Finding the quantum thermoelectric with maximal efficience production at given power output

Physical Review B 91,

DOI: 10.1103/physrevb.91.115425

Citation Report

#	Article	IF	CITATIONS
1	Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime. Physical Review E, 2015, 92, 042165.	0.8	41
2	Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Physical Review E, 2015, 91, 062134.	0.8	31
3	Thermodynamics of Micro- and Nano-Systems Driven by Periodic Temperature Variations. Physical Review X, 2015, 5, .	2.8	136
4	Reversible electron–hole separation in a hot carrier solar cell. New Journal of Physics, 2015, 17, 095004.	1.2	33
5	Hot carrier extraction using energy selective contacts and its impact on the limiting efficiency of a hot carrier solar cell. Applied Physics Letters, 2015, 107, .	1.5	16
6	Quantum point contacts as heat engines. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 447-450.	1.3	4
7	Unified Approach to Thermodynamic Optimization of Generic Objective Functions in the Linear Response Regime. Entropy, 2016, 18, 161.	1.1	4
8	Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output. Entropy, 2016, 18, 208.	1.1	17
9	Heat-charge mixed noise and thermoelectric efficiency fluctuations. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 054015.	0.9	13
10	Optimisation of a three-terminal nonlinear heat nano-engine. New Journal of Physics, 2016, 18, 023050.	1.2	15
12	Thermoelectrics with Coulomb-coupled quantum dots. Comptes Rendus Physique, 2016, 17, 1109-1122.	0.3	33
13	Nonlinear phenomena in quantum thermoelectrics and heat. Comptes Rendus Physique, 2016, 17, 1060-1071.	0.3	55
14	Maximum efficiency of low-dissipation heat engines at arbitrary power. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 073204.	0.9	56
15	Transitional steady states of exchange dynamics between finite quantum systems. Physical Review E, 2016, 94, 022136.	0.8	2
16	Nonlinear thermoelectric efficiency of superlattice-structured nanowires. Physical Review B, 2016, 94,	1.1	30
17	Time-dependent thermoelectric transport for nanoscale thermal machines. Physical Review B, 2016, 93, ·	1.1	28
18	Efficiency at maximum power of thermochemical engines with near-independent particles. Physical Review E, 2016, 93, 032125.	0.8	7
19	Maximum efficiency of steady-state heat engines at arbitrary power. Physical Review E, 2016, 93, 050101.	0.8	52

CITATION REPORT

#	Article	IF	CITATIONS
20	Hybrid driven three-terminal thermoelectric refrigerators based on resonant tunneling quantum dots. Modern Physics Letters B, 2016, 30, 1650397.	1.0	3
21	Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power. Physical Review E, 2016, 94, 052114.	0.8	30
22	Reprint of : Quantum point contacts as heat engines. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 310-313.	1.3	2
23	Reprint of : Thermoelectricity without absorbing energy from the heat sources. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 176-184.	1.3	5
24	Thermoelectric performance and optimization of three-terminal quantum dot nano-devices. Energy, 2016, 95, 593-601.	4.5	20
25	Thermoelectricity without absorbing energy from the heat sources. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 75, 257-265.	1.3	35
26	Implementation of transmission functions for an optimized three-terminal quantum dot heat engine. Journal of Physics Condensed Matter, 2017, 29, 085303.	0.7	5
27	Entropy production in photovoltaic-thermoelectric nanodevices from the non-equilibrium Green's function formalism. Journal of Physics Condensed Matter, 2017, 29, 175301.	0.7	9
28	Perspective: Thermal and thermoelectric transport in molecular junctions. Journal of Chemical Physics, 2017, 146, .	1.2	144
29	Local-stability analysis of a low-dissipation heat engine working at maximum power output. Physical Review E, 2017, 96, 042128.	0.8	15
30	Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry. Physical Review E, 2017, 96, 022133.	0.8	4
31	Powerful Coulomb-drag thermoelectric engine. Physical Review B, 2017, 96, .	1.1	33
32	Endoreversible quantum heat engines in the linear response regime. Physical Review E, 2017, 96, 012152.	0.8	8
33	Diverging, but negligible power at Carnot efficiency: Theory and experiment. Physical Review E, 2017, 96, 062107.	0.8	35
34	Underdamped stochastic heat engine at maximum efficiency. Europhysics Letters, 2017, 119, 50003.	0.7	42
35	Unified theory of resonances and bound states in the continuum in Hermitian tight-binding models. Physical Review B, 2017, 96, .	1.1	23
36	Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Physics Reports, 2017, 694, 1-124.	10.3	470
37	Optimal Quantum Interference Thermoelectric Heat Engine with Edge States. Physical Review Letters, 2017, 118, 256801.	2.9	38

