Resonant-enhanced full-color emission of quantum-dot technology

Optics Express 23, 32504 DOI: 10.1364/oe.23.032504

Citation Report

#	Article	IF	CITATIONS
1	4-3: Wide Viewing Angle TN LCD Enhanced by Printed Quantum-Dots Film. Digest of Technical Papers SID International Symposium, 2016, 47, 21-24.	0.1	16
2	Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes. Optics Letters, 2017, 42, 4962.	1.7	23
3	Optimization of nano-honeycomb structures for flexible w-LEDs. Optics Express, 2017, 25, 20466.	1.7	2
4	Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Research, 2017, 5, 411.	3.4	174
5	Integrated parabolic nanolenses on MicroLED color pixels. Nanotechnology, 2018, 29, 165201.	1.3	7
6	Monolithic Red/Green/Blue Micro-LEDs With HBR and DBR Structures. IEEE Photonics Technology Letters, 2018, 30, 262-265.	1.3	85
7	Monodisperse and brightly luminescent CsPbBr ₃ /Cs ₄ PbBr ₆ perovskite composite nanocrystals. Nanoscale, 2018, 10, 9840-9844.	2.8	100
8	Computer simulation of aerosol nanoparticles focusing and deposition process for functional microstructure fabrication. Journal of Physics: Conference Series, 2018, 1124, 081033.	0.3	4
9	Chromium/Nickel-Doped Silicon Oxide Thin-Film Electrode: Mechanism and Application to Microscale Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 40967-40972.	4.0	6
10	Research on a Camera-Based Microscopic Imaging System to Inspect the Surface Luminance of the Micro-LED Array. IEEE Access, 2018, 6, 51329-51336.	2.6	24
11	Pâ€9.12: Hybrid Full Color Micro‣ED Displays with Quantum Dots. Digest of Technical Papers SID International Symposium, 2018, 49, 697-699.	0.1	3
12	25.1: <i>Invited Paper:</i> Quantum dots based fullâ€color display on microâ€lightâ€emittingâ€diode technology. Digest of Technical Papers SID International Symposium, 2018, 49, 267-270.	0.1	3
13	31.5: <i>Invited Paper:</i> Colloidal Quantum Dots and Their Applications in Hybrid Optoelectronic Devices. Digest of Technical Papers SID International Symposium, 2018, 49, 345-347.	0.1	0
14	Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Applied Sciences (Switzerland), 2018, 8, 1557.	1.3	498
15	Efficiency enhancement of light color conversion through surface plasmon coupling. Optics Express, 2018, 26, 23629.	1.7	20
16	59â€1: <i>Invited Paper:</i> A Fullâ€color Microâ€lightâ€emittingâ€diode Display by a Lithographicâ€fabricated Photoresist Mold. Digest of Technical Papers SID International Symposium, 2018, 49, 779-781.	0.1	6
17	59â€2: <i>Invited Paper:</i> Ultraâ€Fine Pitch Thinâ€Film Micro LED Display for Indoor Applications. Digest of Technical Papers SID International Symposium, 2018, 49, 782-785.	0.1	28
18	45â€4: Hybrid Integration of RGB Inorganic LEDs using Adhesive Bonding and Selective Area Growth. Digest of Technical Papers SID International Symposium, 2018, 49, 604-606.	0.1	3

