Diabetic kidney disease

Nature Reviews Disease Primers 1, 15018 DOI: 10.1038/nrdp.2015.18

Citation Report

#	Article	IF	CITATIONS
1	Systematic Literature Review of DPP-4 Inhibitors in Patients with Type 2 Diabetes Mellitus and Renal Impairment. Diabetes Therapy, 2016, 7, 439-454.	1.2	24
2	Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nature Reviews Nephrology, 2016, 12, 73-81.	4.1	441
3	Epigenetic Mechanisms in Diabetic Kidney Disease. Current Diabetes Reports, 2016, 16, 31.	1.7	38
4	Sodium-Glucose Co-transporters and Their Inhibition: Clinical Physiology. Cell Metabolism, 2017, 26, 27-38.	7.2	233
5	The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes. Diabetes and Metabolism, 2017, 43, 2S20-2S27.	1.4	68
6	Genetics of Diabetic Kidney Disease—From the Worst of Nightmares to the Light of Dawn?. Journal of the American Society of Nephrology: JASN, 2017, 28, 389-393.	3.0	23
7	Precision Medicine Approaches to Diabetic Kidney Disease: Tissue as an Issue. Current Diabetes Reports, 2017, 17, 30.	1.7	27
8	Fast renal decline to end-stage renal disease: an unrecognized feature of nephropathy in diabetes. Kidney International, 2017, 91, 1300-1311.	2.6	159
9	An integrin antagonist (<scp>MK</scp> â€0429) decreases proteinuria and renal fibrosis in the <scp>ZSF</scp> 1 rat diabetic nephropathy model. Pharmacology Research and Perspectives, 2017, 5, e00354.	1.1	41
10	Plasma Leucine-Rich α-2-Glycoprotein 1 Predicts Rapid eGFR Decline and Albuminuria Progression in Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3683-3691.	1.8	43
11	Epigenetic Regulations in Diabetic Nephropathy. Journal of Diabetes Research, 2017, 2017, 1-6.	1.0	58
12	Diabetic Nephropathy: From Pathophysiology to Treatment. Journal of Diabetes Research, 2017, 2017, 1-2.	1.0	16
13	Lipoxins Regulate the Early Growth Response–1 Network and Reverse Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1437-1448.	3.0	48
14	Safety and Efficacy of Teneligliptin in Patients with Type 2 Diabetes Mellitus and Impaired Renal Function: Interim Report from Post-marketing Surveillance. Diabetes Therapy, 2018, 9, 1083-1097.	1.2	10
15	Diabetic Kidney Disease: Is There a Role for Glycemic Variability?. Current Diabetes Reports, 2018, 18, 13.	1.7	13
16	The Warburg Effect in Diabetic Kidney Disease. Seminars in Nephrology, 2018, 38, 111-120.	0.6	75
17	Preservation of renal function in chronic diabetes by enhancing glomerular glucose metabolism. Journal of Molecular Medicine, 2018, 96, 373-381.	1.7	21
19	The Global Epidemiology of Diabetes and Kidney Disease. Advances in Chronic Kidney Disease, 2018, 25, 121-132.	0.6	335

#	ARTICLE	IF	CITATIONS
20	FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. Journal of the American Society of Nephrology: JASN, 2018, 29, 118-137.	3.0	133
21	Renal outcomes with dipeptidyl peptidase-4 inhibitors. Diabetes and Metabolism, 2018, 44, 101-111.	1.4	19
22	Associations between angiotensinogen M235T polymorphisms and the risk of diabetic nephropathy: A meta-analysis. Diabetes Research and Clinical Practice, 2018, 142, 26-36.	1.1	5
23	Aberrant DNA methylation of Tgfb1 in diabetic kidney mesangial cells. Scientific Reports, 2018, 8, 16338.	1.6	18
24	Mathematical model of hemodynamic mechanisms and consequences of glomerular hypertension in diabetic mice. Npj Systems Biology and Applications, 2018, 4, 2.	1.4	11
25	Clinical and genetic associations of renal function and diabetic kidney disease in the United Arab Emirates: a cross-sectional study. BMJ Open, 2018, 8, e020759.	0.8	13
26	Prolonged systemic hyperglycemia does not cause pericyte loss and permeability at the mouse blood-brain barrier. Scientific Reports, 2018, 8, 17462.	1.6	19
27	Application of urinary proteomics as possible risk predictor of renal and cardiovascular complications in patients with type 2-diabetes and microalbuminuria. Journal of Diabetes and Its Complications, 2018, 32, 1133-1140.	1.2	9
28	New clinical trial designs for establishing drug efficacy and safety in a precision medicine era. Diabetes, Obesity and Metabolism, 2018, 20, 14-18.	2.2	19
29	Histone Deacetylase Inhibitors and Diabetic Kidney Disease. International Journal of Molecular Sciences, 2018, 19, 2630.	1.8	62
30	Tiaolipiwei Acupuncture Reduces Albuminuria by Alleviating Podocyte Lesions in a Rat Model of Diabetic Nephropathy. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-10.	0.5	5
31	COL4A3 Gene Variants and Diabetic Kidney Disease in MODY. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 1162-1171.	2.2	26
32	Social Determinants of Health Are Associated with Markers of Renal Injury in Adolescents with Type 1 Diabetes. Journal of Pediatrics, 2018, 198, 247-253.e1.	0.9	14
33	miRâ€370 promotes high glucoseâ€induced podocyte injuries by inhibiting angiotensin II type 1 receptorâ€associated protein. Cell Biology International, 2018, 42, 1545-1555.	1.4	6
34	Association between hearing organ and renal function in young adult type 1 diabetic patients: A cross-sectional study. Scientific Reports, 2018, 8, 12645.	1.6	2
35	Kruppel-Like Transcription Factor-4 Gene Expression and DNA Methylation Status in Type 2 Diabetes and Diabetic Nephropathy Patients. Archives of Medical Research, 2019, 50, 91-97.	1.5	8
36	MiR-30e-5p and MiR-15a-5p Expressions in Plasma and Urine of Type 1 Diabetic Patients With Diabetic Kidney Disease. Frontiers in Genetics, 2019, 10, 563.	1.1	29
37	Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1–induced gene expression in mesangial cells and diabetic kidney. Journal of Biological Chemistry, 2019, 294, 12695-12707.	1.6	52

#	Article	IF	CITATIONS
38	Basic Research in Diabetic Nephropathy Health Care: A study of the Renoprotective Mechanism of Metformin. Journal of Medical Systems, 2019, 43, 266.	2.2	15
39	Diabetic kidney diseases revisited: A new perspective for a new era. Molecular Metabolism, 2019, 30, 250-263.	3.0	122
40	Impact of Kidney Function on Cardiovascular Risk and Mortality: A Comparison of South Asian and European Cohorts. American Journal of Nephrology, 2019, 50, 425-433.	1.4	14
41	Genetics of diabetic kidney disease: A followâ€up study in the Arab population of the United Arab Emirates. Molecular Genetics & Genomic Medicine, 2019, 7, e985.	0.6	4
42	Inflammation Leads the Way on the ROADMAP to Diabetic Kidney Disease. Kidney International Reports, 2019, 4, 1362-1365.	0.4	5
43	Kidney cytosine methylation changes improve renal function decline estimation in patients with diabetic kidney disease. Nature Communications, 2019, 10, 2461.	5.8	59
44	Mitochondrial Activity and Skeletal Muscle Insulin Resistance in Kidney Disease. International Journal of Molecular Sciences, 2019, 20, 2751.	1.8	30
45	Genetic and Epigenetic Studies in Diabetic Kidney Disease. Frontiers in Genetics, 2019, 10, 507.	1.1	56
46	Cause-Specific Mortality in Multiethnic South East Asians With Type 2 Diabetes Mellitus. Asia-Pacific Journal of Public Health, 2019, 31, 306-314.	0.4	5
47	Whole transcriptome analysis of diabetic nephropathy in the db/db mouse model of type 2 diabetes. Journal of Cellular Biochemistry, 2019, 120, 17520-17533.	1.2	19
48	Metabolic consequences of lactate dehydrogenase inhibition by oxamate in hyperglycemic proximal tubular cells. Experimental Cell Research, 2019, 378, 51-56.	1.2	13
49	Economic and quality of life burden of anemia on patients with CKD on dialysis: a systematic review. Journal of Medical Economics, 2019, 22, 593-604.	1.0	47
50	Effects of Dipeptidyl Peptidase-4 Inhibitors on Renal Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Endocrinology and Metabolism, 2019, 34, 80.	1.3	42
51	Prompt apoptotic response to high glucose in SGLT-expressing renal cells. American Journal of Physiology - Renal Physiology, 2019, 316, F1078-F1089.	1.3	15
52	Animal Models of Type 2 Diabetes, Obesity and Nonalcoholic Steatohepatitis– Clinical Translatability and Applicability in Preclinical Drug Development. , 2019, , 369-403.		4
53	Economic Burden and Health-Related Quality of Life Associated with Current Treatments for Anaemia in Patients with CKD not on Dialysis: A Systematic Review. PharmacoEconomics - Open, 2019, 3, 463-478.	0.9	18
54	Molecular Imaging of the Glomerulus via Mesangial Cell Uptake of Radiolabeled Tilmanocept. Journal of Nuclear Medicine, 2019, 60, 1325-1332.	2.8	10
55	Association of diabetic retinopathy and diabetic macular oedema with renal function in southern Chinese patients with type 2 diabetes mellitus: a single-centre observational study. BMJ Open, 2019, 9, e031194.	0.8	45

