Prevalence of broadly neutralizing antibody responses

Aids 28, 163-169 DOI: 10.1097/qad.000000000000000

Citation Report

#	Article	IF	CITATIONS
1	Progress in HIV-1 vaccine development. Journal of Allergy and Clinical Immunology, 2014, 134, 3-10.	1.5	62
2	Characterization and Immunogenicity of a Novel Mosaic M HIV-1 gp140 Trimer. Journal of Virology, 2014, 88, 9538-9552.	1.5	30
3	Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Science Translational Medicine, 2014, 6, 243ra88.	5.8	222
4	Importance of neutralization sieve analyses when seeking correlates of HIV-1 vaccine efficacy. Human Vaccines and Immunotherapeutics, 2014, 10, 2507-2511.	1.4	6
5	Will studies in individuals with systemic lupus erythematosus be the key to future HIV vaccine design?. Expert Review of Vaccines, 2014, 13, 1271-1273.	2.0	6
6	Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies. Nature Structural and Molecular Biology, 2014, 21, 1058-1067.	3.6	69
7	Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Current Opinion in HIV and AIDS, 2014, 9, 210-216.	1.5	71
8	Early development of broadly reactive HIV-1 neutralizing activity in elite neutralizers. Aids, 2014, 28, 1237-1240.	1.0	19
9	Immunogen design to focus the B-cell repertoire. Current Opinion in HIV and AIDS, 2014, 9, 217-223.	1.5	13
10	Early development of broadly neutralizing antibodies in HIV-1–infected infants. Nature Medicine, 2014, 20, 655-658.	15.2	167
11	HIV Vaccines: A Brief Overview. Scandinavian Journal of Immunology, 2014, 80, 1-11.	1.3	26
12	Drift of the HIV-1 Envelope Glycoprotein gp120 toward Increased Neutralization Resistance over the Course of the Epidemic: a Comprehensive Study Using the Most Potent and Broadly Neutralizing Monoclonal Antibodies. Journal of Virology, 2014, 88, 13910-13917.	1.5	42
13	Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. Journal of Virology, 2014, 88, 2489-2507.	1.5	274
14	Envelope Variants Circulating as Initial Neutralization Breadth Developed in Two HIV-Infected Subjects Stimulate Multiclade Neutralizing Antibodies in Rabbits. Journal of Virology, 2014, 88, 12949-12967.	1.5	37
15	Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies. Cell Host and Microbe, 2014, 16, 304-313.	5.1	137
16	Human Immunodeficiency Virus Vaccines. Infectious Disease Clinics of North America, 2014, 28, 615-631.	1.9	5
17	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	13.5	266
18	Impact of Clade, Geography, and Age of the Epidemic on HIV-1 Neutralization by Antibodies. Journal of Virology, 2014, 88, 12623-12643.	1.5	75

ATION RED

	CITATION	Report	
#	Article	IF	CITATIONS
19	Antibody B cell responses in HIV-1 infection. Trends in Immunology, 2014, 35, 549-561.	2.9	91
20	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	13.7	702
21	Lessons from babies: inducing HIV-1 broadly neutralizing antibodies. Nature Medicine, 2014, 20, 583-585.	15.2	7
22	HIV broadly neutralizing antibody targets. Current Opinion in HIV and AIDS, 2015, 10, 135-143.	1.5	110
23	Can immunological principles and cross-disciplinary science illuminate the path to vaccines for HIV and other global health challenges?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140152.	1.8	4
24	Antibodies for prevention of mother-to-child transmission of HIV-1. Current Opinion in HIV and AIDS, 2015, 10, 177-182.	1.5	8
25	Cats versus mice: Mathematical immunology, HIV immunity and escape. Complexity, 2015, 20, 78-80.	0.9	0
26	Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses, 2015, 7, 5443-5475.	1.5	26
27	Identification of CD4-Binding Site Dependent Plasma Neutralizing Antibodies in an HIV-1 Infected Indian Individual. PLoS ONE, 2015, 10, e0125575.	1.1	13
28	HIV Vaccine: Recent Advances, Current Roadblocks, and Future Directions. Journal of Immunology Research, 2015, 2015, 1-9.	0.9	21
29	New approaches to HIV vaccine development. Current Opinion in Immunology, 2015, 35, 39-47.	2.4	77
30	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	13.5	305
31	Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope. Journal of Virology, 2015, 89, 8130-8151.	1.5	35
32	HIV-1 Fitness Cost Associated with Escape from the VRC01 Class of CD4 Binding Site Neutralizing Antibodies. Journal of Virology, 2015, 89, 4201-4213.	1.5	121
33	Anti-V3/Glycan and Anti-MPER Neutralizing Antibodies, but Not Anti-V2/Glycan Site Antibodies, Are Strongly Associated with Greater Anti-HIV-1 Neutralization Breadth and Potency. Journal of Virology, 2015, 89, 5264-5275.	1.5	27
34	Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends in Microbiology, 2015, 23, 204-211.	3.5	77
35	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	6.0	482
36	Quality and quantity of T _{FH} cells are critical for broad antibody development in SHIV _{AD8} infection. Science Translational Medicine, 2015, 7, 298ra120.	5.8	119

