Current and Recent Advanced Strategies for Combating

Comprehensive Reviews in Food Science and Food Safety 14, 491-509 DOI: 10.1111/1541-4337.12144

Citation Report

#	Article	IF	CITATIONS
1	Rosa canina L. – new possibilities for an old medicinal herb. Food and Function, 2015, 6, 3687-3692.	4.6	20
2	Rotation Disk Process to Assess the Influence of Metals and Voltage on the Growth of Biofilm. Materials, 2016, 9, 568.	2.9	4
3	Comparison of methods for quantitating <i>Salmonella enterica</i> Typhimurium and Heidelberg strain attachment to reusable plastic shipping container coupons and preliminary assessment of sanitizer efficacy. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 602-608.	1.5	6
4	Bacterial biofilms in food processing environments: a review of recent developments in chemical and biological control. International Journal of Food Science and Technology, 2016, 51, 1731-1743.	2.7	45
5	Antimicrobial and antibiofilm activity of <i>Baccharis psiadioides</i> essential oil against antibiotic-resistant <i>Enterococcus faecalis</i> strains. Pharmaceutical Biology, 2016, 54, 3272-3279.	2.9	32
6	Potential applications of nonthermal plasmas against biofilm-associated micro-organisms <i>inÂvitro</i> . Journal of Applied Microbiology, 2017, 122, 1134-1148.	3.1	51
7	Combination of selected enzymes with cetyltrimethylammonium bromide in biofilm inactivation, removal and regrowth. Food Research International, 2017, 95, 101-107.	6.2	30
8	Novel properties of Hippophae rhamnoides L. twig and leaf extracts - anti-virulence action and synergy with antifungals studied inÂvitro on Candida spp. model. Microbial Pathogenesis, 2017, 107, 372-379.	2.9	26
9	Efficacy of cleaning methods for the removal of Bacillus cereus biofilm from polyurethane conveyor belts in bakeries. Food Control, 2017, 80, 267-272.	5.5	29
10	Efficacy of a Sonicating Swab for Removal and Capture of Listeria monocytogenes in Biofilms on Stainless Steel. Applied and Environmental Microbiology, 2017, 83, .	3.1	18
11	Bending energy penalty enhances the adhesive strength of functional amyloid curli to surfaces. Nanotechnology, 2017, 28, 464002.	2.6	12
12	Suppression of development of vancomycin-resistant Staphylococcus epidermidis by low-molecular-weight cationic peptides of the lantibiotic family. Microbiology, 2017, 86, 571-582.	1.2	4
13	Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. Journal of Dairy Science, 2017, 100, 7864-7873.	3.4	66
14	Shigaâ€ŧoxin Producing <i>Escherichia coli</i> : Pathogenicity, Supershedding, Diagnostic Methods, Occurrence, and Foodborne Outbreaks. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1269-1280.	11.7	47
15	Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC Microbiology, 2017, 17, 144.	3.3	73
16	Iron oxide nano-material: physicochemical traits and in vitro antibacterial propensity against multidrug resistant bacteria. Journal of Industrial and Engineering Chemistry, 2017, 45, 121-130.	5.8	43
17	Coating polypropylene surfaces with protease weakens the adhesion and increases the dispersion of Candida albicans cells. Biotechnology Letters, 2017, 39, 423-428.	2.2	15
18	Optimization of the Silver Nanoparticles PEALD Process on the Surface of 1-D Titania Coatings. Nanomaterials, 2017, 7, 193.	4.1	26

ITATION REDO

#	Article	IF	CITATIONS
19	Anti-bacterial and Anti-biofilm Evaluation of Thiazolopyrimidinone Derivatives Targeting the Histidine Kinase YycG Protein of Staphylococcus epidermidis. Frontiers in Microbiology, 2017, 8, 549.	3.5	14
20	Effect of EDTA on biofilm formation and antibiotic susceptibility of multidrug resistant uropathogenic Escherichia coli clinical isolates in Egypt. African Journal of Microbiology Research, 2017, 11, 1445-1458.	0.4	4