#	Article	IF	CITATIONS
56	A complex auxiliary: IL-17/Th17 signaling during type 1 diabetes progression. Molecular Immunology, 2019, 105, 16-31.	1.0	14
57	Diabetic Kidney Disease. , 2019, , 42-61.e5.		1
58	Rapid decline of renal function in patients with type 2 diabetes with heavy proteinuria: a report of three cases. BMC Nephrology, 2019, 20, 22.	0.8	8
59	Vitamin D protects against diabetic nephropathy: Evidence-based effectiveness and mechanism. European Journal of Pharmacology, 2019, 845, 91-98.	1.7	40
60	Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis. Archives of Physiology and Biochemistry, 2020, 126, 172-182.	1.0	24
61	Synergistic interaction of hypertension and diabetes on chronic kidney disease: Insights from the National Health and Nutrition Examination Survey 1999–2006. Journal of Diabetes and Its Complications, 2020, 34, 107447.	1.2	6
62	Development of risk models for major adverse chronic renal outcomes among patients with type 2 diabetes mellitus using insurance claims: a retrospective observational study. Current Medical Research and Opinion, 2020, 36, 219-227.	0.9	7
63	-866G/A and Ins/Del polymorphisms in the UCP2 gene and diabetic kidney disease: case-control study and meta-analysis. Genetics and Molecular Biology, 2020, 43, e20180374.	0.6	1
64	Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney International, 2020, 97, 143-155.	2.6	31
65	Primary Care Providers' Acceptance of Pharmacists' Recommendations to Support Optimal Medication Management for Patients with Diabetic Kidney Disease. Journal of General Internal Medicine, 2020, 35, 63-69.	1.3	5
67	Diabetic Kidney Disease: Past and Present. Advances in Anatomic Pathology, 2020, 27, 87-97.	2.4	54
68	Comprehensive lipidomic profiling in serum and multiple tissues from a mouse model of diabetes. Metabolomics, 2020, 16, 115.	1.4	14
69	Renal protective effects of astragaloside IV, in diabetes mellitus kidney damage animal models: A systematic review, meta-analysis. Pharmacological Research, 2020, 160, 105192.	3.1	21
70	AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy. Biomedicine and Pharmacotherapy, 2020, 131, 110655.	2.5	38
71	Withaferin A protects against endoplasmic reticulum stress-associated apoptosis, inflammation, and fibrosis in the kidney of a mouse model of unilateral ureteral obstruction. Phytomedicine, 2020, 79, 153352.	2.3	19
72	The genetic map of diabetic nephropathy: evidence from a systematic review and meta-analysis of genetic association studies. CKJ: Clinical Kidney Journal, 2020, 13, 768-781.	1.4	31
73	Mitochondrial pyruvate carrier: a potential target for diabetic nephropathy. BMC Nephrology, 2020, 21, 274.	0.8	6
74	Effects of ZnT8 on epithelial-to-mesenchymal transition and tubulointerstitial fibrosis in diabetic kidney disease. Cell Death and Disease, 2020, 11, 544.	2.7	9

#	Article	IF	CITATIONS
75	Diabetic Kidney Disease: Challenges, Advances, and Opportunities. Kidney Diseases (Basel, Switzerland), 2020, 6, 215-225.	1.2	98
76	Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway. Metabolism: Clinical and Experimental, 2020, 111, 154334.	1.5	50
77	Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus. Nature Reviews Nephrology, 2020, 16, 709-720.	4.1	64
78	Circ_0123996 promotes cell proliferation and fibrosis in mouse mesangial cells through sponging miR-149-5p and inducing Bach1 expression. Gene, 2020, 761, 144971.	1.0	28
79	Accelerated Kidney Aging in Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-24.	1.9	52
80	FOXO3a accumulation and activation accelerate oxidative stressâ€induced podocyte injury. FASEB Journal, 2020, 34, 13300-13316.	0.2	18
81	A Targeted Multiomics Approach to Identify Biomarkers Associated with Rapid eGFR Decline in Type 1 Diabetes. American Journal of Nephrology, 2020, 51, 839-848.	1.4	10
82	Gut microbiota profile and selected plasma metabolites in type 1 diabetes without and with stratification by albuminuria. Diabetologia, 2020, 63, 2713-2724.	2.9	27
83	Identification of hub genes in diabetic kidney disease via multiple-microarray analysis. Annals of Translational Medicine, 2020, 8, 997-997.	0.7	16
84	Early Detection of CKD: Implications for Low-Income, Middle-Income, and High-Income Countries. Journal of the American Society of Nephrology: JASN, 2020, 31, 1931-1940.	3.0	36
86	Sweet dreams: therapeutic insights, targeting imaging and physiologic evidence linking sleep, melatonin and diabetic nephropathy. CKJ: Clinical Kidney Journal, 2020, 13, 522-530.	1.4	6
87	Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury. Molecular Biology Reports, 2020, 47, 8023-8035.	1.0	19
88	Anti-inflammatory, antioxidant and renoprotective effects of SOCS1 mimetic peptide in the BTBR ob/ob mouse model of type 2 diabetes. BMJ Open Diabetes Research and Care, 2020, 8, e001242.	1.2	12
89	Metformin Protects against Podocyte Injury in Diabetic Kidney Disease. Pharmaceuticals, 2020, 13, 452.	1.7	11
90	Associations of serum uric acid level with diabetic retinopathy and albuminuria in patients with type 2 diabetes mellitus. Journal of International Medical Research, 2020, 48, 030006052096398.	0.4	13
91	Weighted gene co-expression network analysis identifies FCER1G as a key gene associated with diabetic kidney disease. Annals of Translational Medicine, 2020, 8, 1427-1427.	0.7	15
92	Multi-Omics Analysis of Diabetic Nephropathy Reveals Potential New Mechanisms and Drug Targets. Frontiers in Genetics, 2020, 11, 616435.	1.1	20
93	Discovery of polypodiside as a Keap1-dependent Nrf2 activator attenuating oxidative stress and accumulation of extracellular matrix in glomerular mesangial cells under high glucose. Bioorganic and Medicinal Chemistry, 2020, 28, 115833.	1.4	8