#	Article	IF	CITATIONS
19	32â€1: Onâ€chip Red Quantum Dots in White LEDs for General Illumination. Digest of Technical Papers SID International Symposium, 2018, 49, 405-408.	0.1	3
20	High dynamic range liquid crystal displays with a mini-LED backlight. Optics Express, 2018, 26, 16572.	1.7	157
21	Ultra-high color gamut system achieved by quantum dot photoresist and color filter system. Ferroelectrics, 2018, 528, 66-74.	0.3	4
22	Effect of Excitation Wavelength on Optical Performances of Quantum-Dot-Converted Light-Emitting Diode. Nanomaterials, 2019, 9, 1100.	1.9	22
23	Stability of Hybrid Organic-Inorganic Perovskite CH3NH3PbBr3 Nanocrystals under Co-Stresses of UV Light Illumination and Temperature. Nanomaterials, 2019, 9, 1158.	1.9	8
25	20.1: Invited Paper: Monolithic Fullâ€color Quantum Dot Nanoring Micro LEDs with Improved Efficiency. Digest of Technical Papers SID International Symposium, 2019, 50, 191-193.	0.1	1
26	Pâ€9.1: QD based color converter with DBR Structure and its application on Micro‣ED. Digest of Technical Papers SID International Symposium, 2019, 50, 856-858.	0.1	1
27	Remote Magnetometry With Mesospheric Sodium Based on Gated Photon Counting. Journal of Geophysical Research: Space Physics, 2019, 124, 7505-7512.	0.8	8
28	30.2: <i>Invited Paper:</i> A RGB chip Full Color Active Matrix Microâ€LEDs Transparent Display with IGZO TFT Backplane. Digest of Technical Papers SID International Symposium, 2019, 50, 326-328.	0.1	6
29	Pâ€8.9: Fullâ€color GaNâ€based LED Microâ€display Integrated with Dynamic Color Filter. Digest of Technical Papers SID International Symposium, 2019, 50, 852-855.	0.1	1
30	Size-dependent optoelectrical properties of 365 nm ultraviolet light-emitting diodes. Nanotechnology, 2019, 30, 504001.	1.3	14
31	Ultrawide Color Gamut Perovskite and CdSe/ZnS Quantum-Dots-Based White Light-Emitting Diode with High Luminous Efficiency. Nanomaterials, 2019, 9, 1314.	1.9	20
32	Polyhedron Transformation toward Stable Narrowâ€Band Green Phosphors for Wide olorâ€Gamut Liquid Crystal Display. Advanced Functional Materials, 2019, 29, 1901988.	7.8	140
33	4â€2: Distinguished Student Paper: High Efficiency Colorâ€Converted Micro‣ED Displays. Digest of Technical Papers SID International Symposium, 2019, 50, 22-25.	0.1	2
34	Pâ€127: The Substrate Thickness Dependence on Micro LED Chip Arrays. Digest of Technical Papers SID International Symposium, 2019, 50, 1724-1727.	0.1	3
35	25â€5: Lateâ€News Paper: 1,053 ppi Full olor "Silicon Display―based on Micro‣ED Technology. Digest Technical Papers SID International Symposium, 2019, 50, 353-355.	: of 0.1	13
36	32â€4: High transparent Active matrix Mini‣ED Full Color Display with IGZO TFT Backplane. Digest of Technical Papers SID International Symposium, 2019, 50, 454-456.	0.1	6
37	Quantum Dots Synthesis Through Direct Laser Patterning: A Review. Frontiers in Chemistry, 2019, 7, 252.	1.8	31

		15	<u></u>
#	ARTICLE	IF	CITATIONS
38	Fabrication and optical properties of regularly arranged GaN-based nanocolumns on Si substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 031207.	0.6	9
39	Micro-LEDs, a Manufacturability Perspective. Applied Sciences (Switzerland), 2019, 9, 1206.	1.3	188
40	High performance colorâ€converted micro‣ED displays. Journal of the Society for Information Display, 2019, 27, 199-206.	0.8	45
41	Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Research, 2019, 7, 416.	3.4	116
42	Micro Lightâ€Emitting Diodes for Display and Flexible Biomedical Applications. Advanced Functional Materials, 2019, 29, 1808075.	7.8	132
43	Tripling the Optical Efficiency of Color-Converted Micro-LED Displays with Funnel-Tube Array. Crystals, 2019, 9, 39.	1.0	49
44	Dual-band light-emitting diode based on microwheel cavity. Europhysics Letters, 2019, 128, 58002.	0.7	3
45	High Performance Ultraviolet Micro-LED Arrays for Fine-Pitch Micro Displays. , 2019, , .		3
46	Design and fabrication of bi-functional TiO ₂ /Al ₂ O ₃ nanolaminates with selected light extraction and reliable moisture vapor barrier performance. Nanotechnology, 2019, 30, 085702.	1.3	20
47	Phase transfer reaction for the preparation of stable polymer-quantum dot conjugates. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 91-97.	2.0	3
48	Fabrication of HfO2/TiO2–based conductive distributed Bragg reflectors: Its application to GaN-based near-ultraviolet micro-light-emitting diodes. Journal of Alloys and Compounds, 2019, 773, 490-495.	2.8	13
49	Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale, 2020, 12, 2103-2110.	2.8	114
50	Optimization of the optical structure of thin direct-lit LED backlights for LCD applications by using micro-LEDs. Journal of Information Display, 2020, 21, 65-70.	2.1	1
51	Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Applied Physics Express, 2020, 13, 014003.	1.1	59
52	Quantum Dot Film Patterning on a Trenched Glass Substrate for Defining Pixel Arrays of a Full-color Mini/Micro-LED Display. , 2020, , .		2
53	79â€2: Ambient Light Excitation in Quantumâ€Dotâ€Converted MicroLED Displays. Digest of Technical Papers SID International Symposium, 2020, 51, 1174-1177.	0.1	2
54	23â€3: High Transparent, Ultraâ€thin Flexible, Full color Miniâ€LED Display with IGZO TFT substrate. Digest of Technical Papers SID International Symposium, 2020, 51, 332-334.	0.1	4
55	23â€5: <i>Lateâ€News Paper:</i> Highâ€Resolution Monolithic Microâ€LED Fullâ€color Microâ€display. Digest of Technical Papers SID International Symposium, 2020, 51, 339-342.	0.1	6