21	Evaluation of biofilm formation ability in different Candida strains and anti-biofilm effects of Fe 3 O 4 -NPs compared with Fluconazole: an in vitro study. Journal De Mycologie Medicale, 2018, 28, 23-28.	1.5	32
22	Application of Rotating Magnetic Fields Increase the Activity of Antimicrobials Against Wound Biofilm Pathogens. Scientific Reports, 2018, 8, 167.	3.3	24
23	Combination of essential oil and ciprofloxacin to inhibit/eradicate biofilms in multidrug-resistant <i>Klebsiella pneumoniae</i> . Journal of Applied Microbiology, 2018, 125, 84-95.	3.1	58
24	Bacterial Inactivation by Using Plastic Materials Activated with Combinations of Natural Antimicrobials. Coatings, 2018, 8, 460.	2.6	2
25	Insights into Bacterial Milk Spoilage with Particular Emphasis on the Roles of Heat-Stable Enzymes, Biofilms, and Quorum Sensing. Journal of Food Protection, 2018, 81, 1651-1660.	1.7	36
26	Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles. RSC Advances, 2018, 8, 40454-40463.	3.6	46
27	<i>In Vitro</i> Evaluation of Antimicrobial Activity and Cytotoxicity of Different Nanobiotics Targeting Multidrug Resistant and Biofilm Forming Staphylococci. BioMed Research International, 2018, 2018, 1-7.	1.9	30
28	Characterization of Biofilms Formed by Foodborne Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 3004.	3.5	27
29	Hydroxylamine Derivatives as a New Paradigm in the Search of Antibacterial Agents. ACS Omega, 2018, 3, 17057-17069.	3.5	10
30	Advances and Future Prospects of Enzymeâ€Based Biofilm Prevention Approaches in the Food Industry. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1484-1502.	11.7	96
31	Inhibitory Effect of <i>2R</i> , <i>3R</i> -Dihydromyricetin on Biofilm Formation by <i>Staphylococcus aureus</i> . Foodborne Pathogens and Disease, 2018, 15, 475-480.	1.8	9
32	Modulation of microbial quorum sensing. , 2018, , 523-563.		1
33	Electrospun Antimicrobial Wound Dressings: Novel Strategies to Fight Against Wound Infections. Recent Clinical Techniques, Results, and Research in Wounds, 2018, , 213-253.	0.1	4
34	Marine Biofilms: A Successful Microbial Strategy With Economic Implications. Frontiers in Marine Science, 2018, 5, .	2.5	214
35	Phenolic and Nonpolar Fractions of Elaeagnus rhamnoides (L.) A. Nelson Extracts as Virulence Modulators—In Vitro Study on Bacteria, Fungi, and Epithelial Cells. Molecules, 2018, 23, 1498.	3.8	19
36	Recent progress in bio-inspired biofilm-resistant polymeric surfaces. Critical Reviews in Microbiology, 2018, 44, 633-652.	6.1	24

#	Article	IF	CITATIONS
37	The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens. World Journal of Microbiology and Biotechnology, 2018, 34, 86.	3.6	32
38	Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus. Microbial Pathogenesis, 2018, 122, 162-173.	2.9	52
39	Testing Anti-Biofilm Polymeric Surfaces: Where to Start?. International Journal of Molecular Sciences, 2019, 20, 3794.	4.1	44
40	Bio-enzymes for inhibition and elimination of Escherichia coli O157:H7 biofilm and their synergistic effect with sodium hypochlorite. Scientific Reports, 2019, 9, 9920.	3.3	44
41	Effects of mandarin (Citrus reticulata) peel essential oil as a natural antibiofilm agent against Aspergillus niger in onion bulbs. Postharvest Biology and Technology, 2019, 156, 110959.	6.0	20
42	Biofilms: The Microbial "Protective Clothing―in Extreme Environments. International Journal of Molecular Sciences, 2019, 20, 3423.	4.1	482
43	Optimal environmental and culture conditions allow the in vitro coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in stable biofilms. Scientific Reports, 2019, 9, 16284.	3.3	63
44	An overview on anti-biofilm properties of quercetin against bacterial pathogens. World Journal of Microbiology and Biotechnology, 2019, 35, 143.	3.6	57
