Marine Origin Collagens and Its Potential Applications

Marine Drugs 12, 5881-5901

DOI: 10.3390/md12125881

Citation Report

#	Article	IF	CITATIONS
1	Effect of type I collagen derived from tilapia scale on odontoblast-like cells. Tissue Engineering and Regenerative Medicine, 2015, 12, 231-238.	1.6	9
2	Prophylactic Administration of Fucoidan Represses Cancer Metastasis by Inhibiting Vascular Endothelial Growth Factor (VEGF) and Matrix Metalloproteinases (MMPs) in Lewis Tumor-Bearing Mice. Marine Drugs, 2015, 13, 1882-1900.	2.2	85
3	The Bright Side of Gelatinous Blooms: Nutraceutical Value and Antioxidant Properties of Three Mediterranean Jellyfish (Scyphozoa). Marine Drugs, 2015, 13, 4654-4681.	2.2	80
4	Drug delivery systems and cartilage tissue engineering scaffolding using marine-derived products. , 2015, , 123-136.		О
5	Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochemistry, 2015, 50, 2105-2111.	1.8	58
6	Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomaterialia, 2016, 43, 160-169.	4.1	123
7	Toward Organs on Demand: Breakthroughs and Challenges in Models of Organogenesis. Current Pathobiology Reports, 2016, 4, 77-85.	1.6	21
9	Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innovative Food Science and Emerging Technologies, 2016, 37, 201-215.	2.7	171
10	Hydrogels based on collagen and fibrin – frontiers and applications. BioNanoMaterials, 2016, 17, 3-12.	1.4	43
11	Extraction of Collagen/Gelatin from the Marine Demosponge <i>Chondrosia reniformis</i> (Nardo,) Tj ETQq1 1 Chemistry Research, 2016, 55, 6922-6930.	0.784314 1.8	rgBT /Overloci 59
11			
	Chemistry Research, 2016, 55, 6922-6930. Design and development of a piscine collagen blended pullulan hydrogel for skin tissue engineering.	1.8	59
12	Chemistry Research, 2016, 55, 6922-6930. Design and development of a piscine collagen blended pullulan hydrogel for skin tissue engineering. RSC Advances, 2016, 6, 57863-57871. Evaluation of alternative sources of collagen fractions from Loligo vulgaris squid mantle.	1.7	27
12	Chemistry Research, 2016, 55, 6922-6930. Design and development of a piscine collagen blended pullulan hydrogel for skin tissue engineering. RSC Advances, 2016, 6, 57863-57871. Evaluation of alternative sources of collagen fractions from Loligo vulgaris squid mantle. International Journal of Biological Macromolecules, 2016, 87, 504-513. Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous	1.7	59 27 26
12 13	Chemistry Research, 2016, 55, 6922-6930. Design and development of a piscine collagen blended pullulan hydrogel for skin tissue engineering. RSC Advances, 2016, 6, 57863-57871. Evaluation of alternative sources of collagen fractions from Loligo vulgaris squid mantle. International Journal of Biological Macromolecules, 2016, 87, 504-513. Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions. Biofabrication, 2016, 8, 015015. Fabrication of duck's feet collagen–silk hybrid biomaterial for tissue engineering. International	1.8 1.7 3.6 3.7	27 26 48
12 13 14	Chemistry Research, 2016, 55, 6922-6930. Design and development of a piscine collagen blended pullulan hydrogel for skin tissue engineering. RSC Advances, 2016, 6, 57863-57871. Evaluation of alternative sources of collagen fractions from Loligo vulgaris squid mantle. International Journal of Biological Macromolecules, 2016, 87, 504-513. Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions. Biofabrication, 2016, 8, 015015. Fabrication of duck's feet collagen–silk hybrid biomaterial for tissue engineering. International Journal of Biological Macromolecules, 2016, 85, 442-450. Marine-derived collagen biomaterials from echinoderm connective tissues. Marine Environmental	1.8 1.7 3.6 3.7	59 27 26 48
12 13 14 15	Chemistry Research, 2016, 55, 6922-6930. Design and development of a piscine collagen blended pullulan hydrogel for skin tissue engineering. RSC Advances, 2016, 6, 57863-57871. Evaluation of alternative sources of collagen fractions from Loligo vulgaris squid mantle. International Journal of Biological Macromolecules, 2016, 87, 504-513. Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions. Biofabrication, 2016, 8, 015015. Fabrication of duck's feet collagen–silk hybrid biomaterial for tissue engineering. International Journal of Biological Macromolecules, 2016, 85, 442-450. Marine-derived collagen biomaterials from echinoderm connective tissues. Marine Environmental Research, 2017, 128, 46-57. Natural marine sponges for bone tissue engineering: The state of art and future perspectives. Journal	1.8 1.7 3.6 3.7 3.6	59 27 26 48 32 52

