MicroRNA-146a and -21 cooperate to regulate vascular s via modulation of the Notch signaling pathway

Molecular Medicine Reports 11, 2889-2895 DOI: 10.3892/mmr.2014.3107

Citation Report

#	Article	IF	CITATIONS
1	Function, Role, and Clinical Application of MicroRNAs in Vascular Aging. BioMed Research International, 2016, 2016, 1-15.	0.9	55
2	Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts. Physiological Genomics, 2016, 48, 220-229.	1.0	47
3	Uremia modulates the phenotype of aortic smooth muscle cells. Atherosclerosis, 2017, 257, 64-70.	0.4	11
4	Mechanism of MicroRNA-146a/Notch2 Signaling Regulating IL-6 in Graves Ophthalmopathy. Cellular Physiology and Biochemistry, 2017, 41, 1285-1297.	1.1	20
5	Distinct gene expression profiles associated with Notch ligands Delta-like 4 and Jagged1 in plaque material from peripheral artery disease patients: a pilot study. Journal of Translational Medicine, 2017, 15, 98.	1.8	26
6	The Role of MicroRNAs in Arterial Stiffness and Arterial Calcification. An Update and Review of the Literature. Frontiers in Genetics, 2017, 8, 209.	1.1	38
7	Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovascular Diabetology, 2018, 17, 105.	2.7	71
8	The ethyl acetate extracts of radix trichosanthis protect retinal vascular endothelial cells from high glucose-induced injury. Journal of Ethnopharmacology, 2019, 240, 111954.	2.0	5
9	Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naA ve T2D. Cardiovascular Diabetology, 2019, 18, 18.	2.7	63
10	FOXC2-AS1 regulates phenotypic transition, proliferation and migration of human great saphenous vein smooth muscle cells. Biological Research, 2019, 52, 59.	1.5	11
11	Noncoding RNAs in the Cardiovascular System: Exercise Training Effects. , 0, , .		0
12	A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunology Letters, 2020, 227, 8-27.	1.1	32
13	The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. International Journal of Molecular Sciences, 2020, 21, 6902.	1.8	36
14	The dual role of mir-146a in metastasis and disease progression. Biomedicine and Pharmacotherapy, 2020, 126, 110099.	2.5	30
15	miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers. European Journal of Neuroscience, 2020, 52, 3610-3627.	1.2	29
16	Aberrant expression of miRâ€29bâ€3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Proliferation, 2020, 53, e12764.	2.4	41
17	Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer. Cardiovascular Research, 2022, 118, 597-611.	1.8	41
18	Regulation of miRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and eNOS. Antioxidants, 2021, 10, 377.	2.2	18

CITATION REPORT

#	Article	IF	CITATIONS
19	Adding a "Notch―to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Frontiers in Cell and Developmental Biology, 2021, 9, 695114.	1.8	15
20	Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. International Journal of Biological Sciences, 2021, 17, 3413-3427.	2.6	32
21	Phenotype of Vascular Smooth Muscle Cells (VSMCs) Is Regulated by miR-29b by Targeting Sirtuin 1. Medical Science Monitor, 2018, 24, 6599-6607.	0.5	18
22	MiR-21 mediates the protection of kaempferol against hypoxia/reoxygenation-induced cardiomyocyte injury via promoting Notch1/PTEN/AKT signaling pathway. PLoS ONE, 2020, 15, e0241007.	1.1	16
23	MicroRNAs orchestrating senescence of endothelial and vascular smooth muscle cells. Vascular Biology (Bristol, England), 2019, 1, H75-H81.	1.2	11
24	Does microRNA Perturbation Control the Mechanisms Linking Obesity and Diabetes? Implications for Cardiovascular Risk. International Journal of Molecular Sciences, 2021, 22, 143.	1.8	14
25	Role of miRNA-1 and miRNA-21 in Acute Myocardial Ischemia-Reperfusion Injury and Their Potential as Therapeutic Strategy. International Journal of Molecular Sciences, 2022, 23, 1512.	1.8	22
26	Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician. Journal of Clinical Medicine, 2022, 11, 459.	1.0	5
27	Lower miR-21/ROS/HNE levels associate with lower glycemia after habit-intervention: DIAPASON study 1-year later. Cardiovascular Diabetology, 2022, 21, 35.	2.7	4
28	miRNA Regulome in Different Atherosclerosis Phenotypes. Molecular Biology, 2022, 56, 166-181.	0.4	3
29	Fusobacterium nucleatum Accelerates Atherosclerosis via Macrophage-Driven Aberrant Proinflammatory Response and Lipid Metabolism. Frontiers in Microbiology, 2022, 13, 798685.	1.5	22
30	Glycaemic Control in Patients Undergoing Percutaneous Coronary Intervention: What Is the Role for the Novel Antidiabetic Agents? A Comprehensive Review of Basic Science and Clinical Data. International Journal of Molecular Sciences, 2022, 23, 7261.	1.8	4
31	Role of miRNAs in vascular development. Non-coding RNA Research, 2023, 8, 1-7.	2.4	5
32	Association between microRNA-146a rs2910164 polymorphism and coronary heart disease: An updated meta-analysis. Medicine (United States), 2022, 101, e31860.	0.4	1
33	Nutrition and Physical Activity as Modulators of Osteosarcopenic Adiposity: A Scoping Review and Recommendations for Future Research. Nutrients, 2023, 15, 1619.	1.7	0