45	Advanced strategies for combating bacterial biofilms. Journal of Cellular Physiology, 2019, 234, 14689-14708.	4.1	90
46	2,5-Dimethyl-4-hydroxy-3(2H)-furanone as an Anti-biofilm Agent Against Non-Candida albicans Candida Species. Mycopathologia, 2019, 184, 403-411.	3.1	14
47	Evaluation of biological and enzymatic quorum quencher coating additives to reduce biocorrosion of steel. PLoS ONE, 2019, 14, e0217059.	2.5	20
48	Biobased Sanitizer Delivery System for Improved Sanitation of Bacterial and Fungal Biofilms. ACS Applied Materials & Interfaces, 2019, 11, 17204-17214.	8.0	22
49	Biofouling of stainless steel surfaces by four common pathogens: the effects of glucose concentration, temperature and surface roughness. Biofouling, 2019, 35, 273-283.	2.2	22
50	Electrospun essential oil-polycaprolactone nanofibers as antibiofilm surfaces against clinical Candida tropicalis isolates. Biotechnology Letters, 2019, 41, 511-522.	2.2	17
51	Anti-biofilm, nitric oxide inhibition and wound healing potential of purpurin-18 phytyl ester isolated from Clinacanthus nutans leaves. Biomedicine and Pharmacotherapy, 2019, 113, 108724.	5.6	13
52	A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials, 2019, 208, 21-31.	11.4	208
53	Biologic Treatment of Corrosion. , 2019, , 101-144.		2
54	The Search for Natural Inhibitors of Biofilm Formation and the Activity of the Autoinductor C6-AHL in Klebsiella pneumoniae ATCC 13884. Biomolecules, 2019, 9, 49.	4.0	17

#	Article	IF	CITATIONS
55	Shockwave Therapy Efficiently Cures Multispecies Chronic Periodontitis in a Humanized Rat Model. Frontiers in Bioengineering and Biotechnology, 2019, 7, 382.	4.1	10
56	Biofilm inhibiting activity of betacyanins from red pitahaya (<i>Hylocereus polyrhizus</i>) and red spinach (<i>Amaranthus dubius</i>) against <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> biofilms. Journal of Applied Microbiology, 2019, 126, 68-78.	3.1	14
57	Antibiofilm Enzymes as an Emerging Technology for Food Quality and Safety. , 2019, , 321-342.		12
58	Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiology, 2019, 14, 61-72.	2.0	37
59	Sulfur-Functionalized Fullerene Nanoparticle as an Inhibitor and Eliminator Agent on <i>Pseudomonas aeruginosa</i> Biofilm and Expression of <i>toxA</i> Gene. Microbial Drug Resistance, 2019, 25, 594-602.	2.0	11
60	Evaluation of brewer's spent grain hydrolysate as a substrate for production of thermostable α-amylase by Bacillus stearothermophilus. Bioresource Technology Reports, 2019, 5, 141-149.	2.7	6
61	Characterization of the bacteriocin produced by Enterococcus italicus ONU547 isolated from Thai fermented cabbage. Folia Microbiologica, 2019, 64, 535-545.	2.3	9
62	Prospects of Essential Oils in Controlling Pathogenic Biofilm. , 2019, , 203-236.		17
63	<i>Canavalia ensiformis-</i> derived lectin inhibits biofilm formation of enterohemorrhagic <i>Escherichia coli</i> and <i>Listeria monocytogenes</i> . Journal of Applied Microbiology, 2019, 126, 300-310.	3.1	12
64	Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. Journal of Ethnopharmacology, 2020, 246, 112188.	4.1	46
65	Antibacterial and antibiofilm activity of coenzyme Q0 against Vibrio parahaemolyticus. Food Control, 2020, 109, 106955.	5.5	35
66	GC-MS-FID characterization and antibacterial activity of the Mikania cordifolia essential oil and limonene against MDR strains. Food and Chemical Toxicology, 2020, 136, 111023.	3.6	21
67	The probiotic, <scp><i>Leuconostoc mesenteroides</i></scp> , inhibits <scp><i>Listeria monocytogenes</i></scp> biofilm formation. Journal of Food Safety, 2020, 40, e12750.	2.3	22
68	Exploitation of plant extracts and phytochemicals against resistant Salmonella spp. in biofilms. Food Research International, 2020, 128, 108806.	6.2	36