#	Article	IF	Citations
94	SNPs in PRKCAâ€HIF1Aâ€GLUT1 are associated with diabetic kidney disease in a Chinese Han population with type 2 diabetes. European Journal of Clinical Investigation, 2020, 50, e13264.	1.7	9
95	Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. International Journal of Molecular Sciences, 2020, 21, 3798.	1.8	142
96	Development and validation of a predictive model for the progression of diabetic kidney disease to kidney failure. Renal Failure, 2020, 42, 550-559.	0.8	9
97	A common glomerular transcriptomic signature distinguishes diabetic kidney disease from other kidney diseases in humans and mice. Current Research in Translational Medicine, 2020, 68, 225-236.	1.2	2
98	The tubular hypothesis of nephron filtration and diabetic kidney disease. Nature Reviews Nephrology, 2020, 16, 317-336.	4.1	224
99	Lysosomal dysfunction–induced autophagic stress in diabetic kidney disease. Journal of Cellular and Molecular Medicine, 2020, 24, 8276-8290.	1.6	26
100	Renoprotective effects of Gushen Jiedu capsule on diabetic nephropathy in rats. Scientific Reports, 2020, 10, 2040.	1.6	10
101	<i>Panax notoginseng</i> preparations as adjuvant therapy for diabetic kidney disease: a systematic review and meta-analysis. Pharmaceutical Biology, 2020, 58, 138-145.	1.3	15
102	Cell junction proteins: Crossing the glomerular filtration barrier in diabetic nephropathy. International Journal of Biological Macromolecules, 2020, 148, 475-482.	3.6	48
103	Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes, Obesity and Metabolism, 2020, 22, 16-31.	2.2	91
105	Serum and urine metabolomics reveal potential biomarkers of T2DM patients with nephropathy. Annals of Translational Medicine, 2020, 8, 199-199.	0.7	24
106	20(S)-Ginsenoside Rg3 Protects Kidney from Diabetic Kidney Disease via Renal Inflammation Depression in Diabetic Rats. Journal of Diabetes Research, 2020, 2020, 1-8.	1.0	11
107	Whole-Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants associated with Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2020, 31, 309-323.	3.0	10
108	Timeâ€sequential correlations between diabetic kidney disease and diabetic retinopathy in type 2 diabetes – an 8â€year prospective cohort study. Acta Ophthalmologica, 2021, 99, e1-e6.	0.6	14
109	Chemical constituents, clinical efficacy and molecular mechanisms of the ethanol extract of <scp><i>Abelmoschus manihot</i></scp> flowers in treatment of kidney diseases. Phytotherapy Research, 2021, 35, 198-206.	2.8	40
110	KCNQ1OT1/miR-18b/HMGA2 axis regulates high glucose-induced proliferation, oxidative stress, and extracellular matrix accumulation in mesangial cells. Molecular and Cellular Biochemistry, 2021, 476, 321-331.	1.4	12
111	Shenyan Kangfu tablet alleviates diabetic kidney disease through attenuating inflammation and modulating the gut microbiota. Journal of Natural Medicines, 2021, 75, 84-98.	1.1	23
112	Potential Repressive Impact of microRNA-20a on Renal Tubular Damage in Diabetic Kidney Disease by Targeting C-X-C Motif Chemokine Ligand 6. Archives of Medical Research, 2021, 52 <u>, 58-68.</u>	1.5	9

#	Article	IF	CITATIONS
113	Recent advances in drug discovery for diabetic kidney disease. Expert Opinion on Drug Discovery, 2021, 16, 447-461.	2.5	9
114	Insulin-Like Growth Factor Binding Protein 7 Predicts Renal and Cardiovascular Outcomes in the Canagliflozin Cardiovascular Assessment Study. Diabetes Care, 2021, 44, 210-216.	4.3	14
115	Protective effect of carnosine on hydrogen peroxide–induced oxidative stress in human kidney tubular epithelial cells. Biochemical and Biophysical Research Communications, 2021, 534, 576-582.	1.0	14
116	Renal outcomes and allâ€cause death associated with sodiumâ€glucose coâ€transporterâ€2 inhibitors versus other glucoseâ€lowering drugs (<scp>CVDâ€REAL</scp> 3 <scp>Korea</scp>). Diabetes, Obesity and Metabolism, 2021, 23, 455-466.	2.2	15
117	Epigenetic Histone Modifications in the Pathogenesis of Diabetic Kidney Disease. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 329-344.	1.1	10
118	The 100 top-cited articles in diabetic kidney disease: a bibliometric analysis. Renal Failure, 2021, 43, 781-795.	0.8	7
119	Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease. Frontiers in Endocrinology, 2020, 11, 622692.	1.5	15
120	Negative correlation of urinary miR-199a-3p level with ameliorating effects of sarpogrelate and cilostazol in hypertensive diabetic nephropathy. Biochemical Pharmacology, 2021, 184, 114391.	2.0	6
121	Epigenetic modifications of Klotho expression in kidney diseases. Journal of Molecular Medicine, 2021, 99, 581-592.	1.7	17
122	Efficacy and safety of combination therapy with sodium–glucose cotransporter 2 inhibitors and renin–angiotensin system blockers in patients with type 2 diabetes: a systematic review and meta-analysis. Nephrology Dialysis Transplantation, 2022, 37, 720-729.	0.4	17
123	Therapeutic Potential of Mesenchymal Stem Cells in a Pre-Clinical Model of Diabetic Kidney Disease and Obesity. International Journal of Molecular Sciences, 2021, 22, 1546.	1.8	17
124	HMCB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Bioscience Reports, 2021, 41, .	1.1	87
125	Fluorophore-Dapagliflozin Dyad for Detecting Diabetic Liver/Kidney Damages via Fluorescent Imaging and Treating Diabetes via Inhibiting SGLT2. Analytical Chemistry, 2021, 93, 4647-4656.	3.2	18
126	Targeted Delivery of Soluble Guanylate Cyclase (sGC) Activator Cinaciguat to Renal Mesangial Cells via Virus-Mimetic Nanoparticles Potentiates Anti-Fibrotic Effects by cGMP-Mediated Suppression of the TGF-β Pathway. International Journal of Molecular Sciences, 2021, 22, 2557.	1.8	13
127	Improving the Dysregulation of FoxO1 Activity Is a Potential Therapy for Alleviating Diabetic Kidney Disease. Frontiers in Pharmacology, 2021, 12, 630617.	1.6	10
128	Effects of Curcumin on High Glucose-Induced Epithelial-to-Mesenchymal Transition in Renal Tubular Epithelial Cells Through the TLR4-NF-κB Signaling Pathway. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 929-940.	1.1	4
129	Comparative Renal Effects of Dipeptidyl Peptidase-4 Inhibitors and Sodium-Clucose Cotransporter 2 Inhibitors on Individual Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Endocrinology and Metabolism, 2021, 36, 388-400.	1.3	15
130	Fish oil replacement prevents, while docosahexaenoic acidâ€derived protectin DX mitigates endâ€stageâ€renalâ€disease in atherosclerotic diabetic mice. FASEB Journal, 2021, 35, e21559.	0.2	7

#	Article	IF	CITATIONS
131	A narrative review of new treatment options for chronic kidney disease in type 2 diabetes. Annals of Translational Medicine, 2021, 9, 716-716.	0.7	5
132	Association between renal function and retinal neurodegeneration in Chinese patients with type 2 diabetes mellitus. Annals of Translational Medicine, 2021, 9, 560-560.	0.7	5
133	Vitamin D/VDR Protects Against Diabetic Kidney Disease by Restoring Podocytes Autophagy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 1681-1693.	1.1	18
134	RNA-Seq analysis reveals critical transcriptome changes caused by sodium butyrate in DN mouse models. Bioscience Reports, 2021, 41, .	1.1	7
135	Kidney Disease in Diabetic Patients: From Pathophysiology to Pharmacological Aspects with a Focus on Therapeutic Inertia. International Journal of Molecular Sciences, 2021, 22, 4824.	1.8	35
136	Lipid Accumulation Product is Associated with Urinary Albumin-creatinine Ratio in Chinese Prediabitic Population: A Report from the REACTION Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 2415-2425.	1.1	3
137	Finerenone: A Non-steroidal Mineralocorticoid Receptor Blocker for Diabetic Kidney Disease. Trends in Endocrinology and Metabolism, 2021, 32, 261-263.	3.1	3
138	Persons with type 1 diabetes have low blood oxygen levels in the supine and standing body positions. BMJ Open Diabetes Research and Care, 2021, 9, e001944.	1.2	6
139	Klotho protects against diabetic kidney disease via AMPK- and ERK-mediated autophagy. Acta Diabetologica, 2021, 58, 1413-1423.	1.2	22
140	Overexpression of lipoic acid synthase gene alleviates diabetic nephropathy <i>of Lepr^{db/db}</i> mice. BMJ Open Diabetes Research and Care, 2021, 9, e002260.	1.2	6
141	Machine Learning for Predicting the 3-Year Risk of Incident Diabetes in Chinese Adults. Frontiers in Public Health, 2021, 9, 626331.	1.3	18
142	Sacubitril/valsartan treatment has differential effects in modulating diabetic kidney disease in <i>db/db</i> mice and KKAy mice compared with valsartan treatment. American Journal of Physiology - Renal Physiology, 2021, 320, F1133-F1151.	1.3	20
143	The Multi-Therapeutic Role of MSCs in Diabetic Nephropathy. Frontiers in Endocrinology, 2021, 12, 671566.	1.5	18
144	Acute Kidney Injury in Pediatric Diabetic Kidney Disease. Frontiers in Pediatrics, 2021, 9, 668033.	0.9	10
145	Early Renoprotective Effect of Ruxolitinib in a Rat Model of Diabetic Nephropathy. Pharmaceuticals, 2021, 14, 608.	1.7	5
146	Prognostic evaluation model of diabetic nephropathy patients. Annals of Palliative Medicine, 2021, 10, 6867-6872.	O.5	8
147	Glomerular Endothelial Cells Are the Coordinator in the Development of Diabetic Nephropathy. Frontiers in Medicine, 2021, 8, 655639.	1.2	10
148	Editorial: Combating Diabetes and Diabetic Kidney Disease. Frontiers in Pharmacology, 2021, 12, 716029.	1.6	4