#	Article	IF	CITATIONS
56	Pâ€107: Inkjet Printed Uniform Quantum Dots as Color Conversion for Active Matrix Micro‣ED Display. Digest of Technical Papers SID International Symposium, 2020, 51, 1755-1757.	0.1	0
57	Stable white photoluminescence from Mn-contained organic lead bromide perovskite ring arrays formed from 2D colloidal crystal templates. New Journal of Chemistry, 2020, 44, 13619-13625.	1.4	3
58	16â€3: Highâ€end Displays Applications by Micro‣EDs. Digest of Technical Papers SID International Symposium, 2020, 51, 215-218.	0.1	1
59	Printing Unifrom QDs Polymer Thin Film for QLED Applications. , 2020, , .		1
60	Extended Electrical and Photonic Characterization of GaN-Based Ultra-Violet MicroLEDs With an ITO Emission Window Layer. IEEE Photonics Journal, 2020, 12, 1-9.	1.0	7
61	Full-Color Realization of Micro-LED Displays. Nanomaterials, 2020, 10, 2482.	1.9	105
62	Enhancing the Efficiency of Color Conversion Micro-LED Display with a Patterned Cholesteric Liquid Crystal Polymer Film. Nanomaterials, 2020, 10, 2430.	1.9	26
63	Highly transparent, ultraâ€ŧhin flexible, fullâ€color mini‣ED display with indium–gallium–zinc oxide thinâ€film transistor substrate. Journal of the Society for Information Display, 2020, 28, 926-935.	0.8	17
64	Photoluminescence of Layered Semiconductor Materials for Emission-Color Conversion of Blue Micro Light-Emitting Diode (µLED). Coatings, 2020, 10, 985.	1.2	1
65	Quantum Dots for Display Applications. Angewandte Chemie, 2020, 132, 22496-22507.	1.6	33
66	Quantum Dots for Display Applications. Angewandte Chemie - International Edition, 2020, 59, 22312-22323.	7.2	168
67	Micro-light-emitting diodes with quantum dots in display technology. Light: Science and Applications, 2020, 9, 83.	7.7	394
68	Study on the Photoluminescence Intensity, Thermal Performance, and Color Purity of Quantum Dot Light-Emitting Diodes Using a Pumping-Light Absorber. IEEE Transactions on Electron Devices, 2020, 67, 2418-2424.	1.6	2
69	Design and Simulation of Low Circadian Action Micro-LED Displays with Four Primary Colors. Crystals, 2020, 10, 383.	1.0	4
70	Design of Selective Reflectors Utilizing Multiple Scattering by Core–Shell Nanoparticles for Color Conversion Films. ACS Photonics, 2020, 7, 1452-1460.	3.2	7
71	Ultrasmall, Ultracompact and Ultrahigh Efficient InGaN Micro Light Emitting Diodes (μLEDs) with Narrow Spectral Line Width. ACS Nano, 2020, 14, 6906-6911.	7.3	39
72	Inkjet-Printed Quantum Dot Color Conversion Films for High-Resolution and Full-Color Micro Light-Emitting Diode Displays. Journal of Physical Chemistry Letters, 2020, 11, 5184-5191.	2.1	92
73	Fullâ€Color Microâ€LED Display with CsPbBr ₃ Perovskite and CdSe Quantum Dots as Color Conversion Layers. Advanced Materials Technologies, 2020, 5, 2000251.	3.0	83