69	Current trends and future prospects of chemical management of oral biofilms. Journal of Oral Biology and Craniofacial Research, 2020, 10, 660-664.	1.9	4
70	Combinational Effect of Essential Oil Compounds and Antimicrobial Drugs on Candida albicans and Staphylococcus aureus Mixed Biofilms. Journal of Essential Oil-bearing Plants: JEOP, 2020, 23, 697-709.	1.9	2
71	Design, Synthesis and Biological Evaluation of Biphenylglyoxamide-Based Small Molecular Antimicrobial Peptide Mimics as Antibacterial Agents. International Journal of Molecular Sciences, 2020, 21, 6789.	4.1	10
72	The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. International Journal of Microbiology, 2020, 2020, 1-10.	2.3	154

#	ARTICLE	IF	CITATIONS
73	Synergistic anti-biofilm effects of Brassicaceae plant extracts in combination with proteinase K against Escherichia coli O157:H7. Scientific Reports, 2020, 10, 21090.	3.3	14
74	Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids. Scientific Reports, 2020, 10, 18968.	3.3	29
75	Innovative Strategies for the Control of Biofilm Formation in Clinical Settings. , 0, , .		4
76	Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention. Folia Microbiologica, 2020, 65, 863-869.	2.3	7
77	GC-MS Profile and Enhancement of Antibiotic Activity by the Essential Oil of Ocotea odorÃfera and Safrole: Inhibition of Staphylococcus aureus Efflux Pumps. Antibiotics, 2020, 9, 247.	3.7	28
78	High rates of antibiotic resistance and biofilm production in <i>Escherichia coli</i> isolates from food products of animal and vegetable origins in Tunisia: a real threat to human health. International Journal of Environmental Health Research, 2022, 32, 406-416.	2.7	6
79	Potential implications of the use of Rapanea melanophloeos (L.) Mez against mycobacteria. South African Journal of Botany, 2020, 132, 388-394.	2.5	1
80	Biosurfactant-based bioremediation. , 2020, , 333-358.		8
81	Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Frontiers in Microbiology, 2020, 11, 928.	3.5	372
82	Feasibility of cold plasma for the control of biofilms in food industry. Trends in Food Science and Technology, 2020, 99, 142-151.	15.1	73
83	Photoinactivation of biofilms. , 2020, , 295-306.		0
84	Biofilm Formation of the Facultative Thermophile Bacillus pumilus D194A and Affects of Sanitation Agents on Its Biofilms. Microbiology, 2020, 89, 64-73.	1.2	5
85	Antimicrobial effect of oxidative technologies in food processing: an overview. European Food Research and Technology, 2020, 246, 669-692.	3.3	16
86	Fluorinated vs. Zwitterionic-Polymer Grafted Surfaces for Adhesion Prevention of the Fungal Pathogen Candida albicans. Polymers, 2020, 12, 398.	4.5	9
87	Evaluation of antimicrobial properties of bovine lactoferrin against foodborne pathogenic microorganisms in planktonic and biofilm forms (in vitro). Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2020, 15, 277-283.	1.4	11
88	Free radical-releasing systems for targeting biofilms. Journal of Controlled Release, 2020, 322, 248-273.	9.9	17
89	Graphene oxide/silver nanostructure as a green anti-biofouling composite toward controlling the microbial corrosion. International Journal of Environmental Science and Technology, 2021, 18, 195-210.	3.5	6
90	Cellulose membrane modified with LED209 as an antibacterial and anti-adhesion material. Carbohydrate Polymers, 2021, 252, 117138.	10.2	10

#	Article		CITATIONS
91	Natural bacterial isolates as an inexhaustible source of new bacteriocins. Applied Microbiology and Biotechnology, 2021, 105, 477-492.	3.6	28
92	Photoactive antimicrobial coating based on a PEDOT-fullerene C ₆₀ polymeric dyad. RSC Advances, 2021, 11, 23519-23532.	3.6	20
93	A review of bacterial biofilm control by physical strategies. Critical Reviews in Food Science and Nutrition, 2022, 62, 3453-3470.	10.3	20