#	Article	IF	CITATIONS
20	Collagen peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food and Function, 2017, 8, 1144-1151.	2.1	47
21	<i>In Vivo</i> Immune Responses of Cross-Linked Electrospun Tilapia Collagen Membrane . Tissue Engineering - Part A, 2017, 23, 1110-1119.	1.6	26
22	Effects of early enteral nutrition supplemented with collagen peptides on post-burn inflammatory responses in a mouse model. Food and Function, 2017, 8, 1933-1941.	2.1	18
23	Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering. Materials Science and Engineering C, 2017, 78, 787-795.	3.8	52
24	Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomaterials Science and Engineering, 2017, 3, 3098-3122.	2.6	99
25	Fish scale-derived collagen patch promotes growth of blood and lymphatic vessels in vivo. Acta Biomaterialia, 2017, 63, 246-260.	4.1	48
26	Deformation and fracture of echinoderm collagen networks. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 42-52.	1.5	21
27	Hydrothermal Synthesis of Spongin-Based Materials. , 2017, , 251-274.		3
28	Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. International Journal of Nanomedicine, 2017, Volume 12, 3495-3507.	3.3	81
29	Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Marine Drugs, 2017, 15, 143.	2.2	175
30	Collagen from the Marine Sponges Axinella cannabina and Suberites carnosus: Isolation and Morphological, Biochemical, and Biophysical Characterization. Marine Drugs, 2017, 15, 152.	2.2	78
31	Optimization of Collagenase Production by Pseudoalteromonas sp. SJN2 and Application of Collagenases in the Preparation of Antioxidative Hydrolysates. Marine Drugs, 2017, 15, 377.	2.2	22
32	Bioinspiring Chondrosia reniformis (Nardo, 1847) Collagen-Based Hydrogel: A New Extraction Method to Obtain a Sticky and Self-Healing Collagenous Material. Marine Drugs, 2017, 15, 380.	2.2	22
33	Nanotechnology to enhance transdermal delivery of hydrophilic humectants for improved skin care: a model for therapeutic applications. , 2017, , 919-939.		2
34	Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis niloticus): Characterization and Wound Healing Evaluation. Marine Drugs, 2017, 15, 102.	2.2	152
35	Cosmetic Potential of Marine Fish Skin Collagen. Cosmetics, 2017, 4, 39.	1.5	130
36	Collagen from Marine Biological Sources and Medical Applications. Chemistry and Biodiversity, 2018, 15, e1700557.	1.0	169
37	Squid type II collagen as a novel biomaterial: Isolation, characterization, immunogenicity and relieving effect on degenerative osteoarthritis via inhibiting STAT1 signaling in pro-inflammatory macrophages. Materials Science and Engineering C, 2018, 89, 283-294.	3.8	48