#	Article	IF	CITATIONS
37	Blockage of CD59 Function Restores Activities of Neutralizing and Nonneutralizing Antibodies in Triggering Antibody-Dependent Complement-Mediated Lysis of HIV-1 Virions and Provirus-Activated Latently Infected Cells. Journal of Virology, 2015, 89, 9393-9406.	1.5	12
38	Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research. Journal of Virology, 2015, 89, 7478-7493.	1.5	33
40	Ability To Develop Broadly Neutralizing HIV-1 Antibodies Is Not Restricted by the Germline Ig Gene Repertoire. Journal of Immunology, 2015, 194, 4371-4378.	0.4	85
41	Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell, 2015, 161, 470-485.	13.5	226
42	A Multivalent Clade C HIV-1 Env Trimer Cocktail Elicits a Higher Magnitude of Neutralizing Antibodies than Any Individual Component. Journal of Virology, 2015, 89, 2507-2519.	1.5	42
43	Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 8334-8345.	1.5	100
44	Rapid Development of gp120-Focused Neutralizing B Cell Responses during Acute Simian Immunodeficiency Virus Infection of African Green Monkeys. Journal of Virology, 2015, 89, 9485-9498.	1.5	8
45	Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nature Medicine, 2015, 21, 1332-1336.	15.2	215
46	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	5.1	66
47	Differences in HIV Type 1 Neutralization Breadth in 2 Geographically Distinct Cohorts in Africa. Journal of Infectious Diseases, 2015, 211, 1461-1466.	1.9	7
48	Immunity to HIV. , 2016, , 342-354.		1
49	AIDS Vaccines. , 2016, , 401-422.		1
50	Diversification in the HIV-1 Envelope Hyper-variable Domains V2, V4, and V5 and Higher Probability of Transmitted/Founder Envelope Glycosylation Favor the Development of Heterologous Neutralization Breadth. PLoS Pathogens, 2016, 12, e1005989.	2.1	36
51	Broadly neutralizing antibody specificities detected in the genital tract of HIV-1 infected women. Aids, 2016, 30, 1005-1014.	1.0	18
52	The Neutralizing Antibody Response in an Individual with Triple HIV-1 Infection Remains Directed at the First Infecting Subtype. AIDS Research and Human Retroviruses, 2016, 32, 1135-1142.	0.5	11
53	Envelope-specific B-cell populations in African green monkeys chronically infected with simian immunodeficiency virus. Nature Communications, 2016, 7, 12131.	5.8	14
54	Live attenuated Salmonella displaying HIV-1 10E8 epitope on fimbriae: systemic and mucosal immune responses in BALB/c mice by mucosal administration. Scientific Reports, 2016, 6, 29556.	1.6	11
55	Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine, 2016, 14, 97-111.	2.7	47

#	Article	IF	CITATIONS
56	Long antibody HCDR3s from HIV-naÃ ⁻ ve donors presented on a PC9 neutralizing antibody background mediate HIV neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4446-4451.	3.3	20
57	HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science, 2016, 352, 997-1001.	6.0	263
58	Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design. Annual Review of Immunology, 2016, 34, 635-659.	9.5	500
59	Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell, 2016, 166, 1445-1458.e12.	13.5	270
60	Determinants of HIV-1 broadly neutralizing antibody induction. Nature Medicine, 2016, 22, 1260-1267.	15.2	133
61	Multiple Antibody Lineages in One Donor Target the Glycan-V3 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary Binding. Journal of Virology, 2016, 90, 10574-10586.	1.5	35
62	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	2.9	216
63	HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. Journal of Immunology, 2016, 197, 4663-4673.	0.4	6
64	Immune perturbations in HIV-1–infected individuals who make broadly neutralizing antibodies. Science Immunology, 2016, 1, aag0851.	5.6	120
65	Differences in Allelic Frequency and CDRH3 Region Limit the Engagement of HIV Env Immunogens by Putative VRC01 Neutralizing Antibody Precursors. Cell Reports, 2016, 17, 1560-1570.	2.9	42
66	Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7039-E7048.	3.3	53
67	Approaches to the induction of HIV broadly neutralizing antibodies. Current Opinion in HIV and AIDS, 2016, 11, 569-575.	1.5	15
68	Broadly Neutralizing Antibodyâ€Guided Carbohydrateâ€Based HIV Vaccine Design: Challenges and Opportunities. ChemMedChem, 2016, 11, 357-362.	1.6	11
69	Antigenic landscape of the HIV-1 envelope and new immunological concepts defined by HIV-1 broadly neutralizing antibodies. Current Opinion in Immunology, 2016, 42, 56-64.	2.4	30
70	Spatiotemporal hierarchy in antibody recognition against transmitted HIV-1 envelope glycoprotein during natural infection. Retrovirology, 2016, 13, 12.	0.9	7
71	B cells in HIV pathogenesis. Current Opinion in Infectious Diseases, 2016, 29, 23-30.	1.3	10
72	HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Review of Vaccines, 2016, 15, 349-365.	2.0	44
73	Detection of Broadly Neutralizing Activity within the First Months of HIV-1 Infection. Journal of Virology, 2016, 90, 5231-5245.	1.5	31