		Citation Report	
#	Article	IF	Citations
38	Thermoelectric Power Factor Limit of a 1D Nanowire. Physical Review Letters, 2018, 120, 177703.	2.9	30
39	Superlattice design for optimal thermoelectric generator performance. Journal Physics D: Applied Physics, 2018, 51, 185301.	1.3	26
40	Superior Thermoelectric Design via Antireflection Enabled Lineshape Engineering. IEEE Transactions on Electron Devices, 2018, 65, 1896-1901.	1.6	13
41	Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure. Journal of Physics Condensed Matter, 2018, 30, 064005.	0.7	10
42	Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power. Physica A: Statistical Mechanics and Its Applications, 2018, 496, 137-146.	1.2	6
43	Optimal performance at arbitrary power of minimally nonlinear irreversible thermoelectric generators with broken time-reversal symmetry. Physics Letters, Section A: General, Atomic and Sol State Physics, 2018, 382, 20-26.	id 0.9	2
44	Analytic treatment of the thermoelectric properties for two coupled quantum dots threaded by magnetic fields. Journal of Physics Communications, 2018, 2, 055026.	0.5	8
45	Quantum Thermodynamics of Nanoscale Thermoelectrics and Electronic Devices. Fundamental Theories of Physics, 2018, , 175-206.	0.1	2
46	Performance analysis of nanostructured Peltier coolers. Journal of Applied Physics, 2018, 124, 1449	01. 1.1	18
47	Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect. Physical Review B, 2018, 97, .	1.1	15
48	Coefficient of performance and its bounds of minimally nonlinear irreversible refrigerator at arbitrary optimal value. Modern Physics Letters B, 2018, 32, 1850232.	1.0	1
49	Optimized Peltier cooling via an array of quantum dots with stair-like ground-state energy configuration. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 3026	-3030. 0.9	8
50	Thermodynamic Bound on Heat-to-Power Conversion. Physical Review Letters, 2018, 121, 080602.	2.9	24
51	Electronic Fabry-Perot Cavity Engineered Nanoscale Thermoelectric Generators. Physical Review Applied, 2019, 12, .	1.5	10
52	Thermoelectric cooling properties of quantum dot superlattice embedded nanowires. Materials Research Express, 2019, 6, 095071.	0.8	1
53	Numerically exact full counting statistics of the energy current in the Kondo regime. Physical Review B, 2019, 100, .	, 1.1	19
54	Optimal Thermoelectricity with Quantum Spin Hall Edge States. Physical Review Letters, 2019, 123 186801.	2.9	16
55	Optimal efficiency and power, and their trade-off in three-terminal quantum thermoelectric engines with two output electric currents. Physical Review B, 2019, 100, .	1.1	12

CITATION REPORT

#	Article	IF	CITATIONS
56	Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine. Entropy, 2019, 21, 777.	1.1	29
57	Optimal work-to-work conversion of a nonlinear quantum Brownian duet. Physical Review A, 2019, 99,	1.0	24
58	Enhanced thermoelectric properties of graphene-based ferromagnetic-superconductor junctions, Andreev reflection effect. Materials Research Express, 2019, 6, 065021.	0.8	1
59	Effects of strong electron interactions and resonant scattering on power output of nano-devices. Physical Review B, 2019, 100, .	1.1	6
60	Comparative study of heat-driven and power-driven refrigerators with Coulomb-coupled quantum dots. Physical Review B, 2019, 100, .	1.1	19
61	Efficient and tunable Aharonov-Bohm quantum heat engine. Physical Review B, 2019, 100, .	1.1	20
62	Superlattice nanowire heat engines with direction-dependent power output and heat current. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113671.	1.3	3
63	Enhanced thermoelectric performance actuated by inelastic processes in the channel region. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113832.	1.3	3
64	Quantifying nonequilibrium thermodynamic operations in a multiterminal mesoscopic system. Physical Review B, 2020, 102, .	1.1	19
65	Quantum transport in a chain of quantum dots with inhomogeneous size distribution and manifestation of 1D Anderson localization. Scientific Reports, 2020, 10, 16701.	1.6	7
66	A realistic non-local heat engine based on Coulomb-coupled systems. Journal of Applied Physics, 2020, 127, 234903.	1.1	7
67	Entropy analyses of electronic devices with different energy selective electron tunnels. Physica A: Statistical Mechanics and Its Applications, 2020, 560, 125128.	1.2	4
68	Optically manipulating thermodynamic performances of a quantum-dot heat engine. Superlattices and Microstructures, 2020, 145, 106625.	1.4	2
69	Detailed study of nonlinear cooling with two-terminal configurations of topological edge states. Physical Review B, 2020, 102, .	1.1	5
70	Power, efficiency, and fluctuations in steady-state heat engines. Physical Review E, 2020, 102, 040103.	0.8	13
71	Wiedemann-Franz law in scattering theory revisited. Physical Review B, 2020, 102, .	1.1	6
72	Three-terminal vibron-coupled hybrid quantum dot thermoelectric refrigeration. Journal of Applied Physics, 2020, 128, 234303.	1.1	8
73	Thermoelectric power generation efficiency of zigzag monolayer nanoribbon of bismuth. Nanotechnology, 2020, 31, 375403.	1.3	13