#	Article	IF	CITATIONS
149	Signaling Pathways Involved in Diabetic Renal Fibrosis. Frontiers in Cell and Developmental Biology, 2021, 9, 696542.	1.8	79
150	Icariin Ameliorates Diabetic Renal Tubulointerstitial Fibrosis by Restoring Autophagy via Regulation of the miR-192-5p/GLP-1R Pathway. Frontiers in Pharmacology, 2021, 12, 720387.	1.6	26
151	Ketone bodies for kidney injury and disease. Advances in Redox Research, 2021, 2, 100009.	0.9	16
152	Hyperpolarized pyruvate to measure the influence of PKM2 activation on glucose metabolism in the healthy kidney. NMR in Biomedicine, 2021, 34, e4583.	1.6	2
153	Extracellular vesicle-derived AEBP1 mRNA as a novel candidate biomarker for diabetic kidney disease. Journal of Translational Medicine, 2021, 19, 326.	1.8	14
155	Panax Ginseng C.A.Mey. as Medicine: The Potential Use of Panax Ginseng C.A.Mey. as a Remedy for Kidney Protection from a Pharmacological Perspective. Frontiers in Pharmacology, 2021, 12, 734151.	1.6	10
156	BGP-15 Inhibits Hyperglycemia-Aggravated VSMC Calcification Induced by High Phosphate. International Journal of Molecular Sciences, 2021, 22, 9263.	1.8	4
157	The Loss of Mitochondrial Quality Control in Diabetic Kidney Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 706832.	1.8	20
158	Medical therapies for prevention of cardiovascular and renal events in patients with atrial fibrillation and diabetes mellitus. Europace, 2021, 23, 1873-1891.	0.7	10
159	Prevalence of Chronic Kidney Disease in Type 2 Diabetes: The Canadian REgistry of Chronic Kidney Disease in Diabetes Outcomes (CREDO) Study. Clinical Therapeutics, 2021, 43, 1558-1573.	1.1	13
160	Flavonoids on diabetic nephropathy: advances and therapeutic opportunities. Chinese Medicine, 2021, 16, 74.	1.6	49
161	Single Cell Transcriptome Helps Better Understanding Crosstalk in Diabetic Kidney Disease. Frontiers in Medicine, 2021, 8, 657614.	1.2	5
162	Activated Histone Acetyltransferase p300/CBP-Related Signalling Pathways Mediate Up-Regulation of NADPH Oxidase, Inflammation, and Fibrosis in Diabetic Kidney. Antioxidants, 2021, 10, 1356.	2.2	17
163	Therapeutic effects of lisinopril and empagliflozin in a mouse model of hypertension-accelerated diabetic kidney disease. American Journal of Physiology - Renal Physiology, 2021, 321, F149-F161.	1.3	16
164	Circular RNAs as Novel Diagnostic Biomarkers and Therapeutic Targets in Kidney Disease. Frontiers in Medicine, 2021, 8, 714958.	1.2	8
165	Autophagy Dysregulation in Diabetic Kidney Disease: From Pathophysiology to Pharmacological Interventions. Cells, 2021, 10, 2497.	1.8	18
166	Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharmaceutica Sinica B, 2021, 11, 2749-2767.	5.7	121
167	Chronic Kidney Disease: Strategies to Retard Progression. International Journal of Molecular Sciences, 2021, 22, 10084.	1.8	30

#	Article	IF	CITATIONS
168	Nomogram Prediction Model for Diabetic Retinopathy Development in Type 2 Diabetes Mellitus Patients: A Retrospective Cohort Study. Journal of Diabetes Research, 2021, 2021, 1-8.	1.0	11
169	Early type 1 diabetes aggravates renal ischemia/reperfusion-induced acute kidney injury. Scientific Reports, 2021, 11, 19028.	1.6	11
170	Epidemiological characteristics of diabetic kidney disease in Taiwan. Journal of Diabetes Investigation, 2021, 12, 2112-2123.	1.1	8
171	New progress in drugs treatment of diabetic kidney disease. Biomedicine and Pharmacotherapy, 2021, 141, 111918.	2.5	36
172	Diabetic proximal tubulopathy: Can we mimic the disease for in vitro screening of SGLT inhibitors?. European Journal of Pharmacology, 2021, 908, 174378.	1.7	3
174	Therapeutic potential of pro-resolving mediators in diabetic kidney disease. Advanced Drug Delivery Reviews, 2021, 178, 113965.	6.6	23
175	Relationship between the <i>FTO</i> Genotype and Early Chronic Kidney Disease in Type 2 Diabetes: The Mediating Role of Central Obesity, Hypertension, and High Albuminuria. Lifestyle Genomics, 2021, 14, 73-80.	0.6	4
176	Cardio- and reno-protective effects of dipeptidyl peptidase III in diabetic mice. Journal of Biological Chemistry, 2021, 296, 100761.	1.6	12
177	Comparison of urinary extracellular vesicle isolation methods for transcriptomic biomarker research in diabetic kidney disease. Journal of Extracellular Vesicles, 2020, 10, e12038.	5.5	39
178	Chronic Diabetes Complications: The Need to Move beyond Classical Concepts. Trends in Endocrinology and Metabolism, 2020, 31, 287-295.	3.1	94
179	A roadmap for optimizing chronic kidney disease patient care and patient-oriented research in the Eastern European nephrology community. CKJ: Clinical Kidney Journal, 2021, 14, 23-35.	1.4	10
180	Identification of Smad3â€related transcriptomes in typeâ€2 diabetic nephropathy by whole transcriptome RNA sequencing. Journal of Cellular and Molecular Medicine, 2021, 25, 2052-2068.	1.6	5
181	Functional methylome analysis of human diabetic kidney disease. JCI Insight, 2019, 4, .	2.3	54
182	Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors. Biomolecules and Therapeutics, 2020, 28, 25-33.	1.1	36
183	The Advances of Single-Cell RNA-Seq in Kidney Immunology. Frontiers in Physiology, 2021, 12, 752679.	1.3	4
185	The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. International Journal of Molecular Sciences, 2021, 22, 11453.	1.8	22
186	Diagnostic Yield of Population-Based Screening for Chronic Kidney Disease in Low-Income, Middle-Income, and High-Income Countries. JAMA Network Open, 2021, 4, e2127396.	2.8	4
187	Urinary extracellular vesicles: Assessment of preâ€analytical variables and development of a quality control with focus on transcriptomic biomarker research. Journal of Extracellular Vesicles, 2021, 10, e12158.	5.5	26

#	Article	IF	CITATIONS
188	Paraoxonase 1 (<i>PON1</i>) L55M and Q192R polymorphisms are not associated with chronic kidney disease in Thai individuals with type 2 diabetes. International Journal of Clinical Practice, 2021, 75, e14982.	0.8	0
189	Glomerular resistances predict long-term GFR decline in type 2 diabetic patients without overt nephropathy: a longitudinal subgroup analysis of the DEMAND trial. Acta Diabetologica, 2022, 59, 309-317.	1.2	2
190	Atypical Renal Clearance of Nanoparticles Larger Than the Kidney Filtration Threshold. International Journal of Molecular Sciences, 2021, 22, 11182.	1.8	39
191	Mitochondria in Diabetic Kidney Disease. Cells, 2021, 10, 2945.	1.8	40
192	Bayesian Age-Period-Cohort Prediction of Mortality of Type 2 Diabetic Kidney Disease in China: A Modeling Study. Frontiers in Endocrinology, 2021, 12, 767263.	1.5	7
193	Serum integrative omics reveals the landscape of human diabetic kidney disease. Molecular Metabolism, 2021, 54, 101367.	3.0	20
195	The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia, 2022, 65, 128-139.	2.9	7
196	Bioinformatics analysis of genes related to iron death in diabetic nephropathy through network and pathway levels based approaches. PLoS ONE, 2021, 16, e0259436.	1.1	24
197	RNA-binding proteins and their role in kidney disease. Nature Reviews Nephrology, 2022, 18, 153-170.	4.1	27
198	Trends in leading causes of hospitalisation of adults with diabetes in England from 2003 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes and Endocrinology,the, 2022, 10, 46-57.	5.5	34
199	The Risk of Nephropathy, Retinopathy, and Leg Amputation in Patients With Diabetes and Hypertension: A Nationwide, Population-Based Retrospective Cohort Study. Frontiers in Endocrinology, 2021, 12, 756189.	1.5	3
200	Effect of Curcumin on Diabetic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled Clinical Trials. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-14.	0.5	4
201	Costs associated with the administration of erythropoiesis-stimulating agents for the treatment of anemia in patients with non-dialysis-dependent chronic kidney disease: a US societal perspective. Journal of Managed Care & Specialty Pharmacy, 2021, 27, 1703-1713.	0.5	2
202	The clustering of Cardiovascular, Renal, Adipo-Metabolic Eye and Liver disease with type 2 diabetes. Metabolism: Clinical and Experimental, 2022, 128, 154961.	1.5	11
203	Adiponectin promotes repair of renal tubular epithelial cells by regulating mitochondrial biogenesis and function. Metabolism: Clinical and Experimental, 2022, 128, 154959.	1.5	18
204	Targeting the Pathobiology of Diabetic Kidney Disease. Advances in Chronic Kidney Disease, 2021, 28, 282-289.	0.6	22
205	Diabetes mellitus contribution to the remodeling of the tumor microenvironment in gastric cancer. World Journal of Gastrointestinal Oncology, 2021, 13, 1997-2012.	0.8	4
206	Correlation between Inflammatory Factors and Bone Mineral Density in Postmenopausal Patients with Type 2 Diabetic Nephropathy. Advances in Clinical Medicine, 2022, 12, 549-553.	0.0	0