#	Article	IF	CITATIONS
74	Conformational Epitope-Specific Broadly Neutralizing Plasma Antibodies Obtained from an HIV-1 Clade C-Infected Elite Neutralizer Mediate Autologous Virus Escape through Mutations in the V1 Loop. Journal of Virology, 2016, 90, 3446-3457.	1.5	29
75	HIV-Host Interactions: Implications for Vaccine Design. Cell Host and Microbe, 2016, 19, 292-303.	5.1	143
76	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	13.5	305
77	Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIV _{SF162P3N} -Infected Macaques. Journal of Virology, 2016, 90, 4017-4031.	1.5	24
78	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	3.6	162
79	New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.	1.5	205
80	Current views on the potential for development of a HIV vaccine. Expert Opinion on Biological Therapy, 2017, 17, 295-303.	1.4	23
81	Nativeâ€like Env trimers as a platform for <scp>HIV</scp> â€1 vaccine design. Immunological Reviews, 2017, 275, 161-182.	2.8	221
82	Use of broadly neutralizing antibodies for <scp>HIV</scp> â€1 prevention. Immunological Reviews, 2017, 275, 296-312.	2.8	131
83	The quest for an antibodyâ€based <scp>HIV</scp> vaccine. Immunological Reviews, 2017, 275, 5-10.	2.8	91
84	Genetic and structural analyses of affinity maturation in the humoral response to <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 129-144.	2.8	17
85	Antibodyomics: bioinformatics technologies for understanding Bâ€cell immunity to <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 108-128.	2.8	32
86	Immunologic characteristics of <scp>HIV</scp> â€infected individuals who make broadly neutralizing antibodies. Immunological Reviews, 2017, 275, 62-78.	2.8	58
87	Antibodyâ€virus coâ€evolution in <scp>HIV</scp> infection: paths for <scp>HIV</scp> vaccine development. Immunological Reviews, 2017, 275, 145-160.	2.8	160
88	Antibody gene transfer with adenoâ€associated viral vectors as a method for <scp>HIV</scp> prevention. Immunological Reviews, 2017, 275, 324-333.	2.8	51
89	Ontogenyâ€based immunogens for the induction of V2â€directed <scp>HIV</scp> broadly neutralizing antibodies. Immunological Reviews, 2017, 275, 217-229.	2.8	27
90	Human Ig knockin mice to study the development and regulation of <scp>HIV</scp> †broadly neutralizing antibodies. Immunological Reviews, 2017, 275, 89-107.	2.8	37
91	Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nature Medicine, 2017, 23, 185-191.	15.2	399

		CITATION REPORT		
#	Article		IF	CITATIONS
92	Progress in HIV vaccine development. Human Vaccines and Immunotherapeutics, 2017	′, 13, 1018-1030.	1.4	80
93	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science In 2, .	1munology, 2017,	5.6	119
94	Lessons learned from humoral responses of HIV patients. Current Opinion in HIV and A 195-202.	IDS, 2017, 12,	1.5	16
95	Lessons learned from human HIV vaccine trials. Current Opinion in HIV and AIDS, 2017	, 12, 216-221.	1.5	31
96	Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks Loop. Immunity, 2017, 46, 777-791.e10.	a Protruding	6.6	81
97	Broad and potent cross clade neutralizing antibodies with multiple specificities in the p subtype C infected individuals. Scientific Reports, 2017, 7, 46557.	alasma of HIV-1	1.6	9
98	HIV-Specific B Cell Frequency Correlates with Neutralization Breadth in Patients Natura Controlling HIV-Infection. EBioMedicine, 2017, 21, 158-169.	illy	2.7	45
99	How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based Current Opinion in HIV and AIDS, 2017, 12, 229-240.	vaccine design.	1.5	66
100	Profiling the neutralizing antibody response in chronically HIV-1 CRF07_BC-infected intusers naÃ-ve to antiretroviral therapy. Scientific Reports, 2017, 7, 46308.	ravenous drug	1.6	6
101	Free Energy Perturbation Calculation of Relative Binding Free Energy between Broadly Antibodies and the gp120 Glycoprotein of HIV-1. Journal of Molecular Biology, 2017, 4	Neutralizing 29, 930-947.	2.0	82
102	Progress toward active or passive HIV-1 vaccination. Journal of Experimental Medicine,	2017, 214, 3-16.	4.2	118
103	Immune Interventions to Eliminate the HIV Reservoir. Current Topics in Microbiology at 2017, 417, 181-210.	nd Immunology,	0.7	4
104	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multip neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214,	le broadly 2573-2590.	4.2	151
105	How Germinal Centers Evolve Broadly Neutralizing Antibodies: the Breadth of the Follic Cell Response. Journal of Virology, 2017, 91, .	cular Helper T	1.5	32
106	Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection C SHIV challenge. Science Translational Medicine, 2017, 9, .	1 against a clade	5.8	87
107	Neutralizing Antibodies Against a Specific Human Immunodeficiency Virus gp41 Epitop With Long-term Non-progressor Status. EBioMedicine, 2017, 22, 122-132.	e are Associated	2.7	16
108	Characterization of a stable HIV-1 B/C recombinant, soluble, and trimeric envelope glychighly resistant to CD4-induced conformational changes. Journal of Biological Chemist 15849-15858.	:oprotein (Env) ry, 2017, 292,	1.6	12
109	Panels of HIV-1 Subtype C Env Reference Strains for Standardized Neutralization Asses of Virology, 2017, 91, .	sments. Journal	1.5	23

