Analysing mutation schemes for real-parameter genetic

International Journal of Artificial Intelligence and Soft Comput 4, 1

DOI: 10.1504/ijaisc.2014.059280

Citation Report

#	Article	IF	CITATIONS
1	A cascaded evolutionary multi-objective optimization for solving the unbiased universal electric motor family problem. , 2014, , .		5
2	Decision Points in Application of Genetic Algorithm. , 2015, , .		O
3	Evolutionary multitasking in bi-level optimization. Complex & Intelligent Systems, 2015, 1, 83-95.	4.0	83
5	Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Optics Express, 2015, 23, 13677.	1.7	68
6	Genetic algorithm with integrated computing budget allocation for stochastic problems. International Journal of Metaheuristics, 2016, 5, 115.	0.1	4
7	Pareto rank learning for multi-objective bi-level optimization: A study in composites manufacturing. , 2016, , .		2
8	A multi-objective genetic algorithm for simulating optimal fights in StarCraft II. , 2016, , .		6
9	Mutation operators based on variable grouping for multi-objective large-scale optimization. , 2016, , .		25
10	An effective mutation operator to deal with multi-objective constrained problems: SPM., 2016,,.		1
11	Evolutionary Multi-task Learning for Modular Training of Feedforward Neural Networks. Lecture Notes in Computer Science, 2016, , 37-46.	1.0	26
12	Opposition-based elitist real genetic algorithm for optimal power flow., 2016,,.		4
13	Multi-objective calibration of the physically based, spatially distributed SHETRAN hydrological model. Journal of Hydroinformatics, 2016, 18, 428-445.	1.1	17
14	Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation, 2016, 20, 403-417.	7.5	77
15	Modeling Water-Quality Parameters Using Genetic Algorithm–Least Squares Support Vector Regression and Genetic Programming. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	49
16	Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility. Journal of Physiology, 2017, 595, 2301-2317.	1.3	33
17	A new method to evaluate the optimal penetration level of wind power. , 2017, , .		2
18	Multiâ€objective evolutionary approach to select security solutions. CAAI Transactions on Intelligence Technology, 2017, 2, 64-67.	3.4	13
19	Spacecraft design optimisation for demise and survivability. Aerospace Science and Technology, 2018, 77, 638-657.	2.5	18

#	Article	IF	Citations
20	Hybrid genetic dragonfly algorithm based optimal power flow for computing LMP at DG buses for reliability improvement. Energy Systems, 2018, 9, 709-757.	1.8	30
21	A two-step multi-objectivization method for improved evolutionary optimization of industrial problems. Applied Soft Computing Journal, 2018, 64, 331-340.	4.1	3
22	GSOMCR: Multi-Constraint Genetic-Optimized QoS-Aware Routing Protocol for Smart Grids. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2018, 42, 185-194.	1.5	3
23	A Genetic Algorithm-Based Heuristic Method for Test Set Generation in Reversible Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 324-336.	1.9	31
24	A new PSO-based algorithm for multi-objective optimization with continuous and discrete design variables. Structural and Multidisciplinary Optimization, 2018, 57, 509-533.	1.7	53
25	Evolutionary Multi-task Learning for Modular Knowledge Representation in Neural Networks. Neural Processing Letters, 2018, 47, 993-1009.	2.0	35
26	Volume optimization of helical gear with profile shift using real coded genetic algorithm. Procedia Computer Science, 2018, 133, 718-724.	1.2	22
27	Balancing Survival of Feasible and Infeasible Solutions in Constraint Evolutionary Optimization Algorithms. , 2018, , .		3
28	Testing autonomous cars for feature interaction failures using many-objective search. , 2018, , .		94
29	Search-based test data generation for SQL queries. , 2018, , .		21
30	Enhancing Network Loadability Using Optimal TCSC Placement and Sizing. , 2018, , .		3
31	Distribution energy storage investment prioritization with a real coded multi-objective Genetic Algorithm. Electric Power Systems Research, 2018, 163, 154-163.	2.1	18
32	The Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP) Method for Solving Wireless Sensor Networks Optimization Problems in Smart Grid Applications. Energies, 2018, 11, 97.	1.6	24
33	A large scale empirical comparison of state-of-the-art search-based test case generators. Information and Software Technology, 2018, 104, 236-256.	3.0	47
34	Evolutionary parameter extraction for an organic TFT compact model including contact effects. Organic Electronics, 2018, 61, 242-253.	1.4	11
35	Search-based multi-vulnerability testing of XML injections in web applications. Empirical Software Engineering, 2019, 24, 3696-3729.	3.0	11
36	Crop yield simulation optimization using precision irrigation and subsurface water retention technology. Environmental Modelling and Software, 2019, 119, 433-444.	1.9	28
37	Cost–Benefit Prediction of Asset Management Actions on Water Distribution Networks. Water (Switzerland), 2019, 11, 1542.	1.2	6