#	Article	IF	CITATIONS
74	A Full-Color Micro LEDs Display Based on IGZO TFT. , 2020, , .		5
75	Development of microLED. Applied Physics Letters, 2020, 116, .	1.5	152
76	High-Performance Color-Converted Full-Color Micro-LED Arrays. Applied Sciences (Switzerland), 2020, 10, 2112.	1.3	20
77	Analysis of Factors Affecting Optical Performance of GaN-Based Micro-LEDs with Quantum Dots Films. Crystals, 2020, 10, 203.	1.0	11
78	Advances in Quantum-Dot-Based Displays. Nanomaterials, 2020, 10, 1327.	1.9	72
79	Fabrication of highly efficient hybrid device structure based white light emitting diodes. Optical and Quantum Electronics, 2020, 52, 1.	1.5	3
80	Nebulized jet-based printing of bio-electrical scaffolds for neural tissue engineering: a feasibility study. Biofabrication, 2020, 12, 025024.	3.7	12
81	Micro-light-emitting diode with n-GaN/NiO/Au-based resistive-switching electrode for compact driving circuitry. Journal of Alloys and Compounds, 2020, 823, 153762.	2.8	12
82	Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Progress in Quantum Electronics, 2020, 71, 100263.	3.5	193
83	Highâ€resolution and highâ€brightness fullâ€colour "Silicon Display†for augmented and mixed reality. Journal of the Society for Information Display, 2021, 29, 57-67.	0.8	20
84	Toward 200 Lumens per Watt of Quantum-Dot White-Light-Emitting Diodes by Reducing Reabsorption Loss. ACS Nano, 2021, 15, 550-562.	7.3	78
85	Monolithic fullâ€color microdisplay using patterned quantum dot photoresist on dualâ€wavelength LED epilayers. Journal of the Society for Information Display, 2021, 29, 157-165.	0.8	19
86	Active matrix monolithic micro‣ED fullâ€color microâ€display. Journal of the Society for Information Display, 2021, 29, 47-56.	0.8	47
87	Monolithic integration of AlGaInP red and InGaN blue/green LEDs. Semiconductors and Semimetals, 2021, 106, 345-387.	0.4	0
88	Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots. Optics Express, 2021, 29, 4067.	1.7	11
89	Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure. Nanotechnology, 2021, 32, 135206.	1.3	18
90	A Monolithic Micromachined Thermocouple Probe With Electroplating Nickel for Micro-LED Inspection. Journal of Microelectromechanical Systems, 2021, 30, 864-875.	1.7	3
91	Colloidal Quantum Dot Enhanced Color Conversion Layer for Micro LEDs. IEICE Transactions on Electronics. 2022. E105.C. 52-58.	0.3	16

#	Article	IF	CITATIONS
92	A review on the low external quantum efficiency and the remedies for GaN-based micro-LEDs. Journal Physics D: Applied Physics, 2021, 54, 153002.	1.3	42
93	Quantum-dot-based full-color micro-LED displays. Semiconductors and Semimetals, 2021, , 173-201.	0.4	3
94	The Implementation of Sapphire Microreflector for Monolithic Micro-LED Array. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 181-190.	1.4	3
95	High-Stability Quantum Dot-Converted 3-in-1 Full-Color Mini-Light-Emitting Diodes Passivated With Low-Temperature Atomic Layer Deposition. IEEE Transactions on Electron Devices, 2021, 68, 597-601.	1.6	7
96	Pâ€12.2: Inkjetâ€printed Quantumâ€dots Photopolymers for Fullâ€color Microâ€LED Displays. Digest of Technica Papers SID International Symposium, 2021, 52, 597-600.	al 0.1	3
97	Eu-doped GaN and InGaN monolithically stacked full-color LEDs with a wide color gamut. Applied Physics Express, 2021, 14, 031008.	1.1	41
98	Doubling the optical efficiency of colorâ€converted microâ€lightâ€emitting diode displays with a patterned cholesteric liquid crystal polymer film. Journal of the Society for Information Display, 2021, 29, 288-297.	0.8	5
99	1.3  GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photonics Research, 2021, 9, 792.	3.4	47
100	Transfer-printed, tandem microscale light-emitting diodes for full-color displays. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
101	AlGaInP-based Micro-LED array with enhanced optoelectrical properties. Optical Materials, 2021, 114, 110860.	1.7	19
102	Microfluidics-based quantum dot color conversion layers for full-color micro-LED display. Applied Physics Letters, 2021, 118, .	1.5	20
103	Influence of plasmonic resonant wavelength on energy transfer from an InGaN quantum well to quantum dots. Applied Physics Letters, 2021, 118, .	1.5	3
104	Prospects and challenges of mini‣ED, OLED, and micro‣ED displays. Journal of the Society for Information Display, 2021, 29, 446-465.	0.8	127
105	61â€3: Investigation of AlGaNâ€Based Deepâ€UV MicroLED as Highly Efficient Excitation Source for Green Perovskite Quantumâ€Dot Display. Digest of Technical Papers SID International Symposium, 2021, 52, 872-875.	0.1	1
106	Pâ€60: Printable Quantumâ€Dot Photopolymers as Colorâ€Conversion Layers for MicroLED Displays. Digest of Technical Papers SID International Symposium, 2021, 52, 1294-1297.	0.1	0
107	Precise theoretical model for quantum-dot color conversion. Optics Express, 2021, 29, 18654.	1.7	11
108	Experimental and theoretical investigation of 2D nanoplatelet-based conversion layers for color LED microdisplays. Optics Express, 2021, 29, 20498.	1.7	9
109	Flexoelectric-effect-based light waveguide liquid crystal display for transparent display. Photonics Research, 2022, 10, 407.	3.4	19