#	Article	IF	CITATIONS
207	Metabolic and hormonal responses to chronic blood-flow restricted resistance training in chronic kidney disease: a randomized trial. Applied Physiology, Nutrition and Metabolism, 2022, 47, 183-194.	0.9	8
208	Adenosine/A1R signaling pathway did not play dominant roles on the influence of SGLT2 inhibitor in the kidney of BSAâ€overloaded STZâ€induced diabetic mice. Journal of Diabetes Investigation, 2022, , .	1.1	1
209	Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: Evidence from transcriptomic data and renal histopathology. Journal of Diabetes Investigation, 2022, 13, 839-849.	1.1	13
210	Serum Amyloid A3 Promoter-Driven Luciferase Activity Enables Visualization of Diabetic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 899.	1.8	2
211	Predictive Ability of Visit-to-Visit Variability of HbA1c Measurements for the Development of Diabetic Kidney Disease: A Retrospective Longitudinal Observational Study. Journal of Diabetes Research, 2022, 2022, 1-11.	1.0	7
212	Improving annual albuminuria testing for individuals with diabetes. BMJ Open Quality, 2022, 11, e001591.	0.4	2
213	Healthy and unhealthy aging on kidney structure and function. Current Opinion in Nephrology and Hypertension, 2022, Publish Ahead of Print, .	1.0	5
214	Prediction of diabetic kidney disease with machine learning algorithms, upon the initial diagnosis of type 2 diabetes mellitus. BMJ Open Diabetes Research and Care, 2022, 10, e002560.	1.2	32
215	NAD(P)H: quinone oxidoreductase 1 attenuates oxidative stress and apoptosis by regulating Sirt1 in diabetic nephropathy. Journal of Translational Medicine, 2022, 20, 44.	1.8	33
216	A clinical and in-silico study of MicroRNA-21 and growth differentiation factor-15 expression in pre-diabetes, type 2 diabetes and diabetic nephropathy. Minerva Endocrinology, 2022, , .	0.6	4
217	JMJD1A/NR4A1 Signaling Regulates the Procession of Renal Tubular Epithelial Interstitial Fibrosis Induced by AGEs in HK-2. Frontiers in Medicine, 2021, 8, 807694.	1.2	5
218	AWAREness of Diagnosis and Treatment of Chronic Kidney Disease in Adults With Type 2 Diabetes (AWARE-CKD in T2D). Canadian Journal of Diabetes, 2022, 46, 464-472.	0.4	6
219	Diabetes in general. , 2022, , 27-92.		1
220	KDOQI US Commentary on the KDIGO 2020 Clinical Practice Guideline for Diabetes Management in CKD. American Journal of Kidney Diseases, 2022, 79, 457-479.	2.1	18
221	Pharmacotherapy to delay the progression of diabetic kidney disease in people with type 2 diabetes: past, present and future. Therapeutic Advances in Endocrinology and Metabolism, 2022, 13, 204201882210816.	1.4	10
222	MicroRNA-122-5p ameliorates tubular injury in diabetic nephropathy via FIH-1/HIF-1α pathway. Renal Failure, 2022, 44, 293-303.	0.8	11
224	Low-grade proteinuria and atherosclerotic cardiovascular disease: A transition study of patients with diabetic kidney disease. PLoS ONE, 2022, 17, e0264568.	1.1	1
225	Asparaginyl endopeptidase protects against podocyte injury in diabetic nephropathy through cleaving cofilin-1. Cell Death and Disease, 2022, 13, 184.	2.7	7

#	Article	IF	CITATIONS
226	Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. Diabetes and Metabolism Journal, 2022, 46, 181-197.	1.8	48
227	Fungus-Derived 3-Hydroxyterphenyllin and Candidusin A Ameliorate Palmitic Acid-Induced Human Podocyte Injury via Anti-Oxidative and Anti-Apoptotic Mechanisms. Molecules, 2022, 27, 2109.	1.7	3
228	Implementation of Cardiometabolic Centers and Training Programs. Current Diabetes Reports, 2022, , 1.	1.7	0
229	Glycemic control and atrial fibrillation: an intricate relationship, yet under investigation. Cardiovascular Diabetology, 2022, 21, 39.	2.7	19
230	Modifying chronic kidney disease progression with the mineralocorticoid receptor antagonist finerenone in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2022, 24, 1197-1205.	2.2	9
231	Renal and Inflammatory Proteins as Biomarkers of Diabetic Kidney Disease and Lupus Nephritis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-11.	1.9	10
232	Fecal Microbiota Transplant in a Pre-Clinical Model of Type 2 Diabetes Mellitus, Obesity and Diabetic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 3842.	1.8	23
233	Studying Kidney Diseases Using Organoid Models. Frontiers in Cell and Developmental Biology, 2022, 10, 845401.	1.8	9
234	Glomerular hyperfiltration. Nature Reviews Nephrology, 2022, 18, 435-451.	4.1	60
235	Obesityâ€related glomerulopathy: Current approaches and future perspectives. Obesity Reviews, 2022, 23, e13450.	3.1	26
236	Mitochondrial dysfunction in diabetic tubulopathy. Metabolism: Clinical and Experimental, 2022, 131, 155195.	1.5	40
237	Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. Biomaterials and Biosystems, 2022, 6, 100047.	1.0	2
238	Indoxyl Sulfate Elevated Lnc-SLC15A1-1 Upregulating CXCL10/CXCL8 Expression in High-Glucose Endothelial Cells by Sponging MicroRNAs. Toxins, 2021, 13, 873.	1.5	4
239	SGLTâ€1â€specific inhibition ameliorates renal failure and alters the gut microbial community in mice with adenineâ€induced renal failure. Physiological Reports, 2021, 9, e15092.	0.7	15
240	Roles of SIRT6 in kidney disease: a novel therapeutic target. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	17
241	The cGAS–STING pathway: more than fighting against viruses and cancer. Cell and Bioscience, 2021, 11, 209.	2.1	22
242	Diabetic kidney diseaseâ€predisposing proinflammatory and profibrotic genes identified by weighted gene coâ€expression network analysis (WGCNA). Journal of Cellular Biochemistry, 2022, 123, 481-492.	1.2	18
243	Simultaneous in-vivo characterization of blood oxygen saturation and perfusion with bimodal multispectral optoacoustic tomography and ultrafast ultrasound Doppler imaging , 2021, , .		0