#	Article	IF	Citations
38	An approach for design optimization of helical gear pair with balanced specific sliding and modified tooth profile. Structural and Multidisciplinary Optimization, 2019, 60, 331-341.	1.7	8
39	On redundant coverage maximization in wireless visual sensor networks: Evolutionary algorithms for multi-objective optimization. Applied Soft Computing Journal, 2019, 82, 105578.	4.1	20
40	Offline Automatic Parameter Tuning of MOEA/D Using Genetic Algorithm., 2019,,.		5
41	Multi-Objective Gain Optimizer for an Active Disturbance Rejection Controller. , 2019, , .		1
42	Multi-modal Multi-objective Optimization: Problem Analysis and Case Studies. , 2019, , .		9
43	Development of efficient global optimization method for discontinuous optimization problems with infeasible regions using classification method. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2019, 13, JAMDSM0017-JAMDSM0017.	0.3	3
44	On Blockchain-Based Dynamic Resource Allocation for Concurrent Industrial Wireless Premises Networks. , 2019, , .		1
45	An Improved Real-Coded Genetic Algorithm Using the Heuristical Normal Distribution and Direction-Based Crossover. Computational Intelligence and Neuroscience, 2019, 2019, 1-17.	1.1	15
46	Evaluation of carrier size and surface morphology in carrier-based dry powder inhalation by surrogate modeling. Chemical Engineering Science, 2019, 193, 144-155.	1.9	5
47	On the choice of neighborhood sampling to build effective search operators for constrained MOPs. Memetic Computing, 2019, 11, 155-173.	2.7	5
48	Bio-inspired adaptive control strategy for the highly efficient speed regulation of the DC motor under parametric uncertainty. Applied Soft Computing Journal, 2019, 75, 29-45.	4.1	21
49	Adaptive smart card-based pull control systems in context-aware manufacturing systems: Training a neural network through multi-objective simulation optimization. Applied Soft Computing Journal, 2019, 75, 46-57.	4.1	13
50	Oriented multi-mutation strategy in a many-objective evolutionary algorithm. Information Sciences, 2019, 478, 391-407.	4.0	4
51	Cross layer resource allocation for fault-tolerant topology control in wireless mesh networks based on genetic algorithm. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	1.5	4
52	Start-Up Optimization of Combined Cycle Power Plants: A Field Test in a Commercial Power Plant. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	0.5	7
53	Curbing Negative Influences Online for Seamless Transfer Evolutionary Optimization. IEEE Transactions on Cybernetics, 2019, 49, 4365-4378.	6.2	74
54	Multiobjective optimization–based faultâ€ŧolerant flight control system design. International Journal of Robust and Nonlinear Control, 2019, 29, 5341-5355.	2.1	2
55	Automatic Generation of Tests to Exploit XML Injection Vulnerabilities in Web Applications. IEEE Transactions on Software Engineering, 2019, 45, 335-362.	4.3	19