#	Article	IF	CITATIONS
110	Mammalian cell surface display for monoclonal antibody-based FACS selection of viral envelope proteins. MAbs, 2017, 9, 1052-1064.	2.6	7
111	HIV Envelope Glycoform Heterogeneity and Localized Diversity Govern the Initiation and Maturation of a V2 Apex Broadly Neutralizing Antibody Lineage. Immunity, 2017, 47, 990-1003.e9.	6.6	90
112	Broadly Neutralizing Antibodies Display Potential for Prevention of HIV-1 Infection of Mucosal Tissue Superior to That of Nonneutralizing Antibodies. Journal of Virology, 2017, 91, .	1.5	29
113	Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. Cell Reports, 2017, 21, 3681-3690.	2.9	97
114	Neutralizing Monoclonal Antibodies to Fight HIV-1: On the Threshold of Success. Frontiers in Immunology, 2017, 7, 661.	2.2	11
115	Plasma CXCL13 but Not B Cell Frequencies in Acute HIV Infection Predicts Emergence of Cross-Neutralizing Antibodies. Frontiers in Immunology, 2017, 8, 1104.	2.2	45
116	Circulating Plasmablasts from Chronically Human Immunodeficiency Virus-Infected Individuals Predominantly Produce Polyreactive/Autoreactive Antibodies. Frontiers in Immunology, 2017, 8, 1691.	2.2	23
117	Humanized Immunoglobulin Mice. Advances in Immunology, 2017, 134, 235-352.	1.1	14
118	A Little Help From the Follicles: Understanding the Germinal Center Response to Human Immunodeficiency Virus 1 Infection and Prophylactic Vaccines. Clinical Medicine Insights Pathology, 2017, 10, 117955571769554.	0.6	1
119	Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathogens, 2017, 13, e1006148.	2.1	51
120	Conserved HIV Epitopes for an Effective HIV Vaccine. Journal of Clinical & Cellular Immunology, 2017, 08, .	1.5	23
121	A Trimeric HIV-1 Envelope gp120 Immunogen Induces Potent and Broad Anti-V1V2 Loop Antibodies against HIV-1 in Rabbits and Rhesus Macaques. Journal of Virology, 2018, 92, .	1.5	30
122	Passive and active antibody studies in primates to inform HIV vaccines. Expert Review of Vaccines, 2018, 17, 1-18.	2.0	36
123	Multi-Envelope HIV-1 Vaccine Development: Two Targeted Immune Pathways, One Desired Protective Outcome. Viral Immunology, 2018, 31, 124-132.	0.6	4
124	Development of broad neutralization activity in simian/human immunodeficiency virus-infected rhesus macaques after long-term infection. Aids, 2018, 32, 555-563.	1.0	17
125	Development and optimization of a sensitive pseudovirus-based assay for HIV-1 neutralizing antibodies detection using A3R5 cells. Human Vaccines and Immunotherapeutics, 2018, 14, 199-208.	1.4	18
126	Guiding the humoral response against HIV-1 toward a MPER adjacent region by immunization with a VLP-formulated antibody-selected envelope variant. PLoS ONE, 2018, 13, e0208345.	1.1	8
127	Structural Rearrangements Maintain the Glycan Shield of an HIV-1 Envelope Trimer After the Loss of a Glycan. Scientific Reports, 2018, 8, 15031.	1.6	17

#	Article	IF	CITATIONS
128	HIV-1 immunogens and strategies to drive antibody responses towards neutralization breadth. Retrovirology, 2018, 15, 74.	0.9	26
129	Preventive and therapeutic features of broadly neutralising monoclonal antibodies against HIV-1. Lancet HIV,the, 2018, 5, e723-e731.	2.1	10
130	Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology, 2018, 15, 66.	0.9	30
131	Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Reports, 2018, 25, 893-908.e7.	2.9	91
132	Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers. Retrovirology, 2018, 15, 61.	0.9	90
133	The Neutralizing Antibody Response to the HIV-1 Env Protein. Current HIV Research, 2018, 16, 21-28.	0.2	24
134	Synthetic DNA delivery by electroporation promotes robust in vivo sulfation of broadly neutralizing anti-HIV immunoadhesin eCD4-Ig. EBioMedicine, 2018, 35, 97-105.	2.7	15
135	Distinct, IgG1-driven antibody response landscapes demarcate individuals with broadly HIV-1 neutralizing activity. Journal of Experimental Medicine, 2018, 215, 1589-1608.	4.2	29
136	HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity, 2018, 48, 855-871.	6.6	277
137	B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of rhesus macaques. PLoS Pathogens, 2018, 14, e1007120.	2.1	4
138	Broadly neutralizing antibodies: What is needed to move from a rare event in HIV-1 infection to vaccine efficacy?. Retrovirology, 2018, 15, 52.	0.9	29
139	Poly- and autoreactivity of HIV-1 bNAbs: implications for vaccine design. Retrovirology, 2018, 15, 53.	0.9	22
140	Evolution of Neutralization Response in HIV-1 Subtype C-Infected Individuals Exhibiting Broad Cross-Clade Neutralization of HIV-1 Strains. Frontiers in Immunology, 2018, 9, 618.	2.2	3
141	HIV Vaccination: A Roadmap among Advancements and Concerns. International Journal of Molecular Sciences, 2018, 19, 1241.	1.8	34
142	Gp120 V5 Is Targeted by the First Wave of Sequential Neutralizing Antibodies in SHIVSF162P3N-Infected Rhesus Macaques. Viruses, 2018, 10, 262.	1.5	2
143	HIV Broadly Neutralizing Antibodies: VRC01 and Beyond. Advances in Experimental Medicine and Biology, 2018, 1075, 53-72.	0.8	10
144	<scp>HIV</scp> / <scp>AIDS</scp> Vaccines: 2018. Clinical Pharmacology and Therapeutics, 2018, 104, 1062-1073.	2.3	32
145	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	15.2	256