#	ARTICLE	IF	CITATIONS
38	Nutraceuticals and skin appearance: Is there any evidence to support this growing trend?. Nutrition Bulletin, 2018, 43, 10-45.	0.8	9
39	Efficacy evaluation of electric field frequency and temperature on dielectric properties of collagen cross-linked by glutaraldehyde. Colloids and Surfaces B: Biointerfaces, 2018, 162, 345-350.	2.5	8
40	Antioxidant and anti-inflammatory capacities of collagen peptides from milkfish (Chanos chanos) scales. Journal of Food Science and Technology, 2018, 55, 2310-2317.	1.4	33
41	Type I Collagen from Jellyfish <i>Catostylus mosaicus</i> for Biomaterial Applications. ACS Biomaterials Science and Engineering, 2018, 4, 2115-2125.	2.6	52
42	Application of bacterial collagenolytic proteases for the extraction of type I collagen from the skin of bigeye tuna (Thunnus obesus). LWT - Food Science and Technology, 2018, 89, 44-51.	2.5	33
43	Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chemistry, 2018, 242, 568-578.	4.2	104
44	Biopolymers from Wastes to High-Value Products in Biomedicine. Energy, Environment, and Sustainability, 2018, , 1-44.	0.6	19
45	Collagen: A review on its sources and potential cosmetic applications. Journal of Cosmetic Dermatology, 2018, 17, 20-26.	0.8	309
46	A new collagenase enzyme of the marine sponge pathogen Pseudoalteromonas agarivorans NW4327 is uniquely linked with a TonB dependent receptor. International Journal of Biological Macromolecules, 2018, 109, 1140-1146.	3.6	15
47	Fabrication and characterization of the porous duck's feet collagen sponge for wound healing applications. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 960-971.	1.9	13
48	Tilapia (Oreochromis aureus) Collagen for Medical Biomaterials. , 2018, , .		8
49	Improvement of skin condition on skin moisture and anti-melanogenesis by collagen peptides from milkfish (<i>Chanos chanos</i>) scales. IOP Conference Series: Materials Science and Engineering, 2018, 382, 022067.	0.3	10
50	Elicited ROS Scavenging Activity, Photoprotective, and Wound-Healing Properties of Collagen-Derived Peptides from the Marine Sponge Chondrosia reniformis. Marine Drugs, 2018, 16, 465.	2.2	58
51	Evaluation of the Potential of Collagen from Codfish Skin as a Biomaterial for Biomedical Applications. Marine Drugs, 2018, 16, 495.	2.2	76
52	Effects of Composite Supplement Containing Collagen Peptide and Ornithine on Skin Conditions and Plasma IGF-1 Levels—A Randomized, Double-Blind, Placebo-Controlled Trial. Marine Drugs, 2018, 16, 482.	2.2	36
53	The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications. Marine Drugs, 2018, 16, 396.	2.2	17
54	'Like scooping money out of the sea': Chinese luxury seafood consumption, roving bandits, and the boom-and-bust jellyfish fishery on the Miskitu Coast of Nicaragua. Journal of Latin American Geography, 2018, 17, 209-238.	0.0	10
55	Hydroxyapatite from Cuttlefish Bone: Isolation, Characterizations, and Applications. Biotechnology and Bioprocess Engineering, 2018, 23, 383-393.	1.4	32