#	Article	IF	Citations
56	Automatically Designing State-of-the-Art Multi- and Many-Objective Evolutionary Algorithms. Evolutionary Computation, 2020, 28, 195-226.	2.3	25
57	A modified water cycle evolutionary game theory algorithm to utilize QoS for IoT services in cloud-assisted fog computing environments. Journal of Supercomputing, 2020, 76, 5578-5608.	2.4	16
58	Optimizing the design of straight bevel gear with reduced scoring effect. Engineering Computations, 2020, 37, 2391-2409.	0.7	0
59	Use of Energy-Based Domain Knowledge as Feedback to Evolutionary Algorithms for the Optimization of Water Distribution Networks. Water (Switzerland), 2020, 12, 3101.	1.2	3
60	f-MOPSO/Div: an improved extreme-point-based multi-objective PSO algorithm applied to a socio-economic-environmental conjunctive water use problem. Environmental Monitoring and Assessment, 2020, 192, 767.	1.3	14
61	Modelling the Stiffness-Temperature Dependence of Resin-Rubber Blends Cured by High-Energy Electron Beam Radiation Using Global Search Genetic Algorithm. Polymers, 2020, 12, 2652.	2.0	3
62	Efficient Simulation Based Calibration of Automated Driving Functions Based on Sensitivity Based Optimization. IEEE Open Journal of Intelligent Transportation Systems, 2020, 1, 63-79.	2.6	4
63	Shape optimization of SG6043 airfoil for small wind turbine blades. Journal of Physics: Conference Series, 2020, 1618, 042007.	0.3	3
64	Discovering Unmodeled Components in Astrodynamics with Symbolic Regression. , 2020, , .		2
65	Decomposition-Based Multi-Objective Evolutionary Algorithm Design Under Two Algorithm Frameworks. IEEE Access, 2020, 8, 163197-163208.	2.6	6
66	A Novel Multi-Task Optimization Algorithm Based on the Brainstorming Process. IEEE Access, 2020, 8, 217134-217149.	2.6	9
67	Analyzing the Performance of the Multiple-Searching Genetic Algorithm to Generate Test Cases. Applied Sciences (Switzerland), 2020, 10, 7264.	1.3	4
68	Genetic algorithm-based personalized models of human cardiac action potential. PLoS ONE, 2020, 15, e0231695.	1.1	19
69	Uniform distribution driven adaptive differential evolution. Applied Intelligence, 2020, 50, 3638-3659.	3.3	4
70	Pymoo: Multi-Objective Optimization in Python. IEEE Access, 2020, 8, 89497-89509.	2.6	751
71	Automated ReaxFF parametrization using machine learning. Computational Materials Science, 2021, 187, 110107.	1.4	18
72	Efficient global optimization method via clustering/classification methods and exploration strategy. Optimization and Engineering, 2021, 22, 521-553.	1.3	8
73	A many-objective optimization algorithm with mutation strategy based on variable classification and elite individual. Swarm and Evolutionary Computation, 2021, 60, 100769.	4.5	9

#	Article	IF	Citations
74	An integrated closed-loop solution to assisted history matching and field optimization with machine learning techniques. Journal of Petroleum Science and Engineering, 2021, 198, 108204.	2.1	18
75	Application of mutation operators to salp swarm algorithm. Expert Systems With Applications, 2021, 169, 114368.	4.4	20
76	Integrating Quality and Safety in Construction Scheduling Time-Cost Trade-Off Model. Journal of Construction Engineering and Management - ASCE, 2021, 147, .	2.0	28
77	A Systematic Comparison of search-Based approaches for LDA hyperparameter tuning. Information and Software Technology, 2021, 130, 106411.	3.0	29
78	A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 2021, 80, 8091-8126.	2.6	1,701
79	Using a Genetic Algorithm-Based Hyper-Heuristic to Tune MOEA/D for a Set of Benchmark Test Problems. Lecture Notes in Computer Science, 2021, , 164-177.	1.0	1
80	Selection-Expansion: A Unifying Framework for Motion-Planning andÂDiversity Search Algorithms. Lecture Notes in Computer Science, 2021, , 568-579.	1.0	0
81	Neuroevolution of augmented topologies with difference-based mutation. IOP Conference Series: Materials Science and Engineering, 2021, 1047, 012075.	0.3	3
82	Constrained optimisation of preliminary spacecraft configurations under the design-for-demise paradigm. Journal of Space Safety Engineering, 2021, 8, 63-74.	0.5	2
83	Effect of parametric enhancements on naked mole-rat algorithm for global optimization. Engineering With Computers, 2022, 38, 3351-3379.	3.5	5
84	Neuroevolution-Based Adaptive Antenna Array Beamforming Scheme to Improve the V2V Communication Performance at Intersections. Sensors, 2021, 21, 2956.	2.1	5
85	Difference-Based Mutation Operation for Neuroevolution of Augmented Topologies. Algorithms, 2021, 14, 127.	1.2	1
86	Statistical exploratory analysis of mask-fill reproduction operators of Genetic Algorithms. Applied Soft Computing Journal, 2021, 102, 107087.	4.1	3
87	Optimal Generation Scheduling in Hydro-Power Plants with the Coral Reefs Optimization Algorithm. Energies, 2021, 14, 2443.	1.6	17
88	A New Set of Mutation Operators for Dragonfly Algorithm. Arabian Journal for Science and Engineering, 2021, 46, 8761-8802.	1.7	2
89	Multiobjective optimization for modular unit production lines focusing on crew allocation and production performance. Automation in Construction, 2021, 125, 103581.	4.8	15
90	Viscosity Model for Nanoparticulate Suspensions Based on Surface Interactions. Materials, 2021, 14, 2752.	1.3	2
91	Adaptive Genetic Algorithm Based on Mutation and Crossover and Selection Probabilities. , 2021, , .		5

