Four corners: The largest US methane anomaly viewed

Geophysical Research Letters 41, 6898-6903 DOI: 10.1002/2014gl061503

Citation Report

#	Article	IF	CITATIONS
1	Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications. , 2015, , .		4
2	Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 2015, 15, 8889-8973.	4.9	942
3	Inverse modelling of CH ₄ emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmospheric Chemistry and Physics, 2015, 15, 113-133.	4.9	126
4	Source apportionment of methane and nitrous oxide in California's San Joaquin Valley at CalNex 2010 via positive matrix factorization. Atmospheric Chemistry and Physics, 2015, 15, 12043-12063.	4.9	28
5	Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmospheric Chemistry and Physics, 2015, 15, 7049-7069.	4.9	225
6	Quantifying lower tropospheric methane concentrations using GOSAT near-IR and TES thermal IR measurements. Atmospheric Measurement Techniques, 2015, 8, 3433-3445.	3.1	34
7	Geostationary Emission Explorer for Europe (G3E): mission concept and initial performance assessment. Atmospheric Measurement Techniques, 2015, 8, 4719-4734.	3.1	23
8	Shallow-ocean methane leakage and degassing to the atmosphere: triggered by offshore oil-gas and methane hydrate explorations. Frontiers in Marine Science, 2015, 2, .	2.5	15
9	The greenhouse gas project of ESA's climate change initiative (GHG-CCI): overview, achievements and future plans. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 165-172.	0.2	1
10	Reconciling divergent estimates of oil and gas methane emissions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15597-15602.	7.1	209
11	Subsea gas emissions from the Barbados Accretionary Complex. Marine and Petroleum Geology, 2015, 64, 31-42.	3.3	16
12	Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region. Environmental Science & Technology, 2015, 49, 8124-8131.	10.0	190
13	Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions. Environmental Science & Technology, 2015, 49, 8158-8166.	10.0	100
14	Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region. Environmental Science & Technology, 2015, 49, 8147-8157.	10.0	133
16	Air Quality and Climate Connections. Journal of the Air and Waste Management Association, 2015, 65, 645-685.	1.9	322
18	Characterization of anthropogenic methane plumes with the Hyperspectral Thermal Emission Spectrometer (HyTES): a retrieval method and error analysis. Atmospheric Measurement Techniques, 2016, 9, 3165-3173.	3.1	16
19	Global stratospheric measurements of the isotopologues of methane from the Atmospheric Chemistry Experiment Fourier transform spectrometer. Atmospheric Measurement Techniques, 2016, 9, 1095-1111.	3.1	14
20	Spaceâ€based remote imaging spectroscopy of the Aliso Canyon CH ₄ superemitter. Geophysical Research Letters, 2016, 43, 6571-6578.	4.0	76

#	Article	IF	CITATIONS
21	Energy Intensity and Greenhouse Gas Emissions from Tight Oil Production in the Bakken Formation. Energy & Fuels, 2016, 30, 9613-9621.	5.1	39
22	Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field― Simulator. Environmental Science & Technology, 2016, 50, 4546-4553.	10.0	40
23	Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9734-9739.	7.1	174
24	The Airborne Methane Plume Spectrometer (AMPS): Quantitative imaging of methane plumes in real time. , 2016, , .		11
25	Methane Leaks from Natural Gas Systems Follow Extreme Distributions. Environmental Science & Technology, 2016, 50, 12512-12520.	10.0	195
26	Gridded National Inventory of U.S. Methane Emissions. Environmental Science & Technology, 2016, 50, 13123-13133.	10.0	165
27	Observing entrainment mixing, photochemical ozone production, and regional methane emissions by aircraft using a simple mixed-layer framework. Atmospheric Chemistry and Physics, 2016, 16, 15433-15450.	4.9	35
28	Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics, 2016, 16, 14371-14396.	4.9	230
29	Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and methane column observations. Atmospheric Chemistry and Physics, 2016, 16, 3227-3244.	4.9	108
30	Differential column measurements using compact solar-tracking spectrometers. Atmospheric Chemistry and Physics, 2016, 16, 8479-8498.	4.9	75
31	Large XCH ₄ anomaly in summer 2013 over northeast Asia observed by GOSAT. Atmospheric Chemistry and Physics, 2016, 16, 9149-9161.	4.9	6
32	Using stable isotopes of hydrogen to quantify biogenic and thermogenic atmospheric methane sources: A case study from the Colorado Front Range. Geophysical Research Letters, 2016, 43, 11,462.	4.0	34
33	Emissions from oil and gas operations in the United States and their air quality implications. Journal of the Air and Waste Management Association, 2016, 66, 549-575.	1.9	66
34	Attributing Atmospheric Methane to Anthropogenic Emission Sources. Accounts of Chemical Research, 2016, 49, 1344-1350.	15.6	27
36	Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift. Geophysical Research Letters, 2016, 43, 4617-4623.	4.0	81
37	Methane Emissions from the Natural Gas Supply Chain. , 2016, , 33-48.		6
38	Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA. Science, 2016, 351, 1317-1320.	12.6	183
39	A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface observations. Geophysical Research Letters, 2016, 43, 2218-2224.	4.0	118