94	Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Frontiers in Microbiology, 2021, 12, 636588.	3.5	117
95	Investigating natural antibiofilm components: a new therapeutic perspective against candidal vulvovaginitis. Medical Hypotheses, 2021, 148, 110515.	1.5	11
96	Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules, 2021, 26, 1870.	3.8	21
98	Reduced Biofilm Formation at the Air–Liquid–Solid Interface via Introduction of Surfactants. ACS Biomaterials Science and Engineering, 2023, 9, 3923-3934.	5.2	9
99	Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Frontiers in Microbiology, 2021, 12, 676458.	3.5	143
100	Corrosion behaviour of X60 steel in the presence of sulphate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) in seawater. Corrosion Engineering Science and Technology, 2021, 56, 543-552.	1.4	11
101	Wetting/spreading on porous media and on deformable, soluble structured substrates as a model system for studying the effect of morphology on biofilms wetting and for assessing anti-biofilm methods. Current Opinion in Colloid and Interface Science, 2021, 53, 101426.	7.4	11
102	Polyphenylglyoxamide-Based Amphiphilic Small Molecular Peptidomimetics as Antibacterial Agents with Anti-Biofilm Activity. International Journal of Molecular Sciences, 2021, 22, 7344.	4.1	6
103	Incorporation of Antimicrobial Bio-Based Carriers onto Poly(vinyl alcohol- <i>co</i> -ethylene) Surface for Enhanced Antimicrobial Activity. ACS Applied Materials & Interfaces, 2021, 13, 36275-36285.	8.0	14
104	Biofilm Formation and Phenotypic Detection of ESBL, MBL, KPC and AmpC Enzymes and Their Coexistence in Klebsiella spp. Isolated at the National Reference Laboratory, Kathmandu, Nepal. Microbiology Research, 2021, 12, 683-697.	1.9	15
105	Magnetic combi CLEA for inhibition of bacterial biofilm: A green approach. International Journal of Biological Macromolecules, 2021, 186, 780-787.	7.5	9
106	Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology, 2021, 52, 1701-1718.	2.0	97
107	Biofilms in plant-based fermented foods: Formation mechanisms, benefits and drawbacks on quality and safety, and functionalization strategies. Trends in Food Science and Technology, 2021, 116, 940-953.	15.1	15
108	Periodic chemical cleaning with urea: disintegration of biofilms and reduction of key biofilm-forming bacteria from reverse osmosis membranes. Water Research X, 2021, 13, 100117.	6.1	8
109	Recent advances in anti-adhesion mechanism of natural antimicrobial agents on fresh produce. Current Opinion in Food Science, 2021, 42, 8-14.	8.0	14

#	Article		CITATIONS
110	Nanomaterials to Overcome Emergence and Re-Emergence of Superbugs. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 227-268.	0.1	0
112	Antimicrobial Nanotechnology in Preventing the Transmission of Infectious Disease. Nanotechnology in the Life Sciences, 2020, , 75-88.	0.6	1
113	Role of Medicinal Plants and Endophytic Bacteria of Medicinal Plants in Inhibition of Biofilm Formation: Interference in Quorum Sensing. , 2019, , 177-188.		2
114	Current and future perspectives for controlling <i>Vibrio</i> biofilms in the seafood industry: a comprehensive review. Critical Reviews in Food Science and Nutrition, 2021, 61, 1827-1851.	10.3	36
115	Salmonella infection $\hat{a} \in$ prevention and treatment by antibiotics and probiotic yeasts: a review. Microbiology (United Kingdom), 2018, 164, 1327-1344.	1.8	113
116	Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions. PLoS ONE, 2017, 12, e0173910.	2.5	7
117	Extreme environment: Biofilms and microbial diversity. Malaysian Journal of Microbiology, 2018, , .	0.1	1
118	Multiple Roles of Biosurfactants in Biofilms. Current Pharmaceutical Design, 2016, 22, 1429-1448.	1.9	56
