Phase-Reference-Free Experiment of Measurement-Dep Distribution

Physical Review Letters 115, 160502

DOI: 10.1103/physrevlett.115.160502

Citation Report

#	Article	IF	CITATIONS
1	Near perfect mode overlap between independently seeded, gain-switched lasers. Optics Express, 2016, 24, 17849.	1.7	15
2	Experimental measurement-device-independent quantum key distribution with uncharacterized encoding. Optics Letters, 2016, 41, 5596.	1.7	23
3	Valid conditions of the reference-frame-independent quantum key distribution. Physical Review A, 2016, 94, .	1.0	12
4	Time-Bin Phase-Encoding Measurement-Device-Independent Quantum Key Distribution with Four Single-Photon Detectors. Chinese Physics Letters, 2016, 33, 120301.	1.3	12
5	Detector-device-independent quantum key distribution: Security analysis and fast implementation. Journal of Applied Physics, 2016, 120, .	1.1	10
6	Practical round-robin differential phase-shift quantum key distribution. Optics Express, 2016, 24, 20763.	1.7	17
7	Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution. Physical Review A, 2016, 94, .	1.0	22
8	Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Physical Review A, 2016, 94, .	1.0	33
9	Experimental demonstration of polarization encoding quantum key distribution system based on intrinsically stable polarization-modulated units. Optics Express, 2016, 24, 8302.	1.7	26
10	Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Physical Review A, 2016, 93, .	1.0	18
11	Tomographic Approach in Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution. Communications in Theoretical Physics, 2016, 66, 496-500.	1.1	4
12	N-dimensional measurement-device-independent quantum key distribution with N + 1 un-characterized sources: zero quantum-bit-error-rate case. Scientific Reports, 2016, 6, 30036.	1.6	4
13	Measurement-Device-Independent Quantum Key Distribution Over a 404Âkm Optical Fiber. Physical Review Letters, 2016, 117, 190501.	2.9	615
14	Loss-tolerant measurement-device-independent quantum private queries. Scientific Reports, 2017, 7, 39733.	1.6	17
15	Round-robin differential-phase-shift quantum key distribution in wavelength-multiplexed fiber channel. , 2017, , .		0
16	Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond. Physical Review A, 2017, 95, .	1.0	29
17	Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Physical Review A, 2017, 95, .	1.0	40
18	Fluctuations of Internal Transmittance in Security of Measurement-Device-Independent Quantum Key Distribution with an Untrusted Source *. Communications in Theoretical Physics, 2017, 68, 206.	1.1	0

#	Article	IF	CITATIONS
19	Robustness of quantum key distribution with discrete and continuous variables to channel noise. Physical Review A, 2017, 95, .	1.0	24
20	Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source. Chinese Physics Letters, 2017, 34, 120301.	1.3	5
21	Decoy-state reference-frame-independent quantum key distribution with both source errors and statistical fluctuations. Chinese Physics B, 2017, 26, 120302.	0.7	8
22	Biased decoy-state reference-frame-independent quantum key distribution. European Physical Journal D, 2017, 71, 1.	0.6	8
23	Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing. Chinese Physics Letters, 2017, 34, 080301.	1.3	2
24	Realistic Device Imperfections Affect the Performance of Hong-Ou-Mandel Interference With Weak Coherent States. Journal of Lightwave Technology, 2017, 35, 4996-5002.	2.7	16
25	Polarization variations in installed fibers and their influence on quantum key distribution systems. Optics Express, 2017, 25, 27923.	1.7	35
26	Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits. Optics Letters, 2017, 42, 1023.	1.7	37
27	Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica, 2017, 4, 1016.	4.8	112
28	Decoy-State Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution With Biased Bases. Journal of Lightwave Technology, 2017, 35, 4574-4578.	2.7	23
29	Measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Physical Review A, 2018, 97, .	1.0	4
30	Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source. International Journal of Theoretical Physics, 2018, 57, 2192-2202.	0.5	9
31	Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme. Quantum Science and Technology, 2018, 3, 025006.	2.6	28
32	Multi-party Measurement-Device-Independent Quantum Key Distribution Based on Cluster States. International Journal of Theoretical Physics, 2018, 57, 726-739.	0.5	1
33	Security proof for single-photon round-robin differential-quadrature-phase-shift quantum key distribution. Physical Review A, 2018, 98, .	1.0	6
34	Measurement-Device-Independent Quantum Key Distribution over asymmetric channel and unstable channel. Scientific Reports, 2018, 8, 17634.	1.6	21
35	Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice. Communications in Theoretical Physics, 2018, 70, 331.	1.1	3
36	Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution. Quantum Information Processing, 2018, 17, 1.	1.0	1

