Russian anthropogenic black carbon: Emission reconstr simulation

Journal of Geophysical Research D: Atmospheres 120, 11,306 DOI: 10.1002/2015jd023358

Citation Report

#	Article	IF	CITATIONS
1	Spatial and Temporal Patterns in Black Carbon Deposition to Dated Fennoscandian Arctic Lake Sediments from 1830 to 2010. Environmental Science & Technology, 2015, 49, 13954-13963.	10.0	30
2	A global gas flaring black carbon emission rate dataset from 1994 to 2012. Scientific Data, 2016, 3, 160104.	5.3	43
3	Detection of a gas flaring signature in the AERONET optical properties of aerosols at a tropical station in West Africa. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,513.	3.3	18
4	Russia's black carbon emissions: focus on diesel sources. Atmospheric Chemistry and Physics, 2016, 16, 11267-11281.	4.9	13
5	Gas flaring and resultant air pollution: A review focusing on black carbon. Environmental Pollution, 2016, 216, 182-197.	7.5	117
6	Field Measurements of Black Carbon Yields from Gas Flaring. Environmental Science & Technology, 2017, 51, 1893-1900.	10.0	42
7	Siberian Arctic black carbon sources constrained by model and observation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1054-E1061.	7.1	80
8	Black Carbon Sources Constrained by Observations in the Russian High Arctic. Environmental Science & Technology, 2017, 51, 3871-3879.	10.0	43
9	Increasingly Important Role of Russian Emissions in Modulating the Arctic Climate System. Environmental Science & Technology, 2017, 51, 1951-1952.	10.0	0
10	Black carbon emissions in Russia: A critical review. Atmospheric Environment, 2017, 163, 9-21.	4.1	37
11	Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3573-3594.	3.3	70
12	Global anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics, 2017, 17, 8681-8723.	4.9	496
13	Pan-Arctic aerosol number size distributions: seasonality and transport patterns. Atmospheric Chemistry and Physics, 2017, 17, 8101-8128.	4.9	99
14	Factors controlling black carbon distribution in the Arctic. Atmospheric Chemistry and Physics, 2017, 17, 1037-1059.	4.9	51
15	Tagged tracer simulations of black carbon in the Arctic: transport, source contributions, and budget. Atmospheric Chemistry and Physics, 2017, 17, 10515-10533.	4.9	43
16	Do contemporary (1980–2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?. Atmospheric Chemistry and Physics, 2017, 17, 12779-12795.	4.9	17
17	Sensitivity of black carbon concentrations and climate impact to aging and scavenging in OsloCTM2–M7. Atmospheric Chemistry and Physics, 2017, 17, 6003-6022.	4.9	22
18	Raman Lidar Observations of Aerosol Optical Properties in 11 Cities from France to Siberia. Remote Sensing, 2017, 9, 978.	4.0	18

CITATION REPORT

#	Article	IF	CITATIONS
19	Estimation of the Elemental to Organic Carbon Ratio in Biomass Burning Aerosol Using AERONET Retrievals. Atmosphere, 2017, 8, 122.	2.3	7
20	Russian associated petroleum gas flaring limits: Interplay of formal and informal institutions. Energy Policy, 2018, 116, 232-241.	8.8	23
21	Temporally delineated sources of major chemical species in high Arctic snow. Atmospheric Chemistry and Physics, 2018, 18, 3485-3503.	4.9	13
22	Characterization of solid airborne particles deposited in snow in the vicinity of urban fossil fuel thermal power plant (Western Siberia). Environmental Technology (United Kingdom), 2018, 39, 2288-2303.	2.2	17
23	Results of the Study of Aerosol Characteristics in the Atmosphere of the Kara and Barents Seas in Summer and Autumn 2016. Atmospheric and Oceanic Optics, 2018, 31, 507-518.	1.3	8
24	Top-down estimates of black carbon emissions at high latitudes using an atmospheric transport model and a Bayesian inversion framework. Atmospheric Chemistry and Physics, 2018, 18, 15307-15327.	4.9	10
25	Persistent Hot Spot Detection and Characterisation Using SLSTR. Remote Sensing, 2018, 10, 1118.	4.0	18
26	Source sector and region contributions to black carbon and PM _{2.5} in the Arctic. Atmospheric Chemistry and Physics, 2018, 18, 18123-18148.	4.9	25
27	Local Arctic Air Pollution: A Neglected but Serious Problem. Earth's Future, 2018, 6, 1385-1412.	6.3	96
28	A Techno-Economic Analysis of Methane Mitigation Potential from Reported Venting at Oil Production Sites in Alberta. Environmental Science & Technology, 2018, 52, 12877-12885.	10.0	21
29	Aerosol optical, microphysical, chemical and radiative properties of high aerosol load cases over the Arctic based on AERONET measurements. Scientific Reports, 2018, 8, 9376.	3.3	22
30	Multi-decade global gas flaring change inventoried using the ATSR-1, ATSR-2, AATSR and SLSTR data records. Remote Sensing of Environment, 2019, 232, 111298.	11.0	25
31	The importance of the representation of air pollution emissions for the modeled distribution and radiative effects of black carbon in the Arctic. Atmospheric Chemistry and Physics, 2019, 19, 11159-11183.	4.9	30
32	Clean Energy Sources: Insights from Russia. Resources, 2019, 8, 84.	3.5	13
33	Evaluating Recent Updated Black Carbon Emissions and Revisiting the Direct Radiative Forcing in Arctic. Geophysical Research Letters, 2019, 46, 3560-3570.	4.0	11
34	Aerosol monitoring in Siberia using an 808 nm automatic compact lidar. Atmospheric Measurement Techniques, 2019, 12, 147-168.	3.1	8
35	Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling. Science Advances, 2019, 5, eaau8052.	10.3	68
36	Black Carbon in the Atmospheric Boundary Layer Over the North Atlantic and the Russian Arctic Seas in June–September 2017. Oceanology, 2019, 59, 692-696.	1.2	7