#	Article	IF	CITATIONS
110	Highly Efficient Full olor Inorganic LEDs on a Single Wafer by Using Multiple Adhesive Bonding. Advanced Materials Interfaces, 2021, 8, 2100300.	1.9	16
111	Dual Role of Quantum Dots as Color Conversion Layer and Suppression of Input Light for Full-Color Micro-LED Displays. Journal of Physical Chemistry Letters, 2021, 12, 6946-6954.	2.1	44
112	Solution-processed top-contact electrodes strategy for organic crystalline field-effect transistor arrays. Nano Research, 2022, 15, 858-863.	5.8	12
113	3D Printing of Multilayered and Multimaterial Electronics: A Review. Advanced Electronic Materials, 2021, 7, 2100445.	2.6	119
114	Organic colorâ€conversion media for fullâ€color micro‣ED displays. Journal of the Society for Information Display, 0, , .	0.8	1
115	Monolithic Multiâ€Color Tunable Inorganic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2022, 8, 2100598.	2.6	7
116	Pâ€10.2: Printable Quantumâ€dots Photopolymers as Colorâ€conversion Layers for Micro‣ED Displays. Digest of Technical Papers SID International Symposium, 2021, 52, 955-958.	0.1	0
117	Full-color micro-LED display based on a single chip with two types of InGaN/GaN MQWs. Optics Letters, 2021, 46, 4358.	1.7	34
118	Fabrication and color conversion of patterned InP/ZnS quantum dots photoresist film via a laser-assisted route. Optics and Laser Technology, 2021, 140, 107026.	2.2	10
119	18.4: Fullâ€Color Activeâ€matrix Mini‣ED Display based on Novel Color Conversion Technology. Digest of Technical Papers SID International Symposium, 2021, 52, 244-246.	0.1	2
120	53.3: Investigation of AlGaNâ€based Deepâ€UV Microâ€LED as Highly Efficient Excitation Source for Green Perovskite Quantum Dots Display. Digest of Technical Papers SID International Symposium, 2021, 52, 633-636.	0.1	3
121	Recent applications of quantum dots in optical and electrochemical aptasensing detection of Lysozyme. Analytical Biochemistry, 2021, 630, 114334.	1.1	7
122	Quantum-dot color conversion film patterned by screen printing and overprinting process for display backlights. Optics and Laser Technology, 2022, 145, 107486.	2.2	8
123	Development of nitride microLEDs and displays. Semiconductors and Semimetals, 2021, , 1-56.	0.4	2
124	Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electronic Advances, 2021, 4, 210022-210022.	6.4	24
125	MicroLED technologies and applications: characteristics, fabrication, progress, and challenges. Journal Physics D: Applied Physics, 2021, 54, 123001.	1.3	122
126	Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display. Journal of Semiconductors, 2020, 41, 041606.	2.0	46
127	Scattering Nanoparticles-Induced Reflection Effect for Enhancing Optical Efficiency of Inverted Quantum Dots-Light-Emitting Diodes Combined With the Centrifugation Technique. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.2	4

