage Based on DNA. Small Structures, 2021, 2, 2000046.	12.0	36
122	A DNA-Based Archival Storage System. ACM SIGPLAN Notices, 2016, 51, 637-649.	0.2	36
123	A DNA-Based Archival Storage System. Operating Systems Review (ACM), 2016, 50, 637-649.	1.9	59
124	A DNA-Based Archival Storage System. Computer Architecture News, 2016, 44, 637-649.	2.5	28
125	Improving communication for interdisciplinary teams working on storage of digital information in DNA. F1000Research, 2018, 7, 39.	1.6	4
126	Torn-Paper Coding. IEEE Transactions on Information Theory, 2021, 67, 7904-7913.	2.4	5
127	Electrically Controlled Nanofluidic DNA Sluice for Data Storage Applications. ACS Applied Nano Materials, 2021, 4, 11063-11069.	5.0	5

#	Article	IF	CITATIONS
131	Link Layer Protocol for Molecular Communication Networks., 2019,,.		1
135	A quaternary code mapping resistant to the sequencing noise for DNA image coding. , 2020, , .		1
137	CMOS Capacitive DNA Nano-Mass Measurement for DNA Storage Application. , 2021, , .		0
138	DNA fountain: As storage system. IP International Journal of Comprehensive and Advanced Pharmacology, 2021, 6, 126-135.	0.3	1
139	Set-Codes with Small Intersections and Small Discrepancies. SIAM Journal on Discrete Mathematics, 2020, 34, 1148-1171.	0.8	2
140	Current and emerging opportunities in biological mediumâ€based computing and digital data storage. Nano Select, 2022, 3, 883-902.	3.7	2
142	Electrochemical DNA synthesis and sequencing on a single electrode with scalability for integrated data storage. Science Advances, 2021, 7, eabk0100.	10.3	27
143	Scaling DNA data storage with nanoscale electrode wells. Science Advances, 2021, 7, eabi6714.	10.3	35
144	DNA Image Storage Using a Scheme Based on Fuzzy Matching on Natural Genome. Lecture Notes in Computer Science, 2021, , 572-583.	1.3	0
145	Clustering-Correcting Codes. IEEE Transactions on Information Theory, 2022, 68, 1560-1580.	2.4	3
146	Neural Network-Based Decoding of Constrained Codes for DNA Data Storage. , 2020, , .		0
147	A JPEG-based image coding solution for data storage on DNA. , 2021, , .		10
148	Correcting deletion errors in DNA data storage with enzymatic synthesis. , 2021, , .		3
149	Synthetic DNA applications in information technology. Nature Communications, 2022, 13, 352.	12.8	52
150	Anhydrous calcium phosphate crystals stabilize DNA for dry storage. Chemical Communications, 2022, 58, 3174-3177.	4.1	8
151	Recovery of Information Stored in Modified DNA with an Evolved Polymerase. ACS Synthetic Biology, 2022, 11, 554-561.	3.8	3
152	Improved Rank-Modulation Codes for DNA Storage With Shotgun Sequencing. IEEE Transactions on Information Theory, 2022, 68, 3719-3730.	2.4	0
153	Self-assembled microtubular electrodes for on-chip low-voltage electrophoretic manipulation of charged particles and macromolecules. Microsystems and Nanoengineering, 2022, 8, 27.	7.0	9

#	ARTICLE	IF	CITATIONS
154	Combinatorial PCR Method for Efficient, Selective Oligo Retrieval from Complex Oligo Pools. ACS Synthetic Biology, 2022, 11, 1727-1734.	3.8	8
155	Expanding the Molecular Alphabet of DNA-Based Data Storage Systems with Neural Network Nanopore Readout Processing. Nano Letters, 2022, 22, 1905-1914.	9.1	18
156	Semiautomated synthesis of sequence-defined polymers for information storage. Science Advances, 2022, 8, eabl8614.	10.3	27
157	Particle detection and tracking with DNA. European Physical Journal C, 2022, 82, 1.	3.9	2
158	Encoding of non-biological information for its long-term storage in DNA. BioSystems, 2022, 215-216, 104664.	2.0	3
159	On the Capacity of DNA-based Data Storage under Substitution Errors. , 2021, , .		2
160	$\mbox{Q}\mbox{-}\mbox{Ary Non-Overlapping Codes: A Generating Function Approach. IEEE Transactions on Information Theory, 2022, 68, 5154-5164.}$	2.4	1
161	Towards practical and robust DNA-based data archiving using the yin–yang codec system. Nature Computational Science, 2022, 2, 234-242.	8.0	33
162	Error Probability Bounds for Coded-Index DNA Storage Systems. IEEE Transactions on Information Theory, 2022, 68, 7005-7022.	2.4	1
163	Rewritable two-dimensional DNA-based data storage with machine learning reconstruction. Nature Communications, 2022, 13 , .	12.8	16
164	Managing reliability skew in DNA storage. , 2022, , .		3
165	Adaptive coding for DNA storage with high storage density and low coverage. Npj Systems Biology and Applications, 2022, 8, .	3.0	26
166	Preservation and Encryption in DNA Digital Data Storage. ChemPlusChem, 2022, 87, .	2.8	9
167	Limited-Magnitude Error Correction for Probability Vectors in DNA Storage. , 2022, , .		0
168	Capacity of the Shotgun Sequencing Channel. , 2022, , .		0
169	Insertion and Deletion Correction in Polymer-based Data Storage. , 2022, , .		2
170	In vivo processing of digital information molecularly with targeted specificity and robust reliability. Science Advances, 2022, 8, .	10.3	13
172	Design of DNA Storage Coding with Enhanced Constraints. Entropy, 2022, 24, 1151.	2.2	3