#	Article	IF	Citations
56	Chitosan Applications in Food Industry. , 2018, , 469-491.		17
57	Collagen and collagenolytic proteases: A review. Biocatalysis and Agricultural Biotechnology, 2018, 15, 43-55.	1.5	63
58	Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects. Marine Drugs, 2018, 16, 91.	2.2	40
59	Facial Bone Reconstruction Using both Marine or Non-Marine Bone Substitutes: Evaluation of Current Outcomes in a Systematic Literature Review. Marine Drugs, 2018, 16, 27.	2.2	68
60	Collagens of Poriferan Origin. Marine Drugs, 2018, 16, 79.	2.2	72
61	Physicochemical Properties and Biocompatibility Evaluation of Collagen from the Skin of Giant Croaker (Nibea japonica). Marine Drugs, 2018, 16, 222.	2.2	40
62	Production, Characterization and Biocompatibility Evaluation of Collagen Membranes Derived from Marine Sponge Chondrosia reniformis Nardo, 1847. Marine Drugs, 2018, 16, 111.	2.2	54
63	The effect of radio-frequency heating on vacuum-packed saury (<i>Cololabis saira</i>) in water. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1576-1583.	0.6	5
64	Extraction, optimization and characterization of collagen from sole fish skin. Sustainable Chemistry and Pharmacy, 2018, 9, 19-26.	1.6	84
65	Marine Collagen/Apatite Composite Scaffolds Envisaging Hard Tissue Applications. Marine Drugs, 2018, 16, 269.	2.2	51
66	Marine Collagen as A Promising Biomaterial for Biomedical Applications. Marine Drugs, 2019, 17, 467.	2.2	182
67	Application Properties of Bath Liquids for Children Based on Sodium Laureth Sulfate with Addition of Different Molecular Weight Collagens Derived from Marine Sources. Journal of Surfactants and Detergents, 2019, 22, 1469-1475.	1.0	2
68	Identification and Structure–Activity Relationship of Intestinal Epithelial Barrier Function Protective Collagen Peptides from Alaska Pollock Skin. Marine Drugs, 2019, 17, 450.	2.2	16
69	Availability of marine collagen from Newfoundland fisheries and aquaculture waste resources. Bioresource Technology Reports, 2019, 7, 100271.	1.5	15
70	Formulation and characterization of some oil in water cosmetic emulsions based on collagen hydrolysate and vegetable oils mixtures. Pure and Applied Chemistry, 2019, 91, 1493-1507.	0.9	11
71	Remarkable Body Architecture of Marine Sponges as Biomimetic Structure for Application in Tissue Engineering. Springer Series in Biomaterials Science and Engineering, 2019, , 27-50.	0.7	7
72	Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. International Journal of Biological Macromolecules, 2019, 138, 854-865.	3.6	208
73	Biomedical Importance of Marine Peptides/Toxins. , 2019, , 1-14.		0

#	Article	IF	CITATIONS
74	Evaluation of decellularized tilapia skin as a tissue engineering scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1779-1791.	1.3	32
75	Bioprocessing of mussel by-products for value added ingredients. Trends in Food Science and Technology, 2019, 92, 111-121.	7.8	29
76	Physicochemical and Biological Properties of Gelatin Extracted from Marine Snail Rapana venosa. Marine Drugs, 2019, 17, 589.	2,2	32
77	Improved culture of fastidious Gemmata spp. bacteria using marine sponge skeletons. Scientific Reports, 2019, 9, 11707.	1.6	7
78	Evaluation of biocompatibility and immunogenicity of micro/nanofiber materials based on tilapia skin collagen. Journal of Biomaterials Applications, 2019, 33, 1118-1127.	1.2	26
79	Characterization of Turbot (Scophthalmus maximus) Skin and the Extracted Acid-Soluble Collagen. Journal of Ocean University of China, 2019, 18, 687-692.	0.6	5
80	Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study. Journal of Materials Science: Materials in Medicine, 2019, 30, 64.	1.7	9
81	Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus) Tj ETQq1 I	. 0,7,8431	4 rgBT /Oved
82	Collagen Extracted from Bigeye Tuna (Thunnus obesus) Skin by Isoelectric Precipitation: Physicochemical Properties, Proliferation, and Migration Activities. Marine Drugs, 2019, 17, 261.	2.2	26
83	Barrel Jellyfish (Rhizostoma pulmo) as Source of Antioxidant Peptides. Marine Drugs, 2019, 17, 134.	2.2	50
84	Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Journal of Materials Science: Materials in Medicine, 2019, 30, 32.	1.7	150
85	Dietary <scp> </scp> -tryptophan alleviated LPS-induced intestinal barrier injury by regulating tight junctions in a Caco-2 cell monolayer model. Food and Function, 2019, 10, 2390-2398.	2.1	69
86	Collagen peptides administration in early enteral nutrition intervention attenuates burn-induced intestinal barrier disruption: Effects on tight junction structure. Journal of Functional Foods, 2019, 55, 167-174.	1.6	5
87	Development of an Integrated Mariculture for the Collagen-Rich Sponge Chondrosia reniformis. Marine Drugs, 2019, 17, 29.	2.2	27
88	Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Materials Chemistry and Physics, 2019, 228, 344-356.	2.0	58
89	Collagen of Extracellular Matrix from Marine Invertebrates and Its Medical Applications. Marine Drugs, 2019, 17, 118.	2.2	68
90	Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-Products. Marine Drugs, 2019, 17, 689.	2.2	156
92	Isolation of collagen from chicken feet with hydro-extraction method and its physico-chemical characterisation. IOP Conference Series: Earth and Environmental Science, 2019, 335, 012018.	0.2	1