#	Article	IF	CITATIONS
37	Practical Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution Systems Against the Worst Relative Rotation of Reference Frames. Communications in Theoretical Physics, 2018, 70, 379.	1.1	3
38	Efficient measurement-device-independent quantum key distribution without vacuum sources. Physical Review A, 2018, 98, .	1.0	9
39	Decoy-state reference-frame-independent quantum key distribution with the single-photon-added coherent source. Quantum Information Processing, 2018, 17, 1.	1.0	5
40	Large scale quantum key distribution: challenges and solutions [Invited]. Optics Express, 2018, 26, 24260.	1.7	148
41	Round-robin-differential-phase-shift quantum key distribution based on wavelength division multiplexing. Laser Physics Letters, 2018, 15, 115201.	0.6	2
42	Round-robin-differential-phase-shift quantum key distribution with monitoring signal disturbance. Optics Letters, 2018, 43, 4228.	1.7	7
43	Practical reference-frame-independent quantum key distribution systems against the worst relative rotation of reference frames. Journal of Physics Communications, 2018, 2, 055029.	0.5	11
44	Biased three-intensity decoy-state scheme on the measurement-device-independent quantum key distribution using heralded single-photon sources. Optics Express, 2018, 26, 4219.	1.7	17
45	Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method. Optics Express, 2018, 26, 13289.	1.7	17
46	Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration. Optica, 2018, 5, 902.	4.8	43
47	Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution With Modified Coherent States. IEEE Photonics Journal, 2018, 10, 1-8.	1.0	4
48	Simple scheme to implement decoy-state reference-frame-independent quantum key distribution. European Physical Journal D, 2018, 72, 1.	0.6	5
49	Improving the performance of twin-field quantum key distribution. Physical Review A, 2019, 100, .	1.0	18
50	Improving the performance of four-intensity decoy-state measurement-device-independent quantum key distribution via heralded pair-coherent sources. Quantum Information Processing, 2019, 18, 1.	1.0	1
51	Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network*. Chinese Physics Letters, 2019, 36, 070301.	1.3	12
52	Unconditional Security of Sending or Not Sending Twin-Field Quantum Key Distribution with Finite Pulses. Physical Review Applied, 2019, 12, .	1.5	62
53	Reference-Frame-Independent Quantum Key Distribution Using Fewer States. Physical Review Applied, 2019, 12, .	1.5	24
54	Measurement-device-independent Quantum Key Distribution with Inaccurate Coherent Sources. , 2019, ,		0