#	Article	IF	CITATIONS
92	Decentralized Management of Commercial HVAC Systems. Energies, 2021, 14, 3024.	1.6	5
93	Optimal Placement of Distribution Generation in Radial Distribution System Using Hybrid Genetic Dragonfly Algorithm. Technology and Economics of Smart Grids and Sustainable Energy, 2021, 6, 1.	1.8	21
94	Dynamic Modeling and Optimization of a Fixed-Bed Reactor for the Partial Water–Gas Shift Reaction. Industrial & Dynamic Engineering Chemistry Research, 2021, 60, 9022-9036.	1.8	4
95	Using a Genetic Algorithm-based Hyper-heuristic to Tune MOEA/D for a Set of Various Test Problems. , 2021, , .		2
96	Effective Partial Charging Scheme For Minimizing The Energy Depletion And Charging Cost In Wireless Rechargeable Sensor Networks., 2021,,.		1
97	Evolving soft robotic jamming grippers. , 2021, , .		11
98	A Multi-task Approach For Maximum Survival Ratio Problem In Large-Scale Wireless Rechargeable Sensor Networks. , $2021, \ldots$		0
99	Performance of Enhanced Multiple-Searching Genetic Algorithm for Test Case Generation in Software Testing. Mathematics, 2021, 9, 1779.	1.1	6
100	Fuzzing SMT solvers via two-dimensional input space exploration. , 2021, , .		9
101	A Wasserstein distance based multiobjective evolutionary algorithm for the risk aware optimization of sensor placement. Intelligent Systems With Applications, 2021, 10-11, 200047.	1.9	3
102	RARE., 2021,,.		3
103	Optimization of geometric parameters of arch bridges using visual programming FEM components and genetic algorithm. Engineering Structures, 2021, 241, 112465.	2.6	24
104	Black-Box Function Aerodynamic Topology Optimization Algorithm via Machine Learning Technologies. AIAA Journal, 2021, 59, 5174-5185.	1.5	6
105	Multiobjective multifactorial immune algorithm for multiobjective multitask optimization problems. Applied Soft Computing Journal, 2021, 107, 107399.	4.1	19
106	Multiobjective routing optimization of mobile charging vehicles for UAV power supply guarantees. Computers and Industrial Engineering, 2021, 162, 107714.	3.4	13
107	An adaptive fuzzy penalty method for constrained evolutionary optimization. Information Sciences, 2021, 571, 358-374.	4.0	21
108	Metaheuristics for the online printing shop scheduling problem. European Journal of Operational Research, 2021, 293, 419-441.	3.5	14
109	Modified, Reliability-Based Robust Geotechnical Design Method, in Accordance with Eurocode 7. Applied Sciences (Switzerland), 2021, 11, 8423.	1.3	0