#	Article	IF	CITATIONS
128	Study on the Color Compensation Effect of Composite Orange-Red Quantum Dots in WLED Application. Nanoscale Research Letters, 2020, 15, 118.	3.1	8
129	Size-dependent optical-electrical characteristics of blue GaN/InGaN micro-light-emitting diodes. Applied Optics, 2020, 59, 9225.	0.9	35
131	48 × 48 pixelated addressable full-color micro display based on flip-chip micro LEDs. Applied Optics, 2019, 58, 8383.	0.9	21
132	Simulation study on light color conversion enhancement through surface plasmon coupling. Optics Express, 2019, 27, A629.	1.7	15
133	Angular color shift of micro-LED displays. Optics Express, 2019, 27, A746.	1.7	90
134	Multi-primary-color quantum-dot down-converting films for display applications. Optics Express, 2019, 27, 28480.	1.7	47
135	Projection lithography patterned high-resolution quantum dots/thiol-ene photo-polymer pixels for color down conversion. Optics Express, 2019, 27, 30864.	1.7	23
136	Feasibility study of nanopillar LED array for color-tunable lighting and beyond. Optics Express, 2019, 27, 38229.	1.7	4
137	Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Research, 2020, 8, 630.	3.4	116
138	Phosphor-free single chip GaN-based white light emitting diodes with a moderate color rendering index and significantly enhanced communications bandwidth. Photonics Research, 2020, 8, 1110.	3.4	17
139	Advances in color-converted micro-LED arrays. Japanese Journal of Applied Physics, 2021, 60, SA0802.	0.8	37
140	Evaluation and Reduction of Optical Crosstalk in Quantum Dot Color-Converted Mini/Micro-LED Displays. , 2021, , .		0
141	Enhanced Optical Performance and Thermal Stability of Quantum Dot Converters for Laser Source. , 2021, , .		0
142	Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light: Science and Applications, 2021, 10, 216.	7.7	404
143	Computational Analysis of Optically Pumped Quantum Dots Array on the Glass for Micro-LED Applications. , 2018, , .		0
144	Color Purity Enhancement of Green Quantum Dot Light-Emitting Diodes Using the Blue Light Absorber Packaging Structure. , 2019, , .		0
145	Active Matrix Monolithic Full-Color LED Micro Display. Proceedings of the International Display Workshops, 2019, , 433.	0.1	1
146	Monolithic RGB Micro-Light-Emitting Diodes Fabricated with Quantum Dots Embedded inside Nanoporous GaN. ACS Applied Electronic Materials, 2021, 3, 4877-4881.	2.0	7

#	Article	IF	CITATIONS
147	Quantum Dots Color Converters for microLEDs: Material Composite and Patterning Technology. , 2020, , .		0
148	A review of key technologies for epitaxy and chip process of micro light-emitting diodes in display application. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 198501.	0.2	5
149	Application of porous GaN for microLED. , 2020, , .		2
150	Important role of surface plasmon coupling with the quantum wells in a surface plasmon enhanced color-converting structure of colloidal quantum dots on quantum wells. Optics Express, 2020, 28, 13352.	1.7	7
151	Development of narrow band emitting phosphors for backlighting displays and solid state lighting using a clean and green energy technology. Journal of Luminescence, 2022, 243, 118650.	1.5	11
152	Gateway towards recent developments in quantum dot-based light-emitting diodes. Nanoscale, 2022, 14, 4042-4064.	2.8	14
153	The relationship between basic group resonance and quantum yield of high efficiency red light fluorescent solutions. RSC Advances, 2021, 11, 39142-39146.	1.7	4
155	Analysis of Package Factors Affecting the Light Output Efficiency of Quantum Dots-Based Micro-LEDs. , 2021, , .		Ο
156	Mechanosynthesis strategy towards a high-efficiency CsPbBr3/Cs4PbBr6 perovskite phosphor. Optical Materials Express, 2022, 12, 665.	1.6	1
157	Tripling Light Conversion Efficiency of μLED Displays by Light Recycling Black Matrix. IEEE Photonics Journal, 2022, 14, 1-7.	1.0	10
158	Inkjetâ€Printed, Flexible Full olor Photoluminescenceâ€Type Color Filters for Displays. Advanced Engineering Materials, 2022, 24, .	1.6	10
159	AlGaN Ultraviolet Micro-LEDs. IEEE Journal of Quantum Electronics, 2022, 58, 1-14.	1.0	18
160	AlGaN multiple quantum well deepâ€ultraviolet microâ€lightâ€emitting diodes for high color conversion efficiency quantum dots display. Journal of the Society for Information Display, 2022, 30, 556-566.	0.8	4
161	Emission color modulation of InGaN/GaN multiple quantum wells by selective area metalorganic vapor phase epitaxy on hexagonal windows. Japanese Journal of Applied Physics, 2022, 61, 030904.	0.8	0
162	Enhancement of the Modulation Response of Quantum-Dot-Based Down-Converted Light through Surface Plasmon Coupling. Molecules, 2022, 27, 1957.	1.7	0
163	Real-Time Receive-Forward NLOS Visible Light Communication System Based on Multiple Blue Micro-LED Nodes. Photonics, 2022, 9, 211.	0.9	2
164	Synthesis and characterization of InP/ZnSe/ZnS quantum dots for photo-emissive color conversion. Optical Materials Express, 2022, 12, 1717.	1.6	4
165	Flexible Quantum-Dot Color-Conversion Layer Based on Microfluidics for Full-Color Micro-LEDs. Micromachines, 2022, 13, 448.	1.4	7