CITATION REPORT

#	Article	IF	CITATIONS
40	Methane Isotope Instrument Validation and Source Identification at Four Corners, New Mexico, United States. Journal of Physical Chemistry A, 2016, 120, 1488-1494.	2.5	7
41	Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set. Remote Sensing of Environment, 2017, 203, 276-295.	11.0	52
42	Airborne Quantification of Methane Emissions over the Four Corners Region. Environmental Science & Technology, 2017, 51, 5832-5837.	10.0	52
43	Fugitive Emissions from Coal Seam Gas Production. , 0, , 467-483.		0
44	The Natural Gas Supply Chain: The Importance of Methane and Carbon Dioxide Emissions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3-20.	6.7	101
45	Global inverse modeling of CH ₄ sources and sinks: an overview of methods. Atmospheric Chemistry and Physics, 2017, 17, 235-256.	4.9	75
46	Constraining sector-specific CO ₂ and CH ₄ emissions in the US. Atmospheric Chemistry and Physics, 2017, 17, 3963-3985.	4.9	19
47	Satellite-derived methane hotspot emission estimates using a fast data-driven method. Atmospheric Chemistry and Physics, 2017, 17, 5751-5774.	4.9	63
48	Methane emissions from dairies in the Los Angeles Basin. Atmospheric Chemistry and Physics, 2017, 17, 7509-7528.	4.9	45
49	Global height-resolved methane retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp. Atmospheric Measurement Techniques, 2017, 10, 4135-4164.	3.1	18
50	Assessment of Anthropogenic Methane Emissions over Large Regions Based on GOSAT Observations and High Resolution Transport Modeling. Remote Sensing, 2017, 9, 941.	4.0	7
51	MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane. Remote Sensing, 2017, 9, 1052.	4.0	88
52	Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG. Atmospheric Measurement Techniques, 2017, 10, 3833-3850.	3.1	72
53	Source Partitioning of Methane Emissions and its Seasonality in the U.S. Midwest. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 646-659.	3.0	18
54	Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions. Nature Geoscience, 2018, 11, 178-184.	12.9	56
55	Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophysical Research Letters, 2018, 45, 3682-3689.	4.0	170
56	Quantifying uncertainties from mobile-laboratory-derived emissions of well pads using inverse Gaussian methods. Atmospheric Chemistry and Physics, 2018, 18, 15145-15168.	4.9	47
57	Testing the performance of field calibration techniques for low-cost gas sensors in new deployment locations: across a county line and across Colorado. Atmospheric Measurement Techniques, 2018, 11, 6351-6378.	3.1	21

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
58	Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales. Atmospheric Chemistry and Physics, 2018, 18, 8265-8278.	4.9	27
59	A physics-based approach to oversample multi-satellite, multispecies observations to a common grid. Atmospheric Measurement Techniques, 2018, 11, 6679-6701.	3.1	64
60	Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance. Atmospheric Chemistry and Physics, 2018, 18, 7361-7378.	4.9	59
61	Development of a Fuel-Based Oil and Gas Inventory of Nitrogen Oxides Emissions. Environmental Science & Technology, 2018, 52, 10175-10185.	10.0	19
62	Natural geological seepage of hydrocarbon gas in the Appalachian Basin and Midwest USA in relation to shale tectonic fracturing and past industrial hydrocarbon production. Science of the Total Environment, 2018, 644, 982-993.	8.0	23
63	Assessing a low-cost methane sensor quantification system for use in complex rural and urban environments. Atmospheric Measurement Techniques, 2018, 11, 3569-3594.	3.1	38
64	Large Fugitive Methane Emissions From Urban Centers Along the U.S. East Coast. Geophysical Research Letters, 2019, 46, 8500-8507.	4.0	83
65	A Multiplatform Inversion Estimation of Statewide and Regional Methane Emissions in California during 2014–2016. Environmental Science & Technology, 2019, 53, 9636-9645.	10.0	7
66	Satellite Discovery of Anomalously Large Methane Point Sources From Oil/Gas Production. Geophysical Research Letters, 2019, 46, 13507-13516.	4.0	127
67	Detection of Strong NOX Emissions from Fine-scale Reconstruction of the OMI Tropospheric NO2 Product. Remote Sensing, 2019, 11, 1861.	4.0	5
68	Emissions of methane in Europe inferred by total column measurements. Atmospheric Chemistry and Physics, 2019, 19, 3963-3980.	4.9	10
69	Flux towers in the sky: global ecology from space. New Phytologist, 2019, 224, 570-584.	7.3	111
70	Anthropogenic Methane Emission and Its Partitioning for the Yangtze River Delta Region of China. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1148-1170.	3.0	14
71	A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas. Environmental Research Letters, 2019, 14, 053002.	5.2	64
72	Characterizing Regional Methane Emissions from Natural Gas Liquid Unloading. Environmental Science & Technology, 2019, 53, 4619-4629.	10.0	17
73	Interpreting contemporary trends in atmospheric methane. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2805-2813.	7.1	205
74	Source Apportionment of Ambient Methane Enhancements in Los Angeles, California, To Evaluate Emission Inventory Estimates. Environmental Science & Technology, 2019, 53, 2961-2970.	10.0	13
75	Inversion Estimates of Lognormally Distributed Methane Emission Rates From the Haynesvilleâ€Bossier Oil and Gas Production Region Using Airborne Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3520-3531.	3.3	18