#	ARTICLE	IF	CITATIONS
244	Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records. Journal of Translational Medicine, 2022, 20, 143.	1.8	28
245	Identification of histopathological and clinical spectrum of diabetic kidney disease based on an unsupervised hierarchical clustering analysis of elderly autopsy specimens. Nephrology, 2022, , .	0.7	0
246	Cardiovascular Characteristics of Zucker Fatty Diabetes Mellitus Rats, an Animal Model for Obesity and Type 2 Diabetes. International Journal of Molecular Sciences, 2022, 23, 4228.	1.8	1
247	Soluble tumor necrosis factor receptor 2 is associated with progressive diabetic kidney disease in patients with type 2 diabetes mellitus. PLoS ONE, 2022, 17, e0266854.	1.1	5
248	Long Non-Coding RNAs in the Pathogenesis of Diabetic Kidney Disease. Frontiers in Cell and Developmental Biology, 2022, 10, 845371.	1.8	6
249	Implications of fibrotic extracellular matrix in diabetic retinopathy. Experimental Biology and Medicine, 2022, 247, 1093-1102.	1.1	2
256	The physiological and pathophysiological roles of carbohydrate response element binding protein in the kidney. Endocrine Journal, 2022, , .	0.7	0
257	Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. Advances in Experimental Medicine and Biology, 2022, 1372, 119-143.	0.8	5
258	Diabetic Retinopathy Is a Predictor of Progression of Diabetic Kidney Disease: A Systematic Review and Meta-Analysis. International Journal of Nephrology, 2022, 2022, 1-11.	0.7	8
259	A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2021. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 867-885.	1.4	12
260	Recent advances in the pharmacotherapeutic management of diabetic kidney disease. Expert Opinion on Pharmacotherapy, 2022, 23, 791-803.	0.9	5
261	Modified lipid metabolism and cytosolic phospholipase A2 activation in mesangial cells under pro-inflammatory conditions. Scientific Reports, 2022, 12, 7322.	1.6	3
262	Influence of Tangeretin on the Exponential Regression of Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Nephropathy. Applied Biochemistry and Biotechnology, 2022, 194, 3914-3929.	1.4	6
263	Isoliquiritigenin ameliorates advanced glycation endâ€products toxicity on renal proximal tubular epithelial cells. Environmental Toxicology, 2022, 37, 2096-2102.	2.1	7
264	Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochimica Et Biophysica Sinica, 2022, 54, 415-451.	0.9	0
265	Bruceine A protects against diabetic kidney disease via inhibiting galectin-1. Kidney International, 2022, 102, 521-535.	2.6	7
266	Precision Nephrology in Patients with Diabetes and Chronic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 5719.	1.8	3
267	Comparison of Nonalbuminuric and Albuminuric Diabetic Kidney Disease Among Patients With Type 2 Diabetes: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 2022, 13, .	1.5	14

#	Article	IF	CITATIONS
269	Renal biopsy in patients with diabetes: Yesterday, today, and tomorrow. Diabetic Nephropathy, 2021, 1, 59-62.	0.1	0
270	Renoprotective mechanisms of SGLT2 inhibitor in diabetic kidney disease. Diabetic Nephropathy, 2022, .	0.1	Ο
271	Protective effect of the tunneling nanotube-TNFAIP2/M-sec system on podocyte autophagy in diabetic nephropathy. Autophagy, 2023, 19, 505-524.	4.3	28
272	Identifying Distinct Risk Thresholds of Glycated Hemoglobin and Systolic Blood Pressure for Rapid Albuminuria Progression in Type 2 Diabetes From NHANES (1999–2018). Frontiers in Medicine, 0, 9, .	1.2	1
273	LncRNA MALAT1 Aggravates Renal Tubular Injury via Activating LIN28A and the Nox4/AMPK/mTOR Signaling Axis in Diabetic Nephropathy. Frontiers in Endocrinology, 0, 13, .	1.5	4
274	Effects of Qidantang Granule on early stage of diabetic kidney disease in rats. Aging, 2022, 14, 4888-4896.	1.4	4
275	Efficacy and Safety of Non-Steroidal Mineralocorticoid Receptor Antagonists in Patients With Chronic Kidney Disease and Type 2 Diabetes: A Systematic Review Incorporating an Indirect Comparisons Meta-Analysis. Frontiers in Pharmacology, 0, 13, .	1.6	3
276	Plasma and urinary extracellular vesicle microRNAs and their related pathways in diabetic kidney disease. Genomics, 2022, 114, 110407.	1.3	7
277	Diosgenin protects against podocyte injury in early phase of diabetic nephropathy through regulating SIRT6. Phytomedicine, 2022, 104, 154276.	2.3	12
278	Comparative efficacy of novel antidiabetic drugs on cardiovascular and renal outcomes in patients with diabetic kidney disease: A systematic review and network metaâ€analysis. Diabetes, Obesity and Metabolism, 2022, 24, 1448-1457.	2.2	13
279	Cellular Senescence and Regulated Cell Death of Tubular Epithelial Cells in Diabetic Kidney Disease. Frontiers in Endocrinology, 0, 13, .	1.5	31
280	The Complement System in Metabolic-Associated Kidney Diseases. Frontiers in Immunology, 0, 13, .	2.2	5
281	Risk trajectories of complications in over one thousand newly diagnosed individuals with type 2 diabetes. Scientific Reports, 2022, 12, .	1.6	3
282	TFP5-Mediated CDK5 Activity Inhibition Improves Diabetic Nephropathy via NGF/Sirt1 Regulating Axis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
283	Prediction of cellular targets in diabetic kidney diseases with single-cell transcriptomic analysis of db/db mouse kidneys. Journal of Cell Communication and Signaling, 2023, 17, 169-188.	1.8	6
284	Identification of key genes and biological regulatory mechanisms in diabetic nephropathy: Meta-analysis of gene expression datasets. Nefrologia, 2023, 43, 575-586.	0.2	1
285	Nephroprotective Effects of Semaglutide as Mono- and Combination Treatment with Lisinopril in a Mouse Model of Hypertension-Accelerated Diabetic Kidney Disease. Biomedicines, 2022, 10, 1661.	1.4	5
287	Evaluation of N-(6-[18F]Fluoropyridin-3-yl)glycine PET renography to detect renal function progression in a rat model of diabetic nephropathy. Nuclear Medicine and Biology, 2022, 112-113, 59-65.	0.3	0

#	Article	IF	CITATIONS
288	A Glimpse of Inflammation and Anti-Inflammation Therapy in Diabetic Kidney Disease. Frontiers in Physiology, 0, 13, .	1.3	7
289	The potential of GLP-1 receptor agonists in type 2 diabetes and chronic kidney disease: from randomised trials to clinical practice. Therapeutic Advances in Endocrinology and Metabolism, 2022, 13, 204201882211124.	1.4	9
290	5-Hydroxymethylcytosine profiles in plasma cell-free DNA reflect molecular characteristics of diabetic kidney disease. Frontiers in Endocrinology, 0, 13, .	1.5	2
291	Association Between Serum Albumin Level and Microvascular Complications of Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 2173-2182.	1.1	7
292	ZnT8 Exerts Anti-apoptosis of Kidney Tubular Epithelial Cell in Diabetic Kidney Disease Through TNFAIP3-NF-ήB Signal Pathways. Biological Trace Element Research, 2023, 201, 2442-2457.	1.9	3
293	Antioxidant and Anti-Inflammatory Properties of Hydroxyl Safflower Yellow a in Diabetic Nephropathy: A Meta-Analysis of Randomized Controlled Trials. Frontiers in Pharmacology, 0, 13, .	1.6	6
294	Evaluation of the clinical utility of the PromarkerD in-vitro test in predicting diabetic kidney disease and rapid renal decline through a conjoint analysis. PLoS ONE, 2022, 17, e0271740.	1.1	1
295	The Epidemiology of Diabetic Kidney Disease. Kidney and Dialysis, 2022, 2, 433-442.	0.5	29
296	Diabetes and Cardiorenal Complications: A Clinical Review of Existing Therapies and Novel Combinations, Focusing on SGLT2 Inhibitors. Current Diabetes Reviews, 2022, 19, .	0.6	1
297	The role of vitamin D receptor agonist on podocyte injury induced by high glucose. Diabetic Nephropathy, 2022, .	0.1	0
298	How does diabetes cause susceptibility to COVID-19 in the kidney: new clues providedÂbyÂorganoids. Kidney International, 2022, 102, 951-953.	2.6	1
299	MD Simulation Studies for Selective Phytochemicals as Potential Inhibitors against Major Biological Targets of Diabetic Nephropathy. Molecules, 2022, 27, 4980.	1.7	5
300	The roles of hydrogen sulfide in renal physiology and disease states. Renal Failure, 2022, 44, 1290-1309.	0.8	8
301	Interaction between Plasma Metabolomics and Intestinal Microbiome in db/db Mouse, an Animal Model for Study of Type 2 Diabetes and Diabetic Kidney Disease. Metabolites, 2022, 12, 775.	1.3	15
302	Serum Metabolites and Kidney Outcomes: The Atherosclerosis Risk in Communities Study. Kidney Medicine, 2022, 4, 100522.	1.0	6
303	A Review on the Pharmacological Activities of Salvia Miltiorrhizae Radix Using International Classification of Disease, 10th Revision (ICD-10) Codes. Processes, 2022, 10, 1860.	1.3	0
304	Artificial Intelligence in Efficient Diabetes Care. Current Diabetes Reviews, 2023, 19, .	0.6	2
305	Risk Factors of Pancreatic Cancer in Patients With Type 2 Diabetes Mellitus: The Hong Kong Diabetes Study. Journal of the Endocrine Society, 2022, 6, .	0.1	2