119	Syngonanthus nitens (Bong.) Ruhland Derivatives Loaded into a Lipid Nanoemulsion for Enhanced Antifungal Activity Against Candida parapsilosis. Current Pharmaceutical Design, 2020, 26, 1556-1565.	1.9	12
120	An effective method for preparation of high purity oligohexamethylene guanidine salts. Fine Chemical Technologies, 2020, 15, 31-38.	0.8	4
121	Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry—A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5938-5964.	11.7	25
122	Quorum Quenching Enzymes and Biofouling Control. Journal of Life Science, 2016, 26, 1487-1497.	0.2	0
123	Endotoxin and Microbiological Control. , 2019, , 157-201.		0
124	Microbial biofilms in the human: Diversity and potential significances in health and disease. , 2020, , 89-124.		1
125	Enzyme-based approaches to control microbial biofilms in dairy processing environments: A review. Quality Assurance and Safety of Crops and Foods, 2020, 12, 50-58.	3.4	3
126	Antibiofilm, Antifouling, and Anticorrosive Biomaterials and Nanomaterials for Marine Applications. Nanotechnology in the Life Sciences, 2020, , 233-272.	0.6	3
127	Nanostructures for Antimicrobial and Antibiofilm Photodynamic Therapy. Nanotechnology in the Life Sciences, 2020, , 305-325.	0.6	4
128	Antibiofilm Application of Cold Plasma in Food Safety. , 2022, , 75-111.		1

#	Article	IF	CITATIONS
129	Combating Drug-Resistant Bacteria Using Photothermally Active Nanomaterials: A Perspective Review. Frontiers in Microbiology, 2021, 12, 747019.	3.5	31
130	Biocidal organic-inorganic urethane-siloxane coating by facile polymerization of single component soy-based prepolymer. Surface and Coatings Technology, 2022, 429, 127925.	4.8	3
131	Enzyme-based control of membrane biofouling for water and wastewater purification: A comprehensive review. Environmental Technology and Innovation, 2022, 25, 102106.	6.1	20
132	Screening of Actinobacterial Extracts for Anti-biofilm Activity. Springer Protocols, 2022, , 483-485.	0.3	0
133	Cadiolide analogues and their precursors as new inhibitors of bacterial quorum sensing and biofilm formation. Bioorganic and Medicinal Chemistry Letters, 2022, 57, 128498.	2.2	4
134	Pathogens and predators impacting commercial production of microalgae and cyanobacteria. Biotechnology Advances, 2022, 55, 107884.	11.7	38
135	Biofilm Production Potential of <i>Salmonella</i> Serovars Isolated from Chickens in North West Province, South Africa. Polish Journal of Microbiology, 2020, 69, 427-439.	1.7	7
136	Metal Complexes—A Promising Approach to Target Biofilm Associated Infections. Molecules, 2022, 27, 758.	3.8	17
137	Inhibition performances of graphene oxide/silver nanostructure for the microbial corrosion: molecular dynamic simulation study. Environmental Science and Pollution Research, 2022, 29, 49884-49897.	5.3	9
138	Synthetic Musk Fragrances in Water Systems and Their Impact on Microbial Communities. Water (Switzerland), 2022, 14, 692.	2.7	7
139	Evaluation of Virulence Factors, Antibiotic Resistance, and Biofilm Formation of Escherichia coli Isolated from Milk and Dairy Products in Isfahan, Iran. Foods, 2022, 11, 960.	4.3	5
140	<i>In situ</i> continuous electrochemical quantification of bacterial adhesion to electrically polarized metallic surfaces under shear. Biointerphases, 2022, 17, 021001.	1.6	2
141	Development of a food grade sanitizer delivery system with chlorine loaded gelatin microgels for enhanced binding and inactivation of biofilms. Food Research International, 2022, 155, 111026.	6.2	2
142	Screening of Biosurfactant Production by Yarrowia lipolytica Strains and Evaluation of Their Antibiofilm and Anti-Adhesive Activities against Salmonella enterica ser. Enteritidis Biofilms. Microbiology, 2021, 90, 839-847.	1.2	3