#	Article	IF	CITATIONS
37	East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi. Science of the Total Environment, 2019, 655, 924-938.	8.0	37
38	Trajectory-based analysis on the source areas and transportation pathways of atmospheric particulate matter over Eastern Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1799687.	1.6	2
39	Aerosol carbonaceous, elemental and ionic composition variability and origin at the Siberian High Arctic, Cape Baranova. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1803708.	1.6	12
40	High Sensitivity of Arctic Black Carbon Radiative Effects to Subgrid Vertical Velocity in Aerosol Activation. Geophysical Research Letters, 2020, 47, e2020GL088978.	4.0	13
41	FLEXPARTÂv10.1 simulation of source contributions to Arctic black carbon. Atmospheric Chemistry and Physics, 2020, 20, 1641-1656.	4.9	20
42	Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics, 2020, 20, 4607-4635.	4.9	66
43	Retrieval of Aerosol Optical Thickness in the Arctic Snow-Covered Regions Using Passive Remote Sensing: Impact of Aerosol Typing and Surface Reflection Model. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 5117-5131.	6.3	11
44	Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model. Environmental Research Communications, 2020, 2, 025004.	2.3	96
45	Aerosols in current and future Arctic climate. Nature Climate Change, 2021, 11, 95-105.	18.8	111
46	Characterization of Aerosol Sources and Optical Properties in Siberia Using Airborne and Spaceborne Observations. Atmosphere, 2021, 12, 244.	2.3	5
47	Observed and Modeled Black Carbon Deposition and Sources in the Western Russian Arctic 1800–2014. Environmental Science & Technology, 2021, 55, 4368-4377.	10.0	9
48	Late-spring and summertime tropospheric ozone and NO ₂ in western Siberia and the Russian Arctic: regional model evaluation and sensitivities. Atmospheric Chemistry and Physics, 2021, 21, 4677-4697.	4.9	11
49	Submicron Aerosol and Black Carbon in the Troposphere of Southwestern Siberia (1997–2018). Atmosphere, 2021, 12, 351.	2.3	4
50	Black Carbon Emissions from the Siberian Fires 2019: Modelling of the Atmospheric Transport and Possible Impact on the Radiation Balance in the Arctic Region. Atmosphere, 2021, 12, 814.	2.3	10
51	Responses of Arctic black carbon and surface temperature to multi-region emission reductions: a Hemispheric Transport of Air Pollution Phase 2 (HTAP2) ensemble modeling study. Atmospheric Chemistry and Physics, 2021, 21, 8637-8654.	4.9	8
52	Attributing snow cover extent changes over the Northern Hemisphere for the past 65 years. Environmental Research Communications, 2021, 3, 061001.	2.3	4
53	Spatial Distribution of Black Carbon Concentrations in the Atmosphere of the North Atlantic and the European Sector of the Arctic Ocean. Atmosphere, 2021, 12, 949.	2.3	10
54	The black carbon dispersion in the Southern Hemisphere and its transport and fate to Antarctica, an Anthropocene evidence for climate change policies. Science of the Total Environment, 2021, 778, 146242.	8.0	16