#	Article	IF	CITATIONS
74	Maximum efficiency of low-dissipation refrigerators at arbitrary cooling power. Physical Review E, 2020, 101, 052124.	0.8	7
75	Thermodynamic efficiency of mesoscopic thermoelectric generators with broken time-reversal symmetry: Insights from an ecological optimization. Modern Physics Letters B, 2020, 34, 2050262.	1.0	1
76	Optimal performance of a three-level quantum refrigerator. Physical Review E, 2020, 101, 062121.	0.8	10
77	Anomalous Heat Transport in Classical Many-Body Systems: Overview and Perspectives. Frontiers in Physics, 2020, 8, .	1.0	28
78	Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays. AIP Advances, 2020, 10, 045222.	0.6	8
79	Thermoelectric generator with finite-sized reservoir. Physica A: Statistical Mechanics and Its Applications, 2021, 562, 125331.	1.2	1
80	Realistic nonlocal refrigeration engine based on Coulomb-coupled systems. Physical Review E, 2021, 103, 012131.	0.8	4
81	Learning the best nanoscale heat engines through evolving network topology. Communications Physics, 2021, 4, .	2.0	4
82	Thermoelectric cooling properties of a quantum Hall Corbino device. Physical Review B, 2021, 103, .	1.1	3
83	Thermodynamic bounds on coherent transport in periodically driven conductors. Physical Review X, 2021, 11, .	2.8	12
84	Efficiency at maximum power of thermoelectric heat engines with the symmetric semiconductor superlattice. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 129, 114657.	1.3	1
85	Maximum efficiency of absorption refrigerators at arbitrary cooling power. Physical Review E, 2021, 103, 052125.	0.8	7
86	Thermoelectric properties of armchair phosphorene nanoribbons in the presence of vacancy-induced impurity band. Nanotechnology, 2021, 32, 375704.	1.3	11
87	Performance optimization of three-terminal energy selective electron generators. Science China Technological Sciences, 2021, 64, 1641-1652.	2.0	44
88	General Bounds on Electronic Shot Noise in the Absence of Currents. Physical Review Letters, 2021, 127, 136801.	2.9	13
89	Thermoelectric figure of merit enhancement in dissipative superlattice structures. Journal Physics D: Applied Physics, 2021, 54, 095301.	1.3	5
90	Coherent Transport in Periodically Driven Mesoscopic Conductors: From Scattering Amplitudes to Quantum Thermodynamics. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2020, 75, 483-500.	0.7	5
91	Nonlinear regime for enhanced performance of an Aharonov–Bohm heat engine. AVS Quantum Science, 2021, 3, .	1.8	5

#	Article	IF	CITATIONS
92	Efficiency at arbitrary power for the Curzon-Ahlborn heat engine in linear and nonlinear heat transfer processes. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 130502.	0.2	0
93	Regimes and quantum bounds of nanoscale thermoelectrics with peaked transmission function. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115105.	1.3	0
94	Maximum efficiency of low-dissipation heat pumps at given heating load. Physical Review E, 2022, 105, 024139.	0.8	1
95	Readout of Quantum Screening Effects Using a Time-Dependent Probe. Physical Review Letters, 2021, 127, 246802.	2.9	1
96	Geometric bounds on the power of adiabatic thermal machines. Physical Review E, 2022, 105, .	0.8	10
97	Anomalous transport in low-dimensional systems: A pedagogical overview. Physica A: Statistical Mechanics and Its Applications, 2023, 631, 127779.	1.2	2
98	Direct mapping of edge states in bilayer zigzag phosphorene nanoribbons into a SSH ladder model and optimizing their thermoelectric performance via edge state engineering. European Physical Journal Plus, 2022, 137, .	1.2	2
99	Advances in Photovoltaic Technologies from Atomic to Device Scale. Photonics, 2022, 9, 837.	0.9	1
100	Multidirectional strain-induced thermoelectric ï¬gure of merit enhancement of zigzag bilayer phosphorene nanoribbons. Physica Scripta, 0, , .	1.2	1
101	Globally optimal band structure for thermoelectrics in realistic systems. Physical Review B, 2022, 106,	1.1	0
102	Thermodynamic Performance of Hot-Carrier Solar Cells: A Quantum Transport Model. Physical Review Applied, 2023, 19, .	1.5	2
103	Multitask quantum thermal machines and cooperative effects. Physical Review B, 2023, 107, .	1.1	6
104	A Strongly Correlated Quantum Dot Heat Engine with Optimal Performance: A Nonequilibrium Green's Function Approach. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	0

CITATION REPORT