#	Article	IF	Citations
146	HIV Env on Lockdown. Cell Host and Microbe, 2018, 23, 699-701.	5.1	0
147	Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathogens, 2018, 14, e1006860.	2.1	68
148	Novel vaccines: Technology and development. Journal of Allergy and Clinical Immunology, 2019, 143, 844-851.	1.5	9
149	Impact of HIV-1 Diversity on Its Sensitivity to Neutralization. Vaccines, 2019, 7, 74.	2.1	17
150	Minding the gap: The impact of B ell tolerance on the microbial antibody repertoire. Immunological Reviews, 2019, 292, 24-36.	2.8	9
151	Production and Immunogenicity of Soluble Plant-Produced HIV-1 Subtype C Envelope gp140 Immunogens. Frontiers in Plant Science, 2019, 10, 1378.	1.7	28
152	Rapid Boosting of HIV-1 Neutralizing Antibody Responses in Humans Following a Prolonged Immunologic Rest Period. Journal of Infectious Diseases, 2019, 219, 1755-1765.	1.9	7
153	Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathogens, 2019, 15, e1008005.	2.1	6
154	Safety and tolerance of lymph node biopsies from chronic HIV-1 volunteers in rural Tanzania. BMC Research Notes, 2019, 12, 561.	0.6	0
155	Pre-exposure prophylaxis 2.0: new drugs and technologies in the pipeline. Lancet HIV,the, 2019, 6, e788-e799.	2.1	79
156	Structural Basis for Epitopes in the gp120 Cluster A Region that Invokes Potent Effector Cell Activity. Viruses, 2019, 11, 69.	1.5	20
157	VH1-69 Utilizing Antibodies Are Capable of Mediating Non-neutralizing Fc-Mediated Effector Functions Against the Transmitted/Founder gp120. Frontiers in Immunology, 2019, 9, 3163.	2.2	15
158	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	6.6	85
159	Antibody Fabâ€Fc properties outperform titer in predictive models of <scp>SIV</scp> vaccineâ€induced protection. Molecular Systems Biology, 2019, 15, e8747.	3.2	17
160	Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. PLoS Biology, 2019, 17, e3000328.	2.6	33
161	The breadth of HIV-1 neutralizing antibodies depends on the conservation of key sites in their epitopes. PLoS Computational Biology, 2019, 15, e1007056.	1.5	19
162	Broadly neutralising antibodies in post-treatment control. Lancet HIV,the, 2019, 6, e271-e272.	2.1	3
163	Characteristics of Envelope Genes in a Chinese Chronically HIV-1 Infected Patient With Broadly Neutralizing Activity. Frontiers in Microbiology, 2019, 10, 1096.	1.5	5

#	Article	IF	CITATIONS
164	Lower Broadly Neutralizing Antibody Responses in Female Versus Male HIV-1 Infected Injecting Drug Users. Viruses, 2019, 11, 384.	1.5	6
165	Protein and Glycan Mimicry in HIV Vaccine Design. Journal of Molecular Biology, 2019, 431, 2223-2247.	2.0	91
166	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	6.6	77
167	Broadly Neutralizing Antibodies against HIV: Back to Blood. Trends in Molecular Medicine, 2019, 25, 228-240.	3.5	19
168	Relative Binding Affinity Prediction of Charge-Changing Sequence Mutations with FEP in Protein–Protein Interfaces. Journal of Molecular Biology, 2019, 431, 1481-1493.	2.0	68
169	Prime-Boost Immunizations with DNA, Modified Vaccinia Virus Ankara, and Protein-Based Vaccines Elicit Robust HIV-1 Tier 2 Neutralizing Antibodies against the CAP256 Superinfecting Virus. Journal of Virology, 2019, 93, .	1.5	32
170	Cross-Reactivity to Kynureninase Tolerizes B Cells That Express the HIV-1 Broadly Neutralizing Antibody 2F5. Journal of Immunology, 2019, 203, 3268-3281.	0.4	12
171	Targeting broadly neutralizing antibody precursors. Current Opinion in HIV and AIDS, 2019, 14, 294-301.	1.5	15
172	Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Frontiers in Immunology, 2019, 10, 2968.	2.2	44
173	Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Review of Vaccines, 2019, 18, 1127-1143.	2.0	23
174	HIV-1 phylogenetics and vaccines. Current Opinion in HIV and AIDS, 2019, 14, 227-232.	1.5	6
175	Positive Selection at Key Residues in the HIV Envelope Distinguishes Broad and Strain-Specific Plasma Neutralizing Antibodies. Journal of Virology, 2019, 93, .	1.5	13
176	Coadministration of CH31 Broadly Neutralizing Antibody Does Not Affect Development of Vaccine-Induced Anti-HIV-1 Envelope Antibody Responses in Infant Rhesus Macaques. Journal of Virology, 2019, 93, .	1.5	18
177	HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host and Microbe, 2019, 25, 59-72.e8.	5.1	124
178	Immunological approaches to HIV cure. Seminars in Immunology, 2021, 51, 101412.	2.7	39
179	Characteristics of HIV-1 env genes from Chinese chronically infected donors with highly broad cross-neutralizing activity. Virology, 2020, 551, 16-25.	1.1	3
180	Antibody-guided structure-based vaccines. Seminars in Immunology, 2020, 50, 101428.	2.7	29
181	Immune Monitoring Reveals Fusion Peptide Priming to Imprint Cross-Clade HIV-Neutralizing Responses with a Characteristic Early B Cell Signature. Cell Reports, 2020, 32, 107981.	2.9	15