#	Article	IF	Citations
93	Marine Collagen Substrates for 2D and 3D Ovarian Cancer Cell Systems. Frontiers in Bioengineering and Biotechnology, 2019, 7, 343.	2.0	27
94	Fish and fish side streams are valuable sources of high-value components. Food Quality and Safety, 2019, 3, 209-226.	0.6	36
95	Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation. Marine Biotechnology, 2019, 21, 30-37.	1.1	29
96	Marine organisms as a source of natural matrix for bone tissue engineering. Ceramics International, 2019, 45, 1469-1481.	2.3	41
97	Biomaterials, substitutes, and tissue engineering in bone repair: current and future concepts. Comparative Clinical Pathology, 2019, 28, 879-891.	0.3	3
98	Acid and enzymatic extraction of collagen from Atlantic cod (<i>Gadus Morhua</i>) swim bladders envisaging health-related applications. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 20-37.	1.9	54
99	Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods. Waste and Biomass Valorization, 2020, 11, 3223-3246.	1.8	56
100	Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science and Technology, 2020, 97, 196-209.	7.8	463
101	Marine invertebrates' proteins: A recent update on functional property. Journal of King Saud University - Science, 2020, 32, 1496-1502.	1.6	14
102	Collagen Based Materials in Cosmetic Applications: A Review. Materials, 2020, 13, 4217.	1.3	83
103	Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers, 2020, 12, 2230.	2.0	197
104	Sea Cucumber Derived Type I Collagen: A Comprehensive Review. Marine Drugs, 2020, 18, 471.	2.2	51
105	The Effect of Depth on the Morphology, Bacterial Clearance, and Respiration of the Mediterranean Sponge Chondrosia reniformis (Nardo, 1847). Marine Drugs, 2020, 18, 358.	2.2	24
106	Progress in Modern Marine Biomaterials Research. Marine Drugs, 2020, 18, 589.	2.2	64
107	Biphasic fish collagen scaffold for osteochondral regeneration. Materials and Design, 2020, 195, 108947.	3.3	31
108	The Biological Evaluation of Jellyfish Collagen as a New Research Tool for the Growth and Culture of iPSC Derived Microglia. Frontiers in Marine Science, 2020, 7, .	1.2	15
109	The potential roles of sponges in integrated mariculture. Reviews in Aquaculture, 2021, 13, 1159-1171.	4.6	18
113	From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine. Marine Drugs, 2020, 18, 414.	2.2	46