	CITATION REP	ORT	
Article		IF	CITATIONS
Mechanisms and Performance Analysis of GaN-Based Micro-LED Grown on Pattern Sapph by Laser Lift-Off Process. ECS Journal of Solid State Science and Technology, 2022, 11, 04		0.9	8
Recent Progress in Micro‣EDâ€Based Display Technologies. Laser and Photonics Review	ws, 2022, 16, .	4.4	76
Microâ€Lightâ€Emitting Diodes Based on InGaN Materials with Quantum Dots. Advanced Technologies, 2022, 7, .	d Materials	3.0	15
A Simple Approach to Achieving Ultrasmall III-Nitride Microlight-Emitting Diodes with Red ACS Applied Electronic Materials, 2022, 4, 2787-2792.	Emission.	2.0	8
Synthesis of SiO2-coated CdSe/ZnS quantum dots using various dispersants in the photo color-conversion micro-LED displays. Materials Science in Semiconductor Processing, 202 106790.		1.9	6
Alleviating the crosstalk effect via a fine-moulded light-blocking matrix for colour-convert micro-LED display with a 122% NTSC gamut. , 2022, 3, 1.	ed		6
SWIR imaging using PbS QD photodiode array sensors. Optics Express, 2022, 30, 20659.		1.7	0
Evolutionary Generation of Phosphor Materials and Their Progress in Future Applications Light-Emitting Diodes. Chemical Reviews, 2022, 122, 11474-11513.	for	23.0	167
An overview on the principle of inkjet printing technique and its application in micro-displ augmented/virtual realities. Opto-Electronic Advances, 2022, 5, 210123-210123.	lay for	6.4	20
Uniformity and Stability of Quantum Dot Pixels Evaluated by Microscale Fluorescence Spa Laser and Photonics Reviews, 2022, 16, .	ectroscopy.	4.4	11
Polyhistidine-Tag-Enabled Conjugation of Quantum Dots and Enzymes to DNA Nanostruc Methods in Molecular Biology, 2022, , 61-91.	tures.	0.4	6
64â€2: Ultraâ€Thin RGB Miniâ€LED Backlight for Highâ€end Professional Liquid Crystal D Technical Papers SID International Symposium, 2022, 53, 841-844.)isplays. Digest of	0.1	0
Progress in Color Conversion Technology for Micro‣ED. Advanced Materials Technolog	ies, 2023, 8, .	3.0	20
Technological Breakthroughs in Chip Fabrication, Transfer, and Color Conversion for Highâ€Performance Micro‣ED Displays. Advanced Materials, 2023, 35, .		11.1	27
Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedde surface nano-holes of a blue-emitting light-emitting diode. Optics Express, 2022, 30, 313		1.7	6
Technology and Applications of Micro-LEDs: Their Characteristics, Fabrication, Advanceme Challenges. ACS Photonics, 2022, 9, 2905-2930.	ent, and	3.2	30
Quantumâ€dot color conversion towards whiteâ€balanced healthy displays: Theoretical a study. Journal of the Society for Information Display, 2022, 30, 837-844.	and simulation	0.8	3

183	Ultra-stable self-crystallized CsPbBr3 perovskite quantum dots glass for high power remote LED encapsulated. Optik, 2022, 269, 169940.	1.4	4	0
-----	--	-----	---	---