#	Article	IF	CITATIONS
182	Common evolutionary features of the envelope glycoprotein of HIV-1 in patients belonging to a transmission chain. Scientific Reports, 2020, 10, 16744.	1.6	2
183	Rapid Induction of Multifunctional Antibodies in Rabbits and Macaques by Clade C HIV-1 CAP257 Envelopes Circulating During Epitope-Specific Neutralization Breadth Development. Frontiers in Immunology, 2020, 11, 984.	2.2	9
184	Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Reports, 2020, 31, 107624.	2.9	43
185	Maternal Broadly Neutralizing Antibodies Can Select for Neutralization-Resistant, Infant-Transmitted/Founder HIV Variants. MBio, 2020, 11, .	1.8	25
186	Induction of Identical IgG HIV-1 Envelope Epitope Recognition Patterns After Initial HIVIS-DNA/MVA-CMDR Immunization and a Late MVA-CMDR Boost. Frontiers in Immunology, 2020, 11, 719.	2.2	8
187	CTLA-4 Blockade, during HIV Virus-Like Particles Immunization, Alters HIV-Specific B-Cell Responses. Vaccines, 2020, 8, 284.	2.1	7
188	Infectious Complications of Biological and Small Molecule Targeted Immunomodulatory Therapies. Clinical Microbiology Reviews, 2020, 33, .	5.7	68
189	A Bispecific Antibody That Simultaneously Recognizes the V2- and V3-Clycan Epitopes of the HIV-1 Envelope Glycoprotein Is Broader and More Potent than Its Parental Antibodies. MBio, 2020, 11, .	1.8	27
190	Immune checkpoint modulation enhances HIV-1 antibody induction. Nature Communications, 2020, 11, 948.	5.8	27
191	Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization. Cell Reports, 2020, 30, 1553-1569.e6.	2.9	21
192	Aberrant B cell repertoire selection associated with HIV neutralizing antibody breadth. Nature Immunology, 2020, 21, 199-209.	7.0	68
193	Development of Antibodies with Broad Neutralization Specificities against HIV-1 after Long Term SHIV Infection in Macaques. Viruses, 2020, 12, 163.	1.5	6
194	Vaccines and Broadly Neutralizing Antibodies for HIV-1 Prevention. Annual Review of Immunology, 2020, 38, 673-703.	9.5	74
195	Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. Journal of Virology, 2020, 94, .	1.5	27
196	Envelope characteristics in individuals who developed neutralizing antibodies targeting different epitopes in HIV-1 subtype C infection. Virology, 2020, 546, 1-12.	1.1	5
197	Dual Pathways of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trafficking Modulate the Selective Exclusion of Uncleaved Oligomers from Virions. Journal of Virology, 2021, 95, .	1.5	26
198	Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nature Nanotechnology, 2021, 16, 1-14.	15.6	150
199	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	6.0	49