#	Article	IF	CITATIONS
114	Extraction and Characterization of Collagen from Elasmobranch Byproducts for Potential Biomaterial Use. Marine Drugs, 2020, 18, 617.	2.2	33
115	Collagen membranes for skin wound repair: A systematic review. Journal of Biomaterials Applications, 2021, 36, 95-112.	1.2	20
116	Collagen from chemical and enzymatic hydrolysis as a bone graft in the periodontal regenerative therapy. AIP Conference Proceedings, 2020, , .	0.3	0
118	Marine spongin incorporation into Biosilicate $\hat{A}^{@}$ for tissue engineering applications: An in vivo study. Journal of Biomaterials Applications, 2020, 35, 205-214.	1.2	10
119	Collagenâ€"An Important Fish Allergen for Improved Diagnosis. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3084-3092.e10.	2.0	26
120	Structural feature and self-assembly properties of type II collagens from the cartilages of skate and sturgeon. Food Chemistry, 2020, 331, 127340.	4.2	43
121	Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering. Biomedical Materials (Bristol), 2020, 15, 055030.	1.7	31
122	Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications. Marine Drugs, 2020, 18, 346.	2.2	20
123	Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, 2020, , .	0.8	5
124	Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. Advances in Experimental Medicine and Biology, 2020, 1249, 173-201.	0.8	25
125	Aquaculture and its by-products as a source of nutrients and bioactive compounds. Advances in Food and Nutrition Research, 2020, 92, 1-33.	1.5	24
126	3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Marine Drugs, 2020, 18, 123.	2.2	36
127	Collagen from Atlantic cod (Gadus morhua) skins extracted using CO2 acidified water with potential application in healthcare. Journal of Polymer Research, 2020, 27, 1.	1.2	44
128	Isolation and Allergenicity of Protein Collagen from Parang-Parang Fish Skin (Cirocentrus dorab). IOP Conference Series: Earth and Environmental Science, 2020, 411, 012054.	0.2	3
129	Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Marine Drugs, 2020, 18, 214.	2.2	165
130	Cell-Laden Biomimetically Mineralized Shark-Skin-Collagen-Based 3D Printed Hydrogels for the Engineering of Hard Tissues. ACS Biomaterials Science and Engineering, 2020, 6, 3664-3672.	2.6	35
131	Evaluation of the In Vivo Biological Effects of Marine Collagen and Hydroxyapatite Composite in a Tibial Bone Defect Model in Rats. Marine Biotechnology, 2020, 22, 357-366.	1.1	9
132	Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects. Journal of Bone and Mineral Metabolism, 2020, 38, 639-647.	1.3	15

#	Article	IF	CITATIONS
133	Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Materials Science and Engineering C, 2020, 113, 110963.	3.8	102
134	Materials science perspective of multifunctional materials derived from collagen. International Materials Reviews, 2021, 66, 160-187.	9.4	20
135	A review on recent advances and applications of fish collagen. Critical Reviews in Food Science and Nutrition, 2021, 61, 1027-1037.	5.4	98
136	Prionace glauca skin collagen bioengineered constructs as a promising approach to trigger cartilage regeneration. Materials Science and Engineering C, 2021, 120, 111587.	3.8	23
137	Utilisation of collagenolytic enzymes from sierra fish (Scomberomorus sierra) and jumbo squid (Dosidicus gigas) viscera to generate bioactive collagen hydrolysates from jumbo squid muscle. Journal of Food Science and Technology, 2021, 58, 2725-2733.	1.4	3
138	Marine collagen. Studies in Natural Products Chemistry, 2021, , 121-139.	0.8	2
139	Macro and Microstructural Characteristics of North Atlantic Deep-Sea Sponges as Bioinspired Models for Tissue Engineering Scaffolding. Frontiers in Marine Science, 2021, 7, .	1.2	11
140	Innovative methodology for marine collagen–chitosan–fucoidan hydrogels production, tailoring rheological properties towards biomedical application. Green Chemistry, 2021, 23, 7016-7029.	4.6	18
141	Chapter 1. The Mutable Collagenous Tissue of Echinoderms: From Biology to Biomedical Applications. RSC Soft Matter, 2021, , 1-33.	0.2	7
142	Collagen from Marine Sources and Skin Wound Healing in Animal Experimental Studies: a Systematic Review. Marine Biotechnology, 2021, 23, 1-11.	1.1	23
143	Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 603444.	2.0	50
144	Marine Bioactive Peptides in Supplements and Functional Foods - A Commercial Perspective. Current Pharmaceutical Design, 2021, 27, 1353-1364.	0.9	10
145	Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 644595.	2.0	57
146	Optimizing conditions for treatment and extraction of collagen from fan-bellied leatherjacket skin ⟨i>Monacanthus chinensis⟨i> (Osbeck, 1765). Tạp ChÃ-Khoa HỀ Và Cà ng Nghệ Biển, 2021, 20, 141-154	4. ^{0.1}	0
147	Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules, 2021, 22, 1815-1834.	2.6	22
148	A Prototype Skin Substitute, Made of Recycled Marine Collagen, Improves the Skin Regeneration of Sheep. Animals, 2021, 11, 1219.	1.0	13
149	Collagen in Wound Healing. Bioengineering, 2021, 8, 63.	1.6	280
150	The Efficacy of AP Collagen Peptides Intake on Skin Wrinkle, Elasticity, and Hydration Improvement. Journal of the Korean Society of Food Science and Nutrition, 2021, 50, 429-436.	0.2	2