#

#	Article	IF	Citations
184	Mass transfer techniques for large-scale and high-density microLED arrays. International Journal of Extreme Manufacturing, 2022, 4, 042005.	6.3	20
185	Red, green and blue InGaN micro-LEDs for display application: temperature and current density effects. Optics Express, 2022, 30, 36403.	1.7	10
186	Transparent Nanocomposites Comprising Ligand-Exchanged CuInS ₂ /ZnS Quantum Dots and UV-Cured Resin for Wavelength Converters. ACS Omega, 2022, 7, 33039-33045.	1.6	3
187	Recent Advancements in GaN LED Technology. , 0, , .		0
188	53.4: Quantum Dot Micro‣ED Display Research. Digest of Technical Papers SID International Symposium, 2022, 53, 525-528.	0.1	0
189	Pâ€11.2: Superâ€thin Miniâ€LED Direct Back Light for Liquid Crystal Displays. Digest of Technical Papers SID International Symposium, 2022, 53, 935-937.	0.1	0
190	Full-Color Micro-LED Devices Based on Quantum Dots. , 0, , .		1
191	Pâ€8.4: The fullâ€color microâ€LED based on quantum dots inkjet printing. Digest of Technical Papers SID International Symposium, 2022, 53, 882-883.	0.1	2
192	Inkjet Printed Quantum Dots Color Conversion Layers for Full-Color Micro-LED Displays. Electronic Materials Letters, 2023, 19, 19-28.	1.0	8
193	Water-repellent highly stable host material for colour conversion layer with enhanced quantum efficiency for micro-led display applications. , 2022, , .		1
194	Vertical stack integration of blue and yellow InGaN micro-LED arrays for display and wavelength division multiplexing visible light communication applications. Optics Express, 2022, 30, 44260.	1.7	5
195	Laserâ€Based Micro/Nanoâ€Processing Techniques for Microscale LEDs and Full olor Displays. Advanced Materials Technologies, 2023, 8, .	3.0	13
196	Effects of ITO Contact Sizes on Performance of Blue Light MicroLEDs. Nanoscale Research Letters, 2022, 17, .	3.1	1
197	Simulation of Far-Field Light Distribution of Micro-LED Based on Its Structural Parameters. Materials, 2022, 15, 8854.	1.3	1
198	Flexible micro-LED display and its application in Gbps multi-channel visible light communication. Npj Flexible Electronics, 2022, 6, .	5.1	6
199	Integration Technology of Micro-LED for Next-Generation Display. Research, 2023, 6, .	2.8	11
200	Ultrahigh Color Conversion Efficiency Nano-Light-Emitting Diode With Single Electrical Contact. IEEE Transactions on Electron Devices, 2023, 70, 1156-1161.	1.6	2
201	Quantum Dot Patterning and Encapsulation by Maskless Lithography for Display Technologies. ACS Applied Materials & Interfaces, 2023, 15, 9629-9637.	4.0	2

#	Article	IF	CITATIONS
202	Electrohydrodynamically Printed Highâ€resolution Arrays Based on Stabilized CsPbBr ₃ Quantum Dot Inks. Advanced Optical Materials, 2023, 11, .	3.6	7
203	Application of InP Quantum Dot film by Photolithography Technology on a Micro-LED Display. ECS Journal of Solid State Science and Technology, 2023, 12, 046003.	0.9	0
204	Transfer printing quantum dots for full-color micro-LED display. , 2023, , .		0
205	Aerosolâ€Jet Printed Sensors for Environmental, Safety, and Health Monitoring: A Review. Advanced Materials Technologies, 2023, 8, .	3.0	8
206	Microfluidic static droplet generated quantum dot arrays as color conversion layers for full-color micro-LED displays. Nanoscale Advances, 2023, 5, 2743-2747.	2.2	3
207	Ambient contrast ratio of quantum-dot color-converted micro-LED displays. Results in Physics, 2023, 48, 106462.	2.0	4
212	é¢åʿæ~¾ç¤åº"甔的é«~å^†è¾"率åʿå‰å™"ä»¶. Science China Materials, 2023, 66, 2128-2145.	3.5	2
220	Red Emissive Carbon Dots with a Large Stokes Shift for Color-Conversion LEDs. , 2023, , .		0
242	Fabrication and Study of Micro-LED Quantum Dot Color Conversion Layer Based on Inkjet Printing. , 2023, , .		0