#	ARTICLE	IF	CITATIONS
110	A self-adaptive hybridized differential evolution naked mole-rat algorithm for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering, 2021, 383, 113916.	3.4	20
111	Multiobjective Trajectory Tracking of a Flexible Tool During Robotic Percutaneous Nephrolithotomy. IEEE Robotics and Automation Letters, 2021, 6, 8110-8117.	3.3	3
112	Utilizing dependence among variables in evolutionary algorithms for mixed-integer programming: A case study on multi-objective constrained portfolio optimization. Swarm and Evolutionary Computation, 2021, 66, 100928.	4.5	21
113	High order beam optics optimization for a superconducting gantry applied to proton therapy based on NSGA-III. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1014, 165727.	0.7	0
114	COARSE-EMOA: An indicator-based evolutionary algorithm for solving equality constrained multi-objective optimization problems. Swarm and Evolutionary Computation, 2021, 67, 100983.	4.5	11
115	Optimal sizing and energy management of an electric vehicle powertrain equipped with two motors and multi-gear ratios. Mechanism and Machine Theory, 2022, 167, 104513.	2.7	30
116	Spacing Optimization for Active Droplet Sorting in Microfluidic Networks Using Genetic Algorithm. Industrial & Description of the Control of	1.8	8
117	Analog and Mixed-Signal Layout Automation Using Digital Place-and-Route Tools. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1838-1849.	2.1	9
118	LIPS vs MOSA: A Replicated Empirical Study on Automated Test Case Generation. Lecture Notes in Computer Science, 2017, , 83-98.	1.0	4
119	Design of Selecting Security Solution Using Multi-objective Genetic Algorithm. Communications in Computer and Information Science, 2016, , 512-517.	0.4	2
120	Extractive Multi-Document Arabic Text Summarization Using Evolutionary Multi-Objective Optimization With K-Medoid Clustering. IEEE Access, 2020, 8, 228206-228224.	2.6	20
121	Modeless Start-Up Control for Operational Flexibility of Combined Cycle Power Plants. Journal of Chemical Engineering of Japan, 2020, 53, 636-645.	0.3	4
123	Ring-Based Crossovers in Genetic Algorithms: Characteristic Decomposition and Their Generalization. IEEE Access, 2021, 9, 137902-137922.	2.6	4
124	Multi-objective PI controller tuning using NSGA-II with preferability. , 2021, , .		0
125	Metaheuristic Optimization of Decoupling Capacitors in a Power Delivery Network., 2021,,.		6
126	Probability Estimation by an Adapted Genetic Algorithm in Web Insurance. Lecture Notes in Computer Science, 2019, , 225-240.	1.0	1
127	Sequential Knowledge Transfer Across Problems. Adaptation, Learning, and Optimization, 2019, , 63-82.	0.5	4
129	Success-History Based Parameter Adaptation in MOEA/D Algorithm. Lecture Notes in Computer Science, 2020, , 455-462.	1.0	3

#	Article	IF	CITATIONS
130	OPCIO. ACM Transactions on Sensor Networks, 2020, 16, 1-28.	2.3	2
131	Parametrization of Reactive Potential using Genetic Algorithm and Machine Learning Techniques. , 0, , .		0
133	COMBINED METHOD OF RANKING OPTIONS IN PROJECT DECISION SUPPORT SYSTEMS. Innovative Technologies and Scientific Solutions for Industries, 2020, .	0.1	1
134	Performance evaluation of Non-Uniform circular antenna array using integrated harmony search with Differential Evolution based Naked Mole Rat algorithm. Expert Systems With Applications, 2022, 189, 116146.	4.4	11
135	Class-Dependent Weighted Feature Selection as a Bi-Level Optimization Problem. Communications in Computer and Information Science, 2020, , 269-278.	0.4	1
136	Dynamic Combined Economic Emission Dispatch Including Wind Generators by Real Coded Genetic Algorithm. International Journal of Applied Metaheuristic Computing, 2022, 13, 0-0.	0.5	1
138	A Multi-objective Evolutionary Algorithm for Decision Support using Infeasible Information. , 2021, , .		3
139	A Multi-stage Evolutionary Tomographic Reconstruction Algorithm Using Ultrasound Time-of-Flight Projections. Lecture Notes in Mechanical Engineering, 2022, , 137-145.	0.3	0
140	Age-Layered Strategies for Many-Objective Optimization. , 2020, , .		0
141	Multi-Objective Optimization of Electric Arc Furnace Using the Non-Dominated Sorting Genetic Algorithm II. IEEE Access, 2021, 9, 149715-149731.	2.6	5
142	Heuristic technique for multi-objective optimisation of engine cylinder fins. Materials Today: Proceedings, 2022, 58, 80-85.	0.9	1
143	A New Approach for Modification of Grasshopper Optimization Algorithm in Machine Learning Applications. Lecture Notes in Networks and Systems, 2022, , 457-466.	0.5	0
145	The Automatic Design of Multimode Resonator Topology with Evolutionary Algorithms. Sensors, 2022, 22, 1961.	2.1	1
146	An evolutionary approach for the optimization of the beekeeping value chain. Computers and Electronics in Agriculture, 2022, 194, 106787.	3.7	4
147	Multiobjective portfolio optimization via Pareto front evolution. Complex & Intelligent Systems, 2022, 8, 4301-4317.	4.0	6
148	Multi-objective optimization of cross laminated timber-concrete composite floor using NSGA-II. Journal of Building Engineering, 2022, 52, 104285.	1.6	0
149	Simpler and Enhanced Multifactorial Evolutionary Algorithms for Continuous Optimization Tasks. , 2021, , .		2
150	Scalable Transfer Evolutionary Optimization: Coping With Big Task Instances. IEEE Transactions on Cybernetics, 2023, 53, 6160-6172.	6.2	0