#	Article	IF	CITATIONS
55	The performance of reference-frame-independent measurement-device-independent quantum key distribution. Quantum Information Processing, 2019, 18, 1.	1.0	4
56	Measurement-device-independent quantum key distribution with hyper-encoding. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	92
57	Versatile security analysis of measurement-device-independent quantum key distribution. Physical Review A, 2019, 99, .	1.0	36
58	Improved Decoy-State Measurement-Device-Independent Quantum Key Distribution With Imperfect Source Encoding. IEEE Photonics Journal, 2019, 11, 1-7.	1.0	9
59	Monitoring an untrusted light source with single-photon detectors in measurement-device-independent quantum key distribution. Physical Review A, 2019, 99, .	1.0	6
60	Efficient passive measurement-device-independent quantum key distribution. Physical Review A, 2019, 99,	1.0	20
61	Experimental Demonstration of High-Rate Measurement-Device-Independent Quantum Key Distribution over Asymmetric Channels. Physical Review Letters, 2019, 122, 160501.	2.9	72
62	Measurement-Device-Independent Twin-Field Quantum Key Distribution. Scientific Reports, 2019, 9, 3045.	1.6	64
63	Practical Long-Distance Side-Channel-Free Quantum Key Distribution. Physical Review Applied, 2019, 12, .	1.5	19
64	Practical issues of twin-field quantum key distribution. New Journal of Physics, 2019, 21, 123030.	1.2	23
65	Sending-or-not-sending twin-field protocol for quantum key distribution with asymmetric source parameters. Physical Review A, 2019, 100, .	1.0	37
66	Modeling Alignment Error in Quantum Key Distribution Based on a Weak Coherent Source. Physical Review Applied, 2019, 12, .	1.5	10
67	High-efficiency quantum digital signature scheme for signing long messages. Quantum Information Processing, 2019, 18, 1.	1.0	12
68	Phase self-aligned continuous-variable measurement-device-independent quantum key distribution. Scientific Reports, 2019, 9, 49.	1.6	16
69	Efficient scheme for passive decoy-state reference-frame-independent quantum key distribution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 311-315.	0.9	7
70	Reference-frame-independent quantum key distribution with an untrusted source*. Chinese Physics B, 2020, 29, 030303.	0.7	6
71	Measurement-device-independent quantum key distribution with uncharacterized coherent sources. Quantum Information Processing, 2020, 19, 1.	1.0	83
72	High-capacity measurement-device-independent quantum secure direct communication. Quantum Information Processing, 2020, 19, 1.	1.0	30

#	Article	IF	CITATIONS
73	A universal simulating framework for quantum key distribution systems. Science China Information Sciences, 2020, 63, 1.	2.7	9
74	Practical decoy-state quantum random number generator with weak coherent sources. Quantum Information Processing, 2020, 19, 1.	1.0	1
75	Optimized protocol for twin-field quantum key distribution. Communications Physics, 2020, 3, .	2.0	28
76	Reference-Frame-Independent Quantum Key Distribution in Uplink and Downlink Free-Space Channel. International Journal of Theoretical Physics, 2020, 59, 3299-3309.	0.5	3
77	Improving the performance of reference-frame-independent quantum key distribution through a turbulent atmosphere. Physical Review A, 2020, 102, .	1.0	5
78	Sending-or-not-sending twin-field quantum key distribution: Breaking the direct transmission key rate. Physical Review A, 2020, 101, .	1.0	61
79	Optimizing Single-Photon Avalanche Photodiodes for Dynamic Quantum Key Distribution Networks. Physical Review Applied, 2020, 13, .	1.5	20
80	One-decoy state reference-frame-independent quantum key distribution*. Chinese Physics B, 2020, 29, 070303.	0.7	10
81	Laser-Damage Attack Against Optical Attenuators in Quantum Key Distribution. Physical Review Applied, 2020, 13, .	1.5	49
82	Efficient decoy states for the reference-frame-independent measurement-device-independent quantum key distribution. Physical Review A, 2020, 101, .	1.0	23
83	A polarization quantum key distribution scheme based on phase matching. Laser Physics, 2020, 30, 055202.	0.6	0
84	Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Frontiers of Physics, 2021, 16, 1.	2.4	29
86	Higher key rate of measurement-device-independent quantum key distribution through joint data processing. Physical Review A, 2021, 103, .	1.0	35
87	Reference-frame-independent measurement-device-independent quantum key distribution using fewer states. Physical Review A, 2021, 103, .	1.0	8
88	Practical amplification for a single photon qudit encoded in three degrees of freedom. Laser Physics Letters, 2021, 18, 055203.	0.6	1
89	Reference frame independent twin field quantum key distribution with source flaws. Journal of Physics Communications, 2021, 5, 045008.	0.5	3
90	Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers. Npj Quantum Information, 2021, 7, .	2.8	33
91	Characterizing Bell state analyzer using weak coherent pulses. Quantum Information Processing, 2021, 20, 1.	1.0	2

