Phosphorus budget in the waterâ€agroâ€food system a regions of the world (ASEANâ€8 and EUâ€27)

Global Biogeochemical Cycles 29, 1348-1368 DOI: 10.1002/2015gb005147

Citation Report

#	Article	IF	CITATIONS
1	Guiding phosphorus stewardship for multiple ecosystem services. Ecosystem Health and Sustainability, 2016, 2, .	3.1	30
2	Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9, 353-356.	12.9	282
3	The fate of phosphorus. Nature Geoscience, 2016, 9, 343-344.	12.9	41
5	Reconnecting crop and cattle farming to reduce nitrogen losses to river water of an intensive agricultural catchment (Seine basin, France): past, present and future. Environmental Science and Policy, 2016, 63, 76-90.	4.9	72
6	Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12655-12660.	7.1	89
7	Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports, 2017, 7, 40366.	3.3	165
8	How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: The generalized representation of agro-food system applied at the regional scale in France. Science of the Total Environment, 2017, 586, 42-55.	8.0	97
9	Spatial variation and risk assessment of trace metals in water and sediment of the Mekong Delta. Chemosphere, 2017, 179, 367-378.	8.2	59
10	Linking terrestrial phosphorus inputs to riverine export across the United States. Water Research, 2017, 124, 177-191.	11.3	50
11	Advances in NANI and NAPI accounting for the Baltic drainage basin: spatial and temporal trends and relationships to watershed TN and TP fluxes. Biogeochemistry, 2017, 133, 245-261.	3.5	67
12	Dynamic simulation of phosphorus flows through Montreal's food and waste systems. Resources, Conservation and Recycling, 2018, 131, 122-133.	10.8	23
13	Socio-environmental consideration of phosphorus flows in the urban sanitation chain of contrasting cities. Regional Environmental Change, 2018, 18, 1387-1401.	2.9	17
14	A Comprehensive Review of the Available Media and Approaches for Phosphorus Recovery from Wastewater. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	50
15	Phosphorus management in cropping systems of the Paris Basin: From farm to regional scale. Journal of Environmental Management, 2018, 205, 18-28.	7.8	26
16	Using transboundary environmental security to manage the Mekong River: China and South-East Asian Countries. International Journal of Water Resources Development, 2018, 34, 792-811.	2.0	18
18	L'eutrophisation. , 2018, , .		13
20	The synergistic effect of manure supply and extreme precipitation on surface water quality. Environmental Research Letters, 2018, 13, 044016.	5.2	32
21	Reducing marine eutrophication may require a paradigmatic change. Science of the Total Environment, 2018, 635, 1444-1466.	8.0	92

