Establishing prostate cancer patient derived xenografts studies

Prostate

75, 628-636

DOI: 10.1002/pros.22946

Citation Report

#	Article	IF	CITATIONS
1	Establishment of primary patient-derived xenografts of palliative TURP specimens to study castrate-resistant prostate cancer. Prostate, 2015, 75, 1475-1483.	1.2	31
2	Drug discovery in prostate cancer mouse models. Expert Opinion on Drug Discovery, 2015, 10, 1011-1024.	2.5	14
3	Low testosterone level is an independent risk factor for highâ€grade prostate cancer detection at biopsy. BJU International, 2016, 118, 230-235.	1.3	27
4	Patient-derived xenografts: a relevant preclinical model for drug development. Journal of Experimental and Clinical Cancer Research, 2016, 35, 189.	3.5	109
5	Advances in prostate cancer research models: From transgenic mice to tumor xenografting models. Asian Journal of Urology, 2016, 3, 64-74.	0.5	25
6	Oxidative phosphorylation and mitochondrial function differ between human prostate tissue and cultured cells. FEBS Journal, 2016, 283, 2181-2196.	2.2	38
7	Patient-Derived Tumor Xenograft. , 2017, , 429-451.		1
8	Patient-Derived Xenograft Models of Prostate Tumors. , 2017, , 217-228.		1
9	The what, when, and why of human prostate cancer xenografts. Prostate, 2018, 78, 646-654.	1.2	14
10	Patient-derived xenografts: A platform for accelerating translational research in prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 17-24.	1.6	20
11	Are we ready to take full advantage of patientâ€derived tumor xenograft models?. Hematological Oncology, 2018, 36, 24-27.	0.8	1
12	Tumor heterogeneity, aggressiveness, and immune cell composition in a novel syngeneic PSAâ€targeted <i>Pten</i> knockout mouse prostate cancer (MuCaP) model. Prostate, 2018, 78, 1013-1023.	1.2	4
13	An ex vivo Tissue Culture Model for the Assessment of Individualized Drug Responses in Prostate and Bladder Cancer. Frontiers in Oncology, 2018, 8, 400.	1.3	44
14	Generation of Prostate Cancer Patient-Derived Xenografts to Investigate Mechanisms of Novel Treatments and Treatment Resistance. Methods in Molecular Biology, 2018, 1786, 1-27.	0.4	7
15	Development of patient-derived xenograft models of prostate cancer for maintaining tumor heterogeneity. Translational Andrology and Urology, 2019, 8, 519-528.	0.6	19
16	PDX: Moving Beyond Drug Screening to Versatile Models for Research Discovery. Journal of the Endocrine Society, 2020, 4, bvaa132.	0.1	19
17	Prostate cancer-derived holoclones: a novel and effective model for evaluating cancer stemness. Scientific Reports, 2020, 10, 11329.	1.6	10
18	Recent Approaches Encompassing the Phenotypic Cell Heterogeneity for Anticancer Drug Efficacy Evaluation. , 2020, , .		2

#	Article	IF	CITATIONS
19	Development of Prostate Cancer Organoid Culture Models in Basic Medicine and Translational Research. Cancers, 2020, 12, 777.	1.7	37
20	Patient-derived tumour models for personalized therapeutics in urological cancers. Nature Reviews Urology, 2021, 18, 33-45.	1.9	19
21	Circular RNA circ_0057558 Controls Prostate Cancer Cell Proliferation Through Regulating miR-206/USP33/c-Myc Axis. Frontiers in Cell and Developmental Biology, 2021, 9, 644397.	1.8	22
22	Using the Microwell-mesh to culture microtissues in vitro and as a carrier to implant microtissues in vivo into mice. Scientific Reports, 2021, 11, 5118.	1.6	7
23	Establishment and characterization of patient-derived xenografts for hormone-naÃ-ve and castrate-resistant prostate cancers to improve treatment modality evaluation. Aging, 2020, 12, 3848-3861.	1.4	5
24	Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review). International Journal of Oncology, 2022, 60, .	1.4	8
25	Establishment of an Ex Vivo Tissue Culture Model for Evaluation of Antitumor Efficacy in Clear Cell Renal Cell Carcinoma. Frontiers in Oncology, 2022, 12, 851191.	1.3	3
26	Advances in neuroendocrine prostate cancer research: From model construction to molecular network analyses. Laboratory Investigation, 2022, 102, 332-340.	1.7	7
30	Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry. Prostate Cancer and Prostatic Diseases, 2022, 25, 513-523.	2.0	2
31	The future of patient-derived xenografts in prostate cancer research. Nature Reviews Urology, 2023, 20, 371-384.	1.9	2