#	Article	IF	CITATIONS
306	Spatially resolved whole transcriptome profiling in human and mouse tissue using Digital Spatial Profiling. Genome Research, 0, , .	2.4	9
307	A Selective Adenosine A ₃ Receptor Antagonist, HL3501, Has Therapeutic Potential in Preclinical Liver and Renal Fibrosis Models. In Vivo, 2022, 36, 2186-2193.	0.6	4
308	MicroRNA control of kidney disease. , 2022, , 401-428.		0
309	Effect of Influenza Vaccination on the Reduction of the Incidence of Chronic Kidney Disease and Dialysis in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 2022, 11, 4520.	1.0	2
310	Clinical efficacy, safety, and cost of nine Chinese patent medicines combined with ACEI/ARB in the treatment of early diabetic kidney disease: A network meta-analysis. Frontiers in Pharmacology, 0, 13, .	1.6	1
311	Therapeutic potential of conditioned medium obtained from deferoxamine preconditioned umbilical cord mesenchymal stem cells on diabetic nephropathy model. Stem Cell Research and Therapy, 2022, 13,	2.4	10
312	Association of amino acids related to urea cycle with risk of diabetic nephropathy in two independent cross-sectional studies of Chinese adults. Frontiers in Endocrinology, 0, 13, .	1.5	1
313	O-GlcNAcylation in Renal (Patho)Physiology. International Journal of Molecular Sciences, 2022, 23, 11260.	1.8	6
314	Urinary Angiotensinogen in Patients With Type 1 Diabetes With Microalbuminuria: Gender Differences and Effect of Intensive Insulin Therapy. Kidney International Reports, 2022, 7, 2657-2667.	0.4	1
315	Ferroptosis is involved in corpus cavernosum smooth muscle cells impairment in diabetes mellitusâ€induced erectile dysfunction. Andrology, 2023, 11, 332-343.	1.9	8
316	Recent Advances in the Emerging Therapeutic Strategies for Diabetic Kidney Diseases. International Journal of Molecular Sciences, 2022, 23, 10882.	1.8	9
317	Insulin Resistance and Type 2 Diabetes Mellitus: An Ultimatum to Renal Physiology. Cureus, 2022, , .	0.2	1
318	Plasma galectin-3 concentration and estimated glomerular filtration rate in patients with type 2 diabetes with and without albuminuria. Scientific Reports, 2022, 12, .	1.6	0
319	Immune repertoire and evolutionary trajectory analysis in the development of diabetic nephropathy. Frontiers in Immunology, 0, 13, .	2.2	0
320	Is Bariatric Surgery improving mitochondrial function in the renal cells of patients with obesity-induced kidney disease?. Pharmacological Research, 2022, , 106488.	3.1	0
321	Proteinuria in early referral to spectral domain optical coherence tomography for macular edema detection in type 2 diabetes individuals: results from the Brazilian Diabetes Study. Current Medical Research and Opinion, 0, , 1-21.	0.9	0
322	Podocyte developmental pathways in diabetic nephropathy: A spotlight on Notch signaling. Diabetic Nephropathy, 2022, 2, 1-6.	0.1	2
323	Urinary RBP as an Independent Predictor of Renal Outcome in Diabetic Nephropathy. Disease Markers, 2022, 2022, 1-13.	0.6	2

#	Article	IF	CITATIONS
324	Comorbidity phenotypes and risk of mortality in patients with osteoarthritis in the UK: a latent class analysis. Arthritis Research and Therapy, 2022, 24, .	1.6	5
326	The role of lncRNAs in regulation of DKD and diabetes-related cancer. Frontiers in Oncology, 0, 12, .	1.3	2
328	Resistant Starch as a Dietary Intervention to Limit the Progression of Diabetic Kidney Disease. Nutrients, 2022, 14, 4547.	1.7	7
329	Acetyl Co-A Carboxylase Inhibition Halts Hyperglycemia Induced Upregulation of De Novo Lipogenesis in Podocytes and Proximal Tubular Cells. Metabolites, 2022, 12, 940.	1.3	1
330	Genome-wide DNA methylation analysis of extreme phenotypes in the identification of novel epigenetic modifications in diabetic retinopathy. Clinical Epigenetics, 2022, 14, .	1.8	4
331	Zuogui Wan ameliorates high glucose-induced podocyte apoptosis and improves diabetic nephropathy in db/db mice. Frontiers in Pharmacology, 0, 13, .	1.6	0
332	Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Frontiers in Pharmacology, 0, 13, .	1.6	4
333	Rewriting Medical Textbooks: The Kidney as a Window to the Heart – The Role of Sodium–Glucose Transport Protein 2 Inhibitors in Cardiovascular and Renal Disease in Type 2 Diabetes Mellitus. European Medical Journal Diabetes, 0, , 36-45.	4.0	0
334	A comprehensive weighted gene co-expression network analysis uncovers potential targets in diabetic kidney disease. Journal of Translational Internal Medicine, 2022, .	1.0	0
335	Subclinical Acute Kidney Injury in COVID-19: Possible Mechanisms and Future Perspectives. International Journal of Molecular Sciences, 2022, 23, 14193.	1.8	6
336	Mesenchymal stromal cell therapy compared to SGLT2-inhibitors and usual care in treating diabetic kidney disease: A cost-effectiveness analysis. PLoS ONE, 2022, 17, e0274136.	1.1	1
337	Sodium–glucose co-transporter 2 inhibitors for the treatment of cardio-renal syndrome. European Heart Journal Supplements, 2022, 24, 168-171.	0.0	3
338	Synergistic effect of chronic kidney disease, neuropathy, and retinopathy on all-cause mortality in type 1 and type 2 diabetes: a 21-year longitudinal study. Cardiovascular Diabetology, 2022, 21, .	2.7	9
339	Antioxidant and anti-inflammatory activities of Centratherum anthelminticum (L.) Kuntze seed oil in diabetic nephropathy via modulation of Nrf-2/HO-1 and NF-I®B pathway. BMC Complementary Medicine and Therapies, 2022, 22, .	1.2	1
340	Additive interaction of diabetes mellitus and chronic kidney disease in cancer patient mortality risk. Scientific Reports, 2022, 12, .	1.6	2
341	Study on the relationship between lipoprotein (a) and diabetic kidney disease. Journal of Diabetes and Its Complications, 2023, 37, 108378.	1.2	2
342	Podocyte derived <scp>TNF</scp> â€î± mediates monocyte differentiation and contributes to glomerular injury. FASEB Journal, 2022, 36, .	0.2	7
344	ASH2L Aggravates Fibrosis and Inflammation through HIPK2 in High Glucose-Induced Glomerular Mesangial Cells. Genes, 2022, 13, 2244.	1.0	5