#	Article	IF	CITATIONS
22	Long-term socioecological trajectories of agro-food systems revealed by N and P flows in French regions from 1852 to 2014. Agriculture, Ecosystems and Environment, 2018, 265, 132-143.	5.3	49
23	Phosphorus content in a deep river sediment core as a tracer of long-term (1962–2011) anthropogenic impacts: A lesson from the Milan metropolitan area. Science of the Total Environment, 2019, 646, 37-48.	8.0	19
24	Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Science of the Total Environment, 2019, 660, 1486-1501.	8.0	72
25	Global Opportunities to Increase Agricultural Independence Through Phosphorus Recycling. Earth's Future, 2019, 7, 370-383.	6.3	62
26	Variable impacts of contemporary versus legacy agricultural phosphorus on US river water quality. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20562-20567.	7.1	101
27	Eutrophication: A new wine in an old bottle?. Science of the Total Environment, 2019, 651, 1-11.	8.0	604
28	Nutrient dynamics and eutrophication assessment in the tropical river system of Saigon – Dongnai (southern Vietnam). Science of the Total Environment, 2019, 653, 370-383.	8.0	98
29	The biogeochemical imprint of human metabolism in Paris Megacity: A regionalized analysis of a water-agro-food system. Journal of Hydrology, 2019, 573, 1028-1045.	5.4	37
30	Where Have All the Nutrients Gone? Longâ€Term Decoupling of Inputs and Outputs in the Willamette River Watershed, Oregon, United States. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005792.	3.0	7
31	Subnational nutrient budgets to monitor environmental risks in EU agriculture: calculating phosphorus budgets for 243 EU28 regions using public data. Nutrient Cycling in Agroecosystems, 2020, 117, 199-213.	2.2	16
32	The Seine Watershed Water-Agro-Food System: Long-Term Trajectories of C, N and P Metabolism. Handbook of Environmental Chemistry, 2020, , 91-115.	0.4	8
33	Trajectories of the Seine River Basin. Handbook of Environmental Chemistry, 2020, , 1-28.	0.4	9
34	The phosphorus legacy offers opportunities for agro-ecological transition (France 1850–2075). Environmental Research Letters, 2020, 15, 064022.	5.2	20
35	Production and application of manure nitrogen and phosphorus in the United States since 1860. Earth System Science Data, 2021, 13, 515-527.	9.9	13
36	Hydromorphology of coastal zone and structure of watershed agro-food system are main determinants of coastal eutrophication. Environmental Research Letters, 2021, 16, 023005.	5.2	20
37	The Mediterranean Region as a Paradigm of the Global Decoupling of N and P Between Soils and Freshwaters. Global Biogeochemical Cycles, 2021, 35, e2020GB006874.	4.9	9
38	Longâ€ŧerm effect of poultry litter application on phosphorus balances and runoff losses. Journal of Environmental Quality, 2021, 50, 639-652.	2.0	7
39	Sustainable Agri-Food Systems: Environment, Economy, Society, and Policy. Sustainability, 2021, 13, 6260.	3.2	47

CITATION REPORT

#	Article	IF	CITATIONS
40	Nitrogen dynamics in cropping systems under Mediterranean climate: a systemic analysis. Environmental Research Letters, 2021, 16, 073002.	5.2	25
41	Longâ€Term Disconnect Between Nutrient Inputs and Riverine Exports in a Semiâ€Arid, Agricultural Watershed: Yakima River Basin 1945–2012. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006072.	3.0	2
42	Nitrogen biogeochemistry of water-agro-food systems: the example of the Seine land-to-sea continuum. Biogeochemistry, 2021, 154, 307-321.	3.5	6
43	The role of management instruments in the diversion of organic municipal solid waste and phosphorus recycling. Facets, 2018, 3, 896-919.	2.4	3
44	Submersed macrophyte restoration with artificial light-emitting diodes: A mesocosm experiment. Ecotoxicology and Environmental Safety, 2021, 228, 113044.	6.0	4
45	Continental Atlantic Rivers: The Meuse, Loire and Adour-Garonne Basins. , 2022, , 225-228.		1
46	Continental Atlantic Rivers: the Seine Basin. , 2022, , 293-332.		14
47	A Centuryâ€Long Trajectory of Phosphorus Loading and Export From Mississippi River Basin to the Gulf of Mexico: Contributions of Multiple Environmental Changes. Global Biogeochemical Cycles, 2022, 36,	4.9	3
48	Improving the phosphorus budget of European agricultural soils. Science of the Total Environment, 2022, 853, 158706.	8.0	37
49	Agriculture specialization influence on nutrient use efficiency and fluxes in the St. Lawrence Basin over the 20th century. Science of the Total Environment, 2023, 856, 159018.	8.0	2
50	Rivers help us to quantify the socio-ecological functioning of their basin at the Anthropocene: theÂSeine example (1850–2020). Comptes Rendus - Geoscience, 2023, 355, 317-335.	1.2	2
51	The water-agro-food system: upscaling from the Seine river basin to the global scale. Comptes Rendus - Geoscience, 2023, 355, 301-315.	1.2	1
52	Assessing the water quality of the Seine land-to-sea continuum for three agro-food system scenarios. Frontiers in Marine Science, 0, 9, .	2.5	1
53	Phosphorus recovery for circular Economy: Application potential of feasible resources and engineering processes in Europe. Chemical Engineering Journal, 2023, 454, 140153.	12.7	25
54	The phosphorus saturation degree as a universal agronomic and environmental soil P test. Critical Reviews in Environmental Science and Technology, 2024, 54, 385-404.	12.8	4