#	Article	IF	CITATIONS
92	Performance of reference-frame-independent quantum key distribution in underwater channel. International Journal of Quantum Information, 0, , 2150011.	0.6	1
93	Three-party reference frame independent quantum key distribution protocol. Chinese Physics B, O, , .	0.7	2
94	Intensity modulator for secure, stable, and high-performance decoy-state quantum key distribution. Npj Quantum Information, 2021, 7, .	2.8	14
95	Feasible high-dimensional measurement-device-independent quantum key distribution. Laser Physics Letters, 2021, 18, 075204.	0.6	6
96	Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution Over 200 km of Optical Fiber. Physical Review Applied, 2021, 15, .	1.5	21
97	Practical decoy-state BB84 quantum key distribution with quantum memory*. Chinese Physics B, 2021, 30, 060305.	0.7	2
98	Reference-frame-independent measurement-device-independent quantum key distribution with imperfect sources. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 145501.	0.6	3
99	Securing Practical Quantum Communication Systems with Optical Power Limiters. PRX Quantum, 2021, 2, .	3.5	24
100	Security of reference-frame-independent quantum key distribution with source flaws. Physical Review A, 2021, 104, .	1.0	5
101	Measurement-device-independent quantum dialogue based on hyperentanglement. Quantum Information Processing, 2021, 20, 1.	1.0	4
102	Measurement-device-independent quantum key distribution for nonstandalone networks. Photonics Research, 2021, 9, 1881.	3.4	44
103	Polarization discriminated timeâ€bin phaseâ€encoding measurementâ€deviceâ€independent quantum key distribution. Quantum Engineering, 2021, 3, e79.	1.2	23
104	Boosting the Performance of Reference-Frame- Independent Measurement-Device-Independent Quantum Key Distribution. Journal of Lightwave Technology, 2021, 39, 5486-5493.	2.7	10
105	An Improved Polar Codesâ€Based Key Reconciliation for Practical Quantum Key Distribution. Chinese Journal of Electronics, 2018, 27, 250-255.	0.7	11
106	Zigzag approach to higher key rate of sending-or-not-sending twin field quantum key distribution with finite-key effects. New Journal of Physics, 2020, 22, 053048.	1.2	24
107	Twin-field quantum key distribution with passive-decoy state. New Journal of Physics, 2020, 22, 103017.	1.2	7
108	Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 2020, 92, .	16.4	733
109	Enhanced measurement-device-independent quantum key distribution in reference-frame-independent scenario. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 476.	0.9	4