#	Article	IF	CITATIONS
345	Whole-exome sequencing study identifies four novel gene loci associated with diabetic kidney disease. Human Molecular Genetics, 2023, 32, 1048-1060.	1.4	3
346	Chronic kidney disease in patients with type 2 diabetes: new targets of medicine action. Diabetes Mellitus, 2022, 25, 492-498.	0.5	3
347	Identifying myoglobin as a mediator of diabetic kidney disease: a machine learning-based cross-sectional study. Scientific Reports, 2022, 12, .	1.6	2
348	Validation of a risk prediction model for early chronic kidney disease in patients with type 2 diabetes: Data from the German/Austrian Diabetes Prospective Followâ€up registry. Diabetes, Obesity and Metabolism, 2023, 25, 776-784.	2.2	1
349	Elajik Asit, Diyabetik Böbrek Hasarında TGFβ1/Smad Kaynaklı Böbrek Fibrozisini İnhibe Eder. Duzce Universitesi Tip Fakültesi Dergisi, 2022, 24, 321-327.	0.3	2
350	Structural and Functional Changes in Aging Kidneys. International Journal of Molecular Sciences, 2022, 23, 15435.	1.8	12
352	Use of Estimated Glomerular Filtration Rate and Urine Albumin-to-Creatinine Ratio Based on KDIGO 2012 Guideline in a Thai Community Hospital: Prevalence of Chronic Kidney Disease and its Risk Factors. Medical Science Monitor Basic Research, 0, 28, .	2.6	0
353	Risk factors of chronic kidney disease among type 2 diabetic patients with longer duration of diabetes. Frontiers in Endocrinology, 0, 13, .	1.5	6
354	Strong negative association of non-HDL cholesterol goal achievement with incident CKD among adults with diabetes. Journal of the Endocrine Society, 0, , .	0.1	0
355	Whether Renal Pathology Is an Independent Predictor for End-Stage Renal Disease in Diabetic Kidney Disease Patients with Nephrotic Range Proteinuria: A Biopsy-Based Study. Journal of Clinical Medicine, 2023, 12, 88.	1.0	1
356	Beraprost Sodium Delays the Decline of Glomerular Filtration Rate in Patients with Diabetic Nephropathy: A Retrospective Study. Diabetes Therapy, 0, , .	1.2	0
357	Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy. Genome Medicine, 2023, 15, .	3.6	8
358	Cellular mechanism of action of forsythiaside for the treatment of diabetic kidney disease. Frontiers in Pharmacology, 0, 13, .	1.6	3
359	Network Pharmacology Approach to Investigate the Mechanism of Danggui-Shaoyao-San against Diabetic Kidney Disease. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-12.	0.5	0
361	Succinate-SUCNR1 induces renal tubular cell apoptosis. American Journal of Physiology - Cell Physiology, 2023, 324, C467-C476.	2.1	4
362	Urinary Biomarkers of Tubular Health and Risk for Kidney Function Decline or Mortality in Diabetes. American Journal of Nephrology, 2022, 53, 775-785.	1.4	4
363	Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides, 2023, 162, 170955.	1.2	5
364	Reduced methylation correlates with diabetic nephropathy risk in type 1 diabetes. Journal of Clinical Investigation, 2023, 133, .	3.9	8

#	Article	IF	CITATIONS
365	Single-cell transcriptomics: A new tool for studying diabetic kidney disease. Frontiers in Physiology, 0, 13, .	1.3	5
366	Chinese expert consensus on the risk assessment and management of panvascular disease inpatients with type 2 diabetes mellitus (2022 edition). Cardiology Plus, 2022, 7, 162-177.	0.2	5
367	A comprehensive weighted gene co-expression network analysis uncovers potential targets in diabetic kidney disease. Journal of Translational Internal Medicine, 2023, 10, 359-368.	1.0	3
368	<i>Abelmoschus Manihot</i> ameliorates the levels of circulating metabolites in diabetic nephropathy by modulating gut microbiota in nonâ€obese diabetes mice. Microbial Biotechnology, 2023, 16, 813-826.	2.0	6
369	Hyperactivation of YAP/TAZ Drives Alterations in Mesangial Cells through Stabilization of N-Myc in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2023, 34, 809-828.	3.0	6
370	Anemia is a risk factor for rapid eGFR decline in type 2 diabetes. Frontiers in Endocrinology, 0, 14, .	1.5	4
371	Identification of key genes and biological regulatory mechanisms in diabetic nephropathy: Meta-analysis of gene expression datasets. Nefrologia, 2023, 43, 575-586.	0.2	1
372	Gut microbiota and its metabolites – molecular mechanisms and management strategies in diabetic kidney disease. Frontiers in Immunology, 0, 14, .	2.2	6
373	Development of a metabolite-based deep learning algorithm for clinical precise diagnosis of the progression of diabetic kidney disease. Biomedical Signal Processing and Control, 2023, 83, 104625.	3.5	3
374	Obesity and renal disease: Benefits of bariatric surgery. Frontiers in Medicine, 0, 10, .	1.2	1
375	Glucagonâ€like peptideâ€1 receptor agonists to expand the healthy lifespan: Current and future potentials. Aging Cell, 2023, 22, .	3.0	1
376	Diabetes Mellitus and the Kidneys. Veterinary Clinics of North America - Small Animal Practice, 2023, 53, 565-580.	0.5	1
377	Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sciences, 2023, 316, 121414.	2.0	3
378	The postprandial actions of GLP-1 receptor agonists: The missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metabolism, 2023, 35, 253-273.	7.2	16
379	<scp>miR</scp> â€124â€3p improves mitochondrial function of renal tubular epithelial cells in <i>db/db</i> mice. FASEB Journal, 2023, 37, .	0.2	4
380	Molecular pathways that drive diabetic kidney disease. Journal of Clinical Investigation, 2023, 133, .	3.9	61
381	A Review of Medicinal Plants with Renoprotective Activity in Diabetic Nephropathy Animal Models. Life, 2023, 13, 560.	1.1	9
382	The association of plasma NT-proBNP level and progression of diabetic kidney disease. Renal Failure, 2023, 45, .	0.8	1

#	Article	IF	CITATIONS
383	Efficacy and safety of drugs for people with type 2 diabetes mellitus and chronic kidney disease on kidney and cardiovascular outcomes: A systematic review and network meta-analysis of randomized controlled trials. Diabetes Research and Clinical Practice, 2023, 198, 110592.	1.1	5
384	Evidence of SARS-CoV-2 infection in postmortem lung, kidney, and liver samples, revealing cellular targets involved in COVID-19 pathogenesis. Archives of Virology, 2023, 168, .	0.9	3
385	Analysis of urine Raman spectra differences from patients with diabetes mellitus and renal pathologies. PeerJ, 0, 11, e14879.	0.9	4
386	The effect of metabolic dysfunction-associated fatty liver disease and diabetic kidney disease on the risk of hospitalization of heart failure in type 2 diabetes: a retrospective cohort study. Diabetology and Metabolic Syndrome, 2023, 15, .	1.2	1
387	Associations of serum amino acids related to urea cycle with risk of chronic kidney disease in Chinese with type 2 diabetes. Frontiers in Endocrinology, 0, 14, .	1.5	0
388	Ginsenoside Rg3 has effects comparable to those of ginsenoside re on diabetic kidney disease prevention in db/db mice by regulating inflammation, fibrosis and PPARγ. Molecular Medicine Reports, 2023, 27, .	1.1	0
389	Acacetin attenuates the pancreatic and hepatorenal dysfunction in type 2 diabetic rats induced by high-fat diet combined with streptozotocin. Journal of Natural Medicines, 2023, 77, 446-454.	1.1	1
390	Zinc Alpha 2 Glycoprotein as an Early Biomarker of Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients. Cureus, 2023, , .	0.2	Ο
391	Endothelial Autophagy Dysregulation in Diabetes. Cells, 2023, 12, 947.	1.8	4
393	Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Frontiers in Immunology, 0, 14, .	2.2	4
394	Echinochrome A Prevents Diabetic Nephropathy by Inhibiting the PKC-lota Pathway and Enhancing Renal Mitochondrial Function in db/db Mice. Marine Drugs, 2023, 21, 222.	2.2	1
395	Ginsenoside Rg1 treatment alleviates renal fibrosis by inhibiting the NOX4–MAPK pathway in T2DM mice. Renal Failure, 2023, 45, .	0.8	4
396	Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	42
398	An update on the role of thioredoxin-interacting protein in diabetic kidney disease: A mini review. Frontiers in Medicine, 0, 10, .	1.2	2
399	Genome-wide mRNA profiling in urinary extracellular vesicles reveals stress gene signature for diabetic kidney disease. IScience, 2023, 26, 106686.	1.9	4
410	Renal Disease in Diabetes. , 2023, , 905-922.		0
416	Lipoproteins and Diabetic Kidney Disease. Contemporary Diabetes, 2023, , 407-438.	0.0	0
423	Review article: Type 2 diabetes mellitus: Pathogenesis and therapeutic intervention. AIP Conference Proceedings, 2023, , .	0.3	Ο

#	Article	IF	CITATIONS
428	Genetics of Diabetic Kidney Disease in Type 2 Diabetes: Candidate Gene Studies and Genome-Wide Association Studies (GWAS). Journal of the Indian Institute of Science, 0, , .	0.9	0
440	Effect of Electromagnetic Radiation on Simulated Sweat Gland Under Diabetes and Diabetic Kidney Disease. Algorithms for Intelligent Systems, 2023, , 463-473.	0.5	0
452	Editorial: Receptor biology and cell signaling in diabetes: volume II. Frontiers in Pharmacology, 0, 14, .	1.6	0
457	Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nature Reviews Endocrinology, 2024, 20, 27-49.	4.3	7
463	Epidemiology and Pathogenesis of Type 1 Diabetes. , 2023, , 13-39.		0