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
76	Methane Mapping with Future Satellite Imaging Spectrometers. Remote Sensing, 2019, 11, 3054.	4.0	30
77	A study of synthetic ¹³ CH ₄ retrievals from TROPOMI and Sentinel-5/UVNS. Atmospheric Measurement Techniques, 2019, 12, 6273-6301.	3.1	5
78	Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmospheric Measurement Techniques, 2019, 12, 5655-5668.	3.1	58
79	Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proceedings of the United States of America, 2019, 116, 26376-26381.	7.1	107
80	Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 1475-1512.	4.9	73
81	Nitrogen Oxide Emissions from U.S. Oil and Gas Production: Recent Trends and Source Attribution. Geophysical Research Letters, 2020, 47, e2019GL085866.	4.0	31
82	Bias Correction of the Ratio of Total Column CH4 to CO2 Retrieved from GOSAT Spectra. Remote Sensing, 2020, 12, 3155.	4.0	2
83	Long Term, Periodic Aerial Surveys Cost Effectively Mitigate Methane Emissions. , 2020, , .		3
84	The Global Carbon and Oxygen Cycles. , 2020, , 453-481.		1
85	Revised Estimation Method for Emissions from Automated Plunger Lift Liquid Unloadings. Environments - MDPI, 2020, 7, 25.	3.3	0
86	Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network. Geophysical Research Letters, 2020, 47, e2020GL087869.	4.0	16
87	Daily Satellite Observations of Methane from Oil and Gas Production Regions in the United States. Scientific Reports, 2020, 10, 1379.	3.3	76
88	Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Reviews of Geophysics, 2020, 58, e2019RG000675.	23.0	163
89	Fingerprint of rice paddies in spatial–temporal dynamics of atmospheric methane concentration in monsoon Asia. Nature Communications, 2020, 11, 554.	12.8	56
90	Quantifying methane emissions from the largest oil-producing basin in the United States from space. Science Advances, 2020, 6, eaaz5120.	10.3	155
91	A simple and quick sensitivity analysis method for methane isotopologues detection with GOSAT-TANSO-FTS. UCL Open Environment, 0, 2, .	0.0	1
92	Imaging Spectroscopy for Conservation Applications. Remote Sensing, 2021, 13, 292.	4.0	10
93	Evaluation of single-footprint AIRS CH ₄ profile retrieval uncertainties using aircraft profile measurements. Atmospheric Measurement Techniques, 2021, 14, 335-354.	3.1	15