#	Article	IF	CITATIONS
173	Balanced Set Codes With Small Intersections. IEEE Transactions on Information Theory, 2023, 69, 147-156.	2.4	4
174	Integrated Microfluidic DNA Storage Platform with Automated Sample Handling and Physical Data Partitioning. Analytical Chemistry, 2022, 94, 13153-13162.	6.5	6
175	Data and image storage on synthetic DNA: existing solutions and challenges. Eurasip Journal on Image and Video Processing, 2022, 2022, .	2.6	1
176	Emerging Approaches to DNA Data Storage: Challenges and Prospects. ACS Nano, 2022, 16, 17552-17571.	14.6	48
177	Information decay and enzymatic information recovery for DNA data storage. Communications Biology, 2022, 5, .	4.4	2
178	Modeling and Simulation of DNA Origami based Electronic Read-only Memory. , 2022, , .		0
179	Log-likelihood Ratio for Low-Density Parity-Check Codes Under Binary Symmetric Erasure Channel in DNA Storage. , 2022, , .		0
180	Levy Equilibrium Optimizer algorithm for the DNA storage code set. PLoS ONE, 2022, 17, e0277139.	2.5	1
181	Big data management: from hard drives to DNA drives. Indian Journal of Animal Sciences, 2022, 90, 134-140.	0.2	5
182	The Noisy Drawing Channel: Reliable Data Storage in DNA Sequences. IEEE Transactions on Information Theory, 2022, , 1-1.	2.4	0
183	HL-DNA: A Hybrid Lossy/Lossless Encoding Scheme to Enhance DNA Storage Density and Robustness for Images. , 2022, , .		1
184	DNA storage—from natural biology to synthetic biology. Computational and Structural Biotechnology Journal, 2023, 21, 1227-1235.	4.1	4
185	Insertion and Deletion Correction in Polymer-Based Data Storage. IEEE Transactions on Information Theory, 2023, 69, 4384-4406.	2.4	0
187	GCNSA: DNA storage encoding with a graph convolutional network and self-attention. IScience, 2023, 26, 106231.	4.1	11
188	Solid-State MoS ₂ Nanopore Membranes for Discriminating among the Lengths of RNA Tails on a Double-Stranded DNA: A New Simulation-Based Differentiating Algorithm. ACS Applied Nano Materials, 2023, 6, 4651-4660.	5.0	2
189	An outlook on the current challenges and opportunities in DNA data storage. Biotechnology Advances, 2023, 66, 108155.	11.7	7
190	Study on DNA Storage Encoding Based IAOA under Innovation Constraints. Current Issues in Molecular Biology, 2023, 45, 3573-3590.	2.4	0
191	In-vitro validated methods for encoding digital data in deoxyribonucleic acid (DNA). BMC Bioinformatics, 2023, 24, .	2.6	2

#	Article	IF	CITATIONS
192	Coding for Polymer-Based Data Storage. IEEE Transactions on Information Theory, 2023, 69, 4812-4836.	2.4	0
193	Magnetic DNA random access memory with nanopore readouts and exponentially-scaled combinatorial addressing. Scientific Reports, 2023, 13, .	3.3	2
194	Addressable $\langle scp \rangle DNA \langle scp \rangle$ information processing system with a fluorescent readout for rewritable memory. Chinese Journal of Chemistry, 0, , .	4.9	1
196	The DNA Data Storage Model. Computer, 2023, 56, 78-85.	1.1	O
197	Efficient DNA-Based Image Coding and Storage. , 2023, , .		O
198	DNA technology for big data storage and error detection solutions: Hamming code vs Cyclic Redundancy Check (CRC). E3S Web of Conferences, 2023, 412, 01090.	0.5	0
199	Scaling logical density of DNA storage with enzymatically-ligated composite motifs. Scientific Reports, 2023, 13 , .	3.3	2
200	Weakly mutually uncorrelated codes with maximum run length constraint for DNA storage. Computers in Biology and Medicine, 2023, 165, 107439.	7.0	1
201	Digital data storage on DNA tape using CRISPR base editors. Nature Communications, 2023, 14, .	12.8	1
202	Parallel molecular computation on digital data stored in DNA. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
203	Data Storage Using DNA. Advanced Materials, 2024, 36, .	21.0	0
204	A Hybrid Approach of Image Retrieving In Biometric ID., 2023,,.		O
205	Sequence Design and Reconstruction Under the Repeat Channel in Enzymatic DNA Synthesis. IEEE Transactions on Communications, 2024, 72, 675-691.	7.8	0
206	The Construction ofÂDNA Coding Sets byÂanÂIntelligent Optimization Algorithm: TMOL-TSO. Communications in Computer and Information Science, 2024, , 455-469.	0.5	O
207	Efficiently Enabling Block Semantics and Data Updates in DNA Storage., 2023,,.		0
208	Storageâ€D: A userâ€friendly platform that enables practical and personalized DNA data storage. , 2024, 3, .		O
210	DNA as a universal chemical substrate for computing and data storage. Nature Reviews Chemistry, 2024, 8, 179-194.	30.2	0
211	"Cell Disk―DNA Storage System Capable of Random Reading and Rewriting. Advanced Science, 2024, 11, .	11.2	O

#	Article	IF	CITATIONS
212	CRISPR-powered quantitative keyword search engine in DNA data storage. Nature Communications, 2024, 15 , .	12.8	0
213	Recent Progress in High-Throughput Enzymatic DNA Synthesis for Data Storage. Biochip Journal, 0, , .	4.9	0
214	Efficient data reconstruction: The bottleneck of large-scale application of DNA storage. Cell Reports, 2024, 43, 113699.	6.4	0