143	Single- and Dual-Species Biofilm Formation by Shiga Toxin-Producing Escherichia coli and Salmonella, and Their Susceptibility to an Engineered Peptide WK2. Microorganisms, 2021, 9, 2510.	3.6	3
145	Efficacy of curcumin-mediated antibacterial photodynamic therapy for oral antisepsis: A systematic review and network meta-analysis of randomized clinical trials. Photodiagnosis and Photodynamic Therapy, 2022, 39, 102876.	2.6	8
146	Organic/polymeric antibiofilm coatings for surface modification of medical devices. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 867-908.	3.4	1
147	Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a â€~green approach'. Biofouling, 2022, 38, 455-481.	2.2	2

#	Article	IF	CITATIONS
148	Application of natural products against fungal biofilm formation. , 2022, , 95-130.		0
149	Evaluation of Antibacterial and Antibiofilm Activity of Biogenic Silver Nanoparticles and Gentamicin Against Staphylococcus aureus Isolated from Caprine Mastitis. The Iraqi Journal of Veterinary Medicine, 2022, 46, 10-16.	0.2	0
151	Invitro Study on the Combined Effects of Natural Ingredients and Antimicrobial Drugs as Novel Anti Biofilm Approach. , 0, , 19-24.		0
152	Unraveling usnic acid: a comparison of biosynthetic gene clusters between two reindeer lichen (Cladonia rangiferina and C.Auncialis). Fungal Biology, 2022, 126, 697-706.	2.5	5
153	Genomic characterization of a novel bacteriophage STP55 revealed its prominent capacity in disrupting the dual-species biofilm formed by Salmonella Typhimurium and Escherichia coli O157: H7 strains. Archives of Microbiology, 2022, 204, .	2.2	9
154	Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Critical Reviews in Food Science and Nutrition, 2024, 64, 1736-1763.	10.3	8
155	Antibiofilm Effect of Cinnamaldehyde-Chitosan Nanoparticles against the Biofilm of Staphylococcus aureus. Antibiotics, 2022, 11, 1403.	3.7	13
156	Mycogenic nanoparticles and their applications as antimicrobial and antibiofilm agents in postharvest stage. , 2023, , 635-655.		0
157	Pernicious Attitude of Microbial Biofilms in Agri-Farm Industries: Acquisitions and Challenges of Existing Antibiofilm Approaches. Microorganisms, 2022, 10, 2348.	3.6	7
159	Influence of surface properties on the adhesion of bacteria onto different casings. Food Research International, 2023, 164, 112463.	6.2	2
160	Antibiofilm Action of Plant Terpenes in Salmonella Strains: Potential Inhibitors of the Synthesis of Extracellular Polymeric Substances. Pathogens, 2023, 12, 35.	2.8	5
161	Cross-contamination of mature Listeria monocytogenes biofilms from stainless steel surfaces to chicken broth before and after the application of chlorinated alkaline and enzymatic detergents. Food Microbiology, 2023, 112, 104236.	4.2	4
162	Unraveling disparate roles of organisms, from plants to bacteria, and viruses on built cultural heritage. Applied Microbiology and Biotechnology, 2023, 107, 2027-2037.	3.6	6
163	Combinatorial enzyme therapy: A promising neoteric approach for bacterial biofilm disruption. Process Biochemistry, 2023, 129, 56-66.	3.7	7
164	Industrial backgrounds and microbes growth. , 2023, , 141-217.		0
165	The cascade regulation of small RNA and quorum sensing system: Focusing on biofilm formation of foodborne pathogens in food industry. Food Bioscience, 2023, 52, 102472.	4.4	2
166	Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents. Life, 2023, 13, 503.	2.4	6
167	Enhancement of Inhibition of the Pseudomonas sp. Biofilm Formation on Bacterial Cellulose-Based Wound Dressing by the Combined Action of Alginate Lyase and Gentamicin. International Journal of Molecular Sciences, 2023, 24, 4740.	4.1	2

		CITATION REPO	ORT	
#	Article		IF	CITATIONS
168	Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules, 2023, 28, 24	ł32.	3.8	25