#	Article	IF	CITATIONS
151	Mixture distribution based real-coded crossover: A hybrid probabilistic approach for global optimization. Journal of Intelligent and Fuzzy Systems, 2022, 42, 4969-4985.	0.8	0
152	Improved whale optimization algorithm and its application in vehicle structural crashworthiness. International Journal of Crashworthiness, 2023, 28, 202-216.	1.1	6
153	An Optimization Based Approach for Peak Shaving and Phase Balancing of Unbalanced Radial Distribution System by Peak Load Clustering., 2022,,.		1
154	A Bounded Archiver for Hausdorff Approximations of the Pareto Front for Multi-Objective Evolutionary Algorithms. Mathematical and Computational Applications, 2022, 27, 48.	0.7	1
155	A Novel Multi-Objective Hybrid Election Algorithm for Higher-Order Random Satisfiability in Discrete Hopfield Neural Network. Mathematics, 2022, 10, 1963.	1.1	9
156	Evolutionary Multitasking for Optimization Based on Generative Strategies. IEEE Transactions on Evolutionary Computation, 2023, 27, 1042-1056.	7.5	9
157	Genetic Algorithm forÂBayesian Knowledge Tracing: A Practical Application. Lecture Notes in Computer Science, 2022, , 282-293.	1.0	2
158	Evolving polydisperse soft robotic jamming grippers. , 2022, , .		1
159	Computational Intelligence Based Selection and Placement of Decoupling Capacitors: A Comparative Study. IEEE Electromagnetic Compatibility Magazine, 2022, 11, 49-59.	0.1	2
160	Two-Stage Multiobjective Evolution Strategy for Constrained Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 2024, 28, 17-31.	7.5	6
161	An evolutionary approach for techno-economic assessment. Computer Aided Chemical Engineering, 2022, , 1405-1410.	0.3	0
162	A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint. , 2022, , .		2
163	A bi-population clan-based genetic algorithm for heat pipe-constrained component layout optimization. Expert Systems With Applications, 2023, 213, 118881.	4.4	3
164	Computational intelligence methods in simulation and modeling of structures: A state-of-the-art review using bibliometric maps. Frontiers in Built Environment, 0, 8, .	1.2	9
165	Waveform Adaptation for Target Classification Using HRRP in a Cognitive Framework. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59, 3695-3712.	2.6	2
166	Guiding Automated Test Case Generation for Transaction-Reverting Statements in Smart Contracts., 2022,,.		0
167	Genetic algorithms with self-adaptation for predictive classification of Medicare standardized payments for physical therapists. Expert Systems With Applications, 2023, 218, 119529.	4.4	5
168	A Multiobjective Evolutionary Algorithm for Distribution System Reconfiguration Problems. , 2022, , .		2

#	Article	IF	CITATIONS
169	A Scalable PDC Placement Technique for Fast and Resilient Monitoring of Large Power Grids. IEEE Transactions on Control of Network Systems, 2023, 10, 1770-1782.	2.4	1
170	Electronic component placement optimization for heat measures of smartglasses. IEICE Electronics Express, 2023, 20, 20230011-20230011.	0.3	1
171	Evolutionary Approach for Concurrency Testing of Ripple Blockchain Consensus Algorithm., 2023,,.		1
172	Fuzzy Optimization Framework for Facilitating Best Management Practices in the Context of Urban Floods. Lecture Notes in Civil Engineering, 2023, , 527-534.	0.3	0
175	Optimization of Saleman Travelling Problem Using Genetic Algorithm with Combination of Order and Random Crossover. , 2023, , .		0
176	Multi-task andÂMulti-team Work Order Scheduling Using Non-dominated Sorting Genetic Algorithm II. Lecture Notes in Networks and Systems, 2024, , 751-763.	0.5	0
177	A Comprehensive Analysis ofÂEmerging Variants ofÂSwarm Intelligence forÂCircuits andÂSystems. , 2024, , 115-135.		0
181	Distribution System Reconfiguration using A Multiobjective Evolutionary Algorithm with An External Archive., 2023,,.		O