#	Article	IF	CITATIONS
110	Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network. Journal of the Optical Society of America B: Optical Physics, 2019, 36, B92.	0.9	25
111	Reference-frame-independent, measurement-device-independent quantum key distribution using fewer quantum states. Optics Letters, 2020, 45, 2624.	1.7	13
112	Experimental three-state measurement-device-independent quantum key distribution with uncharacterized sources. Optics Letters, 2020, 45, 4176.	1.7	25
113	Weak randomness impacts the security of reference-frame-independent quantum key distribution. Optics Letters, 2019, 44, 1226.	1.7	13
114	Experimental realization of a reference-frame-independent decoy BB84 quantum key distribution based on Sagnac interferometer. Optics Letters, 2019, 44, 4523.	1.7	22
115	QUANTUM INFORMATICS: OVERVIEW OF THE MAIN ACHIEVEMENTS. Russian Technological Journal, 2019, 7, 5-37.	0.6	31
116	Hong-Ou-Mandel interference between two independent all-fiber multiplexed photon sources. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 120302.	0.2	1
117	Time–energy high-dimensional one-side device-independent quantum key distribution. Chinese Physics B, 2017, 26, 050302.	0.7	2
118	Reference-frame-independent quantum key distribution with random atmospheric transmission efficiency. Modern Physics Letters B, 2020, 34, 2050416.	1.0	0
119	Improved and practical proposal for measurement device independent quantum dialogue. Quantum Information Processing, 2021, 20, 1.	1.0	3
120	Practical Longâ€Distance Measurementâ€Deviceâ€Independent Quantum Key Distribution By Fourâ€Intensity Protocol. Advanced Quantum Technologies, 2021, 4, 2100069.	1.8	8
121	Analysis and measurement of high-order photon correlations of light fields. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 174204.	0.2	0
122	Hybrid protocol for sending-or-not-sending twin-field quantum key distribution. Optics Letters, 2020, 45, 4120.	1.7	4
123	Performance of passive decoy-state quantum key distribution with mismatched local detectors. Communications in Theoretical Physics, 2022, 74, 015103.	1.1	0
124	Measurement-device-independent quantum key distribution with insecure sources. Optics Letters, 2022, 47, 665.	1.7	8
125	Measurement-Device-Independent Quantum Key Distribution of Frequency-Nondegenerate Photons. Physical Review Applied, 2022, 17, .	1.5	3
126	Sending-or-not-sending twin-field quantum key distribution with multiphoton states. Physical Review A, 2021, 104, .	1.0	6
127	Tripartite Quantum Key Distribution Implemented with Imperfect Sources. Optics, 2022, 3, 191-208.	0.6	3

IF ARTICLE CITATIONS # Afterpulse effect in measurement-device-independent quantum key distribution. Optics Express, 2022, 128 1.7 2 30, 28534. Robust and adaptable quantum key distribution network without trusted nodes. Optica, 2022, 9, 812. 129 4.8 Unbalanced-basis-misalignment-tolerant measurement-device-independent quantum key distribution. 130 4.8 12 Optica, 2022, 9, 886. Improved reference-frame-independent quantum key distribution. Optics Letters, 2022, 47, 4219. Free-running long-distance reference-frame-independent quantum key distribution. Npj Quantum 132 2.8 2 Information, 2022, 8, . Afterpulse analysis for reference-frame-independent quantum key distribution. Quantum Information Processing, 2022, 21, . 1.0 Scalable high-rate measurement-device-independent quantum key distribution network without 134 0.9 0 reference-frame alignment. Journal of the Optical Society of America B: Optical Physics, 0, , . Experimental measurement-device-independent type quantum key distribution with flawed and 4.3 correlated sources. Science Bulletin, 2022, 67, 2167-2175. Twin-Field Quantum Key Distribution with Partial Phase Postselection. Physical Review Applied, 2022, 136 1.5 4 18, . Numerical simulation of quantum key distribution network based on wavelength division multiplexing technology. Journal of Physics: Conference Series, 2022, 2381, 012082. Improving the performance of reference-frame-independent quantum key distribution with advantage 138 1.7 3 distillation technology. Optics Express, 2023, 31, 9196. Improved Finite-Key Security Analysis of Measurement-Device-Independent Quantum Key Distribution 1.5 Against a Trojan-Hórse Attack. Physical Review Applied, 2023, 19, . Intensity Tomography Method for Secure and High-Performance Quantum Key Distribution. Journal of 140 2.7 0 Lightwave Technology, 2023, 41, 4895-4900. Hacking measurement-device-independent quantum key distribution. Optica, 2023, 10, 520. 141 4.8 Reference-frame-independent measurement device-independent quantum key distribution with heralded 146 0

CITATION REPORT

single-photon sources. , 2023, , .