169	Biofilm control strategies in the light of biofilm-forming microorganisms. World Journal of Microbiology and Biotechnology, 2023, 39, .		3.6	5
170	Phytochemicals: potential alternative strategy to fight Salmonella enterica serovar Typhim Frontiers in Veterinary Science, 0, 10, .	urium.	2.2	2
171	Biofilm formation in food processing plants and novel control strategies to combat resista biofilms: the case of Salmonella spp Food Science and Biotechnology, 2023, 32, 1703-17	nt '18.	2.6	1
172	Antibacterial Activity of Oregano Essential Oil and its Effect on Biofilm Formation. Journal and Applied Microbiology, 2023, 17, 1205-1213.	of Pure	0.9	1
173	Phytochemicals in biofilm inhibition. , 2023, , 397-412.			0
174	Comparison of the efficacy of physical and chemical strategies for the inactivation of biofi foodborne pathogens. Food Science and Biotechnology, 0, , .	m cells of	2.6	0
175	Essential Oils Infused Poly-ε-Caprolactone/Gelatin Electrospun Nanofibrous Mats: Biocom Antibacterial Study. Applied Biochemistry and Biotechnology, 2024, 196, 296-313.	patibility and	2.9	1
176	Ficin–Cyclodextrin-Based Docking Nanoarchitectonics of Self-Propelled Nanomotors for Biofilm Eradication. Chemistry of Materials, 2023, 35, 4412-4426.	Bacterial	6.7	5
177	The potency of bacteriophages isolated from chicken intestine and beef tribe to control biofilm-forming bacteria, Bacillus subtilis. Scientific Reports, 2023, 13, .		3.3	0
178	Precise Molecular Engineering of Type I Photosensitizer with Aggregation-Induced Emissio Image-Guided Photodynamic Eradication of Biofilm. Molecules, 2023, 28, 5368.	n for	3.8	3
179	Field testing of an enzymatic quorum quencher coating additive to reduce biocorrosion of Microbiology Spectrum, 2023, 11, .	steel.	3.0	0
180	Application of nanomaterials as potential quorum quenchers for disease: Recent advances challenges. Progress in Biophysics and Molecular Biology, 2023, 184, 13-31.	and	2.9	0
181	Non- <i>saccharomyces</i> yeast probiotics: revealing relevance and potential. FEMS Yeas 2023, 23, .	t Research,	2.3	0
182	Monitoring biofilm growth and dispersal in real-time with impedance biosensors. Journal o Industrial Microbiology and Biotechnology, 2023, 50, .	f	3.0	1
183	Microbiologically Synthesized Nanoparticles and Their Role in Biofilm Inhibition. Environmo Microbial Biotechnology, 2023, , 285-315.	ental and	0.7	0
184	The use of combination therapy for the improvement of colistin activity against bacterial b Brazilian Journal of Microbiology, 2024, 55, 411-427.	iofilm.	2.0	0
185	Chemical Formation of Biofilms in Drug Development. , 2023, , 1-29.			0

#	Article	IF	CITATIONS
186	Recent advances on the formation, detection, resistance mechanism, and control technology of Listeria monocytogenes biofilm in food industry. Food Research International, 2024, 180, 114067.	6.2	0
187	A Review of Challenges and Solutions of Biofilm Formation of Escherichia coli: Conventional and Novel Methods of Prevention and Control. Food and Bioprocess Technology, 0, , .	4.7	Ο
188	Application of biomimetically synthesized silver nanoparticles as cathode catalyst, quorum-quencher, and anti-biofouling agent for the performance boosting of microbial fuel cell. Chemosphere, 2024, 352, 141392.	8.2	0
189	Photoinactivation of microorganisms using bacteriochlorins as photosensitizers. Brazilian Journal of Microbiology, 0, , .	2.0	0
190	Synergistic antimicrobial photodynamic therapy using gated mesoporous silica nanoparticles containing curcumin and polymyxin B. International Journal of Pharmaceutics, 2024, 654, 123947.	5.2	0
191	Bacterial biofilm growth and perturbation by serine protease from Bacillus sp Archives of Microbiology, 2024, 206, .	2.2	0