#	Article	IF	CITATIONS
202	ÂÂÂÂRapid Selection of HIV Envelopes that Bind to Neutralizing Antibody B Cell Lineage Members with Functional Improbable Mutations. SSRN Electronic Journal, 0, , .	0.4	1
203	HIV mRNA Vaccines—Progress and Future Paths. Vaccines, 2021, 9, 134.	2.1	45
204	A Potent Anti-Simian Immunodeficiency Virus Neutralizing Antibody Induction Associated with a Germ Line Immunoglobulin Gene Polymorphism in Rhesus Macaques. Journal of Virology, 2021, 95, .	1.5	2
206	Mutational fitness landscapes reveal genetic and structural improvement pathways for a vaccine-elicited HIV-1 broadly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
207	Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Reports, 2021, 35, 108937.	2.9	12
208	The Shaping of a B Cell Pool Maximally Responsive to Infections. Annual Review of Immunology, 2021, 39, 103-129.	9.5	38
210	New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission, Immunopathogenesis, Prevention, and Cure. Journal of Virology, 2021, 95, .	1.5	21
211	Hepatitis C Virus Epitope Immunodominance and B Cell Repertoire Diversity. Viruses, 2021, 13, 983.	1.5	5
212	A diverse collection of B cells responded to HIV infection in infant BG505. Cell Reports Medicine, 2021, 2, 100314.	3.3	6
213	Cross-Neutralizing CRF01_AE-Infected Plasma from Malaysia Targets CD4-Binding Site of Human Immunodeficiency Virus Type-1 Envelope Glycoprotein. AIDS Research and Human Retroviruses, 2021, , .	0.5	0
214	Neutralizing Antibody Induction Associated with a Germline Immunoglobulin Gene Polymorphism in Neutralization-Resistant SIVsmE543-3 Infection. Viruses, 2021, 13, 1181.	1.5	1
216	Broadly neutralizing antibody responses in the longitudinal primary HIV-1 infection SPARTAC cohort. Aids, 2021, Publish Ahead of Print, 2073-2084.	1.0	0
217	Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathogens, 2021, 17, e1009624.	2.1	2
218	HIV envelope antigen valency on peptide nanofibers modulates antibody magnitude and binding breadth. Scientific Reports, 2021, 11, 14494.	1.6	6
219	Rapid selection of HIV envelopes that bind to neutralizing antibody B cell lineage members with functional improbable mutations. Cell Reports, 2021, 36, 109561.	2.9	9
223	Limited Evidence for a Relationship between HIV-1 Glycan Shield Features in Early Infection and the Development of Neutralization Breadth. Journal of Virology, 2021, 95, e0079721.	1.5	2
224	The unique biology of germinal center B cells. Immunity, 2021, 54, 1652-1664.	6.6	84
225	Asymmetric Structures and Conformational Plasticity of the Uncleaved Full-Length Human Immunodeficiency Virus Envelope Glycoprotein Trimer. Journal of Virology, 2021, 95, e0052921.	1.5	20

#	Article	IF	CITATIONS
226	Characterizing the Relationship Between Neutralization Sensitivity and env Gene Diversity During ART Suppression. Frontiers in Immunology, 2021, 12, 710327.	2.2	6
227	Contribution to HIV Prevention and Treatment by Antibody-Mediated Effector Function and Advances in Broadly Neutralizing Antibody Delivery by Vectored Immunoprophylaxis. Frontiers in Immunology, 2021, 12, 734304.	2.2	9
233	Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight, 2018, 3, .	2.3	16
234	Harnessing the protective potential of HIV-1 neutralizing antibodies. F1000Research, 2016, 5, 20.	0.8	4
235	Transplanting Supersites of HIV-1 Vulnerability. PLoS ONE, 2014, 9, e99881.	1.1	51
236	Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8. PLoS ONE, 2016, 11, e0157409.	1.1	44
237	Cross-Neutralizing Antibodies in HIV-1 Individuals Infected by Subtypes B, F1, C or the B/Bbr Variant in Relation to the Genetics and Biochemical Characteristics of the env Gene. PLoS ONE, 2016, 11, e0167690.	1.1	3
238	Longitudinal dynamics of the HIV-specific B cell response during intermittent treatment of primary HIV infection. PLoS ONE, 2017, 12, e0173577.	1.1	5
239	Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors. PLoS ONE, 2018, 13, e0193773.	1.1	24
240	Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort. PLoS Pathogens, 2016, 12, e1005369.	2.1	241
241	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	2.1	33
242	Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathogens, 2017, 13, e1006182.	2.1	38
243	Phenotypic deficits in the HIV-1 envelope are associated with the maturation of a V2-directed broadly neutralizing antibody lineage. PLoS Pathogens, 2018, 14, e1006825.	2.1	11
244	RV144 HIV-1 vaccination impacts post-infection antibody responses. PLoS Pathogens, 2020, 16, e1009101.	2.1	13
245	Maternal Broadly Neutralizing Antibodies Select for Neutralization-Resistant Infant Transmitted/Founder HIV Variants. SSRN Electronic Journal, 0, , .	0.4	4
246	Broadly Neutralizing Antibodies against HIV-1 As a Novel Aspect of the Immune Response. Acta Naturae, 2015, 7, 11-21.	1.7	19
247	A broadly neutralizing macaque monoclonal antibody against the HIV-1 V3-Glycan patch. ELife, 2020, 9, .	2.8	10
248	Broad neutralization response in a subset of HIV-1 subtype C-infected viraemic non-progressors from southern India. Journal of General Virology, 2018, 99, 379-392.	1.3	2