CITATION REPORT

~	~
(TITATION	REDUBL
CHARTON	

#	Article	IF	CITATIONS
55	Variability, predictability, and uncertainty in global aerosols inferred from gap-filled satellite observations and an econometric modeling approach. Remote Sensing of Environment, 2021, 261, 112501.	11.0	15
56	Dynamics of gaseous oxidized mercury at Villum Research Station during the High Arctic summer. Atmospheric Chemistry and Physics, 2021, 21, 13287-13309.	4.9	2
57	Importance of Supersaturation in Arctic Black Carbon Simulations. Journal of Climate, 2021, 34, 7843-7856.	3.2	8
58	THE PROBABILITY OF TRANSFER TO THE ARCTIC OF SHORT-LIVED CLIMATE-FORMING AEROSOLS FROM MODEL FOREST FIRES IN RUSSIA AND THEIR POSSIBLE IMPACT ON CLIMATE. Fundamental and Applied Climatology, 2020, 1, 21-41.	0.4	3
59	Microstructure and Chemical Composition of Particles from Small-scale Gas Flaring. Aerosol and Air Quality Research, 2019, 19, 2205-2221.	2.1	24
60	Self-consistent estimates of emission factors of carboncontaining pollutants from a typical gas flare. Ife Journal of Science, 2020, 22, 135-149.	0.3	4
61	Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results. Atmospheric Chemistry and Physics, 2020, 20, 8551-8592.	4.9	26
62	Gas flaring activity and black carbon emissions in 2017 derived from the Sentinel-3A Sea and Land Surface Temperature Radiometer. Earth System Science Data, 2020, 12, 2137-2155.	9.9	13
63	Polycyclic aromatic hydrocarbons in the snowpack of Yamal-Nenetz Autonomous region as indicators of anthropogenic source influence. Arctic and Antarctic Research, 2021, 67, 261-279.	0.6	4
64	Seasonal Cycle of Isotopeâ€Based Source Apportionment of Elemental Carbon in Airborne Particulate Matter and Snow at Alert, Canada. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033125.	3.3	6
65	Measurements of Aerosol Physicochemical Characteristics in the 80th Cruise of RV Akademik Mstislav Keldysh on the Route from the Baltic to Barents Sea. Atmospheric and Oceanic Optics, 2021, 34, 455-463.	1.3	3
66	Microparticles in the Atmosphere from Lithospheric Sources of Technogenic Origin. Izvestiya, Physics of the Solid Earth, 2021, 57, 686-697.	0.9	3
67	Black Carbon in urban emissions on the Polar Circle. , 2020, , .		1
68	Emission inventory processing of biomass burning from a global dataset for air quality modeling. Air Quality, Atmosphere and Health, 2022, 15, 721-729.	3.3	3
69	High-resolution modeling of the distribution of surface air pollutants and their intercontinental transport by a global tropospheric atmospheric chemistry source–receptor model (GNAQPMS-SM). Geoscientific Model Development, 2021, 14, 7573-7604.	3.6	5
70	New eco-friendly trends to produce biofuel and bioenergy from microorganisms: An updated review. Saudi Journal of Biological Sciences, 2022, , .	3.8	22
71	Seasonal, Weekly, and Diurnal Black Carbon in Moscow Megacity Background under Impact of Urban and Regional Sources. Atmosphere, 2022, 13, 563.	2.3	11
73	Siberian Arctic black carbon: gas flaring and wildfire impact. Atmospheric Chemistry and Physics, 2022, 22, 5983-6000.	4.9	10

		CITATION REPORT		
#	Article		IF	CITATIONS
74	Contrasting source contributions of Arctic black carbon to atmospheric concentratior flux, and atmospheric and snow radiative effects. Atmospheric Chemistry and Physics, 8989-9009.	is, deposition 2022, 22,	4.9	12
75	Spatiotemporal Variations in Atmospheric Aerosol Characteristics over the Kara, Barer and Greenland Seas (2018–2021 Expeditions). Atmospheric and Oceanic Optics, 20	its, Norwegian, 022, 35, 651-660.	1.3	4
76	Model Estimates of Black Carbon Transfer Probabilities from Russian Forest Fires to Ar Possible Impact on Climate. Izvestiya - Atmospheric and Oceanic Physics, 2022, 58, 63	ctic and Its 35-644.	0.9	0
77	Estimates of how different types (sources) of continental pollutants influence the Arc atmosphere. , 2023, , .	tic		0
78	Drivers controlling black carbon temporal variability in the lower troposphere of the Eu Arctic. Atmospheric Chemistry and Physics, 2023, 23, 15589-15607.	ıropean	4.9	0