#	Article	IF	CITATIONS
94	Recent advances and opportunities in planning green petroleum supply chains: a model-oriented review. International Journal of Sustainable Development and World Ecology, 2021, 28, 524-539.	5.9	15
95	Meteorological Drivers of Permian Basin Methane Anomalies Derived from TROPOMI. Remote Sensing, 2021, 13, 896.	4.0	11
96	Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 2021, 21, 3643-3666.	4.9	68
97	Systematic detection of local CH ₄ anomalies by combining satellite measurements with high-resolution forecasts. Atmospheric Chemistry and Physics, 2021, 21, 5117-5136.	4.9	24
98	Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic. Atmospheric Chemistry and Physics, 2021, 21, 6605-6626.	4.9	55
100	Unravelling a large methane emission discrepancy in Mexico using satellite observations. Remote Sensing of Environment, 2021, 260, 112461.	11.0	49
101	Coal seam gas industry methane emissions in the Surat Basin, Australia: comparing airborne measurements with inventories. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200458.	3.4	7
102	Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. Atmospheric Chemistry and Physics, 2021, 21, 14159-14175.	4.9	54
103	Combined Mixed Potential Electrochemical Sensors and Artificial Neural Networks for the Quantificationand Identification of Methane in Natural Gas Emissions Monitoring. Journal of the Electrochemical Society, 2021, 168, 097506.	2.9	13
104	The quantification of methane emissions and assessment of emissions data for the largest natural gas supply chains. Journal of Cleaner Production, 2021, 320, 128856.	9.3	23
105	Investigating large methane enhancements in the U.S. San Juan Basin. Elementa, 2020, 8, .	3.2	8
106	Air quality impacts from oil and natural gas development in Colorado. Elementa, 2020, 8, .	3.2	17
111	Quantifying the impact of aerosol scattering on the retrieval of methane from airborne remote sensing measurements. Atmospheric Measurement Techniques, 2020, 13, 6755-6769.	3.1	8
113	The Importance of Matching Needs to Satellite System Capability when Monitoring Methane Emissions from Space. , 2021, , .		1
114	Methane Growth Rate Estimation and Its Causes in Western Canada Using Satellite Observations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033948.	3.3	1
117	Globaler Klimawandel: die Grundlagen. , 2019, , 1-36.		0
118	Análisis de los niveles de metano y dióxido de nitrógeno en área de producción petrolera usando el sensor TROPOMI/Sentinel-5P. , 2020, , .		0
119	Fossil Fuels. , 2020, , 131-155.		0

CITATION REPORT

#	Article	IF	CITATIONS
121	Dairy Methane Emissions in California's San Joaquin Valley Inferred Using Groundâ€based Remote Sensing Field Observations in the Summer and Winter. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034785.	3.3	6
122	Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations. Environmental Science & Technology, 2021, 55, 16573-16580.	10.0	39
123	Enhancements in Ammonia and Methane from Agricultural Sources in the Northeastern Colorado Front Range Using Observations from a Small Research Aircraft. Environmental Science & Technology, 2022, 56, 2236-2247.	10.0	7
124	Monitoring of Methane Emissions in Oil and Gas from Space: Matching Needs with Satellite System Capability, and Advantages of High Resolution Monitoring. , 2021, , .		2
125	Strength in numbers: how the different satellite systems used to monitor methane emissions from space have different, yet complementary, capabilities to help the oil and gas industry meet its decarbonisation goals. , 2022, 62, S112-S116.		0
126	Using Multiscale Ethane/Methane Observations to Attribute Coal Mine Vent Emissions in the San Juan Basin From 2013 to 2021. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	1
127	Strong methane point sources contribute a disproportionate fraction of total emissions across multiple basins in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	31
128	Inefficient and unlit natural gas flares both emit large quantities of methane. Science, 2022, 377, 1566-1571.	12.6	36
129	Satellite quantification of oil and natural gas methane emissions in the US and Canada including contributions from individual basins. Atmospheric Chemistry and Physics, 2022, 22, 11203-11215.	4.9	32
130	Space-based Earth observation in support of the UNFCCC Paris Agreement. Frontiers in Environmental Science, 0, 10, .	3.3	6
131	Comparing airborne algorithms for greenhouse gas flux measurements over the Alberta oil sands. Atmospheric Measurement Techniques, 2022, 15, 5841-5859.	3.1	4
132	Assessing Methane Emissions From the Natural Gas Industry: Reviewing the Case of China in a Comparative Framework. Current Climate Change Reports, 2022, 8, 115-124.	8.6	2
133	Recent Advances Toward Transparent Methane Emissions Monitoring: A Review. Environmental Science & Technology, 2022, 56, 16567-16581.	10.0	7
134	A Struggle to Survive. , 2023, , 223-241.		0
136	Excess methane emissions from shallow water platforms elevate the carbon intensity of US Gulf of Mexico oil and gas production. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
137	Single-blind validation of space-based point-source detection and quantification of onshore methane emissions. Scientific Reports, 2023, 13, .	3.3	20
138	Estimating ground-level CH ₄ concentrations inferred from Sentinel-5P. International Journal of Remote Sensing, 2023, 44, 4796-4814.	2.9	1
139	c¤eiŒäšc"²cf·æŽ'æ"¾å«æ~Ÿé¥æŸc"c©¶è;›å±•äŽå±•望. Guangxue Xuebao/Acta Optica Sinica. 2023. 43.	1899908.	0

		CITATION REPORT		
#	Article	IF	CITATIONS	
140	A Preliminary Methane Emission Study of Typical Coalbed Methane Production Areas Based on Multi-satellites Remote Sensing Data. Journal of Physics: Conference Series, 2024, 2679, 012056.	0.4	0	