#	Article	IF	CITATIONS
251	Selection of HIV Envelope strains for standardized assessments of vaccine-elicited antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. Journal of Virology, 2021, , JVI0164321.	1.5	7
252	Broadly Neutralizing Antibodies against HIV-1 As a Novel Aspect of the Immune Response. Acta Naturae, 2015, 7, 11-21.	1.7	12
253	Broadly neutralizing monoclonal antibodies for HIV prevention. Journal of the International AIDS Society, 2021, 24, e25829.	1.2	16
254	The Gp120 Alters its Conformation to Enhance Evasiveness and Infectivity. SSRN Electronic Journal, 0, ,	0.4	0
256	Potent Induction of Envelope-Specific Antibody Responses by Virus-Like Particle Immunogens Based on HIV-1 Envelopes from Patients with Early Broadly Neutralizing Responses. Journal of Virology, 2022, 96, JVI0134321.	1.5	10
258	Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins, 2022, 14, 138.	1.5	6
259	Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. Journal of Virology, 2022, 96, e0166821.	1.5	13
260	Cross-reactivity of glycan-reactive HIV-1 broadly neutralizing antibodies with parasite glycans. Cell Reports, 2022, 38, 110611.	2.9	3
261	Neutralization Sensitivity of HIV-1 CRF07_BC From an Untreated Patient With a Focus on Evolution Over Time. Frontiers in Cellular and Infection Microbiology, 2022, 12, 862754.	1.8	0
262	mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Reports, 2022, 38, 110514.	2.9	23
263	Development of Neutralization Breadth against Diverse HIVâ€1 by Increasing Ab–Ag Interface on V2. Advanced Science, 2022, , 2200063.	5.6	3
264	HIV-1 infections with multiple founders associate with the development of neutralization breadth. PLoS Pathogens, 2022, 18, e1010369.	2.1	5
265	Broadly neutralizing antibodies against HIV-1 and concepts for application. Current Opinion in Virology, 2022, 54, 101211.	2.6	18
266	Frequent Development of Broadly Neutralizing Antibodies in Early Life in a Large Cohort of Children With Human Immunodeficiency Virus. Journal of Infectious Diseases, 2022, 225, 1731-1740.	1.9	5
288	Vertical HIV-1 Transmission in the Setting of Maternal Broad and Potent Antibody Responses. Journal of Virology, 2022, 96, e0023122.	1.5	2
289	Complementary Roles of Antibody Heavy and Light Chain Somatic Hypermutation in Conferring Breadth and Potency to the HIV-1-Specific CAP256-VRC26 bNAb Lineage. Journal of Virology, 2022, 96, e0027022.	1.5	1
290	Broad and ultra-potent cross-clade neutralization of HIV-1 by a vaccine-induced CD4 binding site bovine antibody. Cell Reports Medicine, 2022, 3, 100635.	3.3	3
291	Materialsâ€based vaccines for infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	4

#	Article	IF	CITATIONS
292	Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathogens, 2022, 18, e1010574.	2.1	6
293	Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nature Reviews Immunology, 2023, 23, 142-158.	10.6	91
294	Antibody class-switching as a strategy to improve HIV-1 neutralization. Trends in Molecular Medicine, 2022, 28, 979-988.	3.5	4
296	Administration of broadly neutralizing anti-HIV-1 antibodies at ART initiation maintains long-term CD8+ T cell immunity. Nature Communications, 2022, 13, .	5.8	20
298	Optimal sequence-based design for multi-antigen HIV-1 vaccines using minimally distant antigens. PLoS Computational Biology, 2022, 18, e1010624.	1.5	1
299	Complementary antibody lineages achieve neutralization breadth in an HIV-1 infected elite neutralizer. PLoS Pathogens, 2022, 18, e1010945.	2.1	0
302	Long-Term and Low-Level Envelope C2V3 Stimulation by Highly Diverse Virus Isolates Leads to Frequent Development of Broad and Elite Antibody Neutralization in HIV-1-Infected Individuals. Microbiology Spectrum, 2022, 10, .	1.2	0
303	A Germline-Targeting Chimpanzee SIV Envelope Glycoprotein Elicits a New Class of V2-Apex Directed Cross-Neutralizing Antibodies. MBio, 2023, 14, .	1.8	4
304	Mapping the interplay between NK cells and HIV: therapeutic implications. Journal of Leukocyte Biology, 2023, 113, 109-138.	1.5	1
305	Germline-targeting HIV-1 Env vaccination induces VRC01-class antibodies with rare insertions. Cell Reports Medicine, 2023, 4, 101003.	3.3	7
306	Evolution of Antibody Responses in HIV-1 CRF01_AE Acute Infection: Founder Envelope V1V2 Impacts the Timing and Magnitude of Autologous Neutralizing Antibodies. Journal of Virology, 2023, 97, .	1.5	4
307	mRNA vaccines: The future of prevention of viral infections?. Journal of Medical Virology, 2023, 95, .	2.5	24
308	Mixed Origins: HIV gp120-Specific Memory Develops from Pre-Existing Memory and Naive B Cells Following Vaccination in Humans. AIDS Research and Human Retroviruses, 2023, 39, 350-366.	0.5	2
309	Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. Journal of Virology, 2023, 97, .	1.5	10
310	Mechanisms that promote the evolution of cross-reactive antibodies upon vaccination with designed influenza immunogens. Cell Reports, 2023, 42, 112160.	2.9	1
312	Amount of antigen, T follicular helper cells and affinity of founder cells shape the diversity of germinal center B cells: A computational study. Frontiers in Immunology, 0, 14, .	2.2	4
313	Neonatal SHIV infection in rhesus macaques elicited heterologous HIV-1-neutralizing antibodies. Cell Reports, 2023, 42, 112255.	2.9	1
319	Human Immunodeficiency Virus Vaccines. , 2023, , 458-483.e15.		0

ARTICLE

IF CITATIONS