#	Article	IF	CITATIONS
151	Fish Sidestream-Derived Protein Hydrolysates Suppress DSS-Induced Colitis by Modulating Intestinal Inflammation in Mice. Marine Drugs, 2021, 19, 312.	2.2	10
152	Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. International Journal of Pharmaceutics, 2021, 601, 120559.	2.6	24
153	Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods, 2021, 10, 1495.	1.9	33
154	Enhanced Wound Healing Activity of Undenatured Type I Collagen Isolated from Discarded Skin of Black Sea Gilthead Bream (<i>Sparus aurata</i>) Conditioned as 3D Porous Dressing. Chemistry and Biodiversity, 2021, 18, e2100293.	1.0	8
155	Functional-Antioxidant Food., 0,,.		0
156	Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. LWT - Food Science and Technology, 2021, 147, 111549.	2.5	37
157	Role of fish collagen hydrolysate in attenuating inflammation—An in vitro study. Journal of Food Biochemistry, 2021, 45, e13876.	1.2	9
158	Comparison of Different Methods for Spongin-like Collagen Extraction from Marine Sponges (Chondrilla caribensis and Aplysina fulva): Physicochemical Properties and In Vitro Biological Analysis. Membranes, 2021, 11, 522.	1.4	8
159	Association of marine Collagen/Biosilicate composites and photobiomodulation in the process of bone healing using an experimental model of calvarial defect. Research, Society and Development, 2021, 10, e8610816498.	0.0	0
160	Jellyfish Collagen: A Biocompatible Collagen Source for 3D Scaffold Fabrication and Enhanced Chondrogenicity. Marine Drugs, 2021, 19, 405.	2.2	17
161	Three Polymers from the Sea: Unique Structures, Directional Modifications, and Medical Applications. Polymers, 2021, 13, 2482.	2.0	9
162	Development of cross-linked collagen/pullulan ocular film for sustained delivery of Besifloxacin using novel spin-coating technique. Journal of Materials Research, 2021, 36, 3278.	1.2	0
163	Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomaterialia, 2021, 131, 41-61.	4.1	27
164	Collagen-Based Bioactive Bromelain Hydrolysate from Salt-Cured Cod Skin. Applied Sciences (Switzerland), 2021, 11, 8538.	1.3	13
165	Valorization of Cyprinus Carpio Skin for Biocompatible Collagen Hydrolysates with Potential Application in Foods, Cosmetics and Pharmaceuticals. Waste and Biomass Valorization, 2022, 13, 917-928.	1.8	6
166	Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends in Food Science and Technology, 2021, 116, 559-582.	7.8	71
167	Marine sponge aquaculture towards drug development: An ongoing history of technical, ecological, chemical considerations and challenges. Aquaculture Reports, 2021, 21, 100813.	0.7	15
168	Sustainable Fish and Seafood Production and Processing. , 2022, , 259-291.		8

#	Article	IF	CITATIONS
169	Applications in medicine: joint health. , 2021, , 723-744.		0
171	Novel Marine Organism-Derived Extracellular Vesicles for Control of Anti-Inflammation. Tissue Engineering and Regenerative Medicine, 2021, 18, 71-79.	1.6	10
172	Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine. Biomaterials Science, 2021, 9, 6718-6736.	2.6	13
173	Clinical Application and Regulation of Bioprinting Biomaterials Focusing on Hydrogels. Biomaterials Science Series, 2021, , 409-438.	0.1	0
174	Current and Potential Uses of Marine Collagen for Regenerative Medicines. , 2020, , 437-458.		2
175	Collagen Extraction from Bone of Lutjanus sp. and Toxicity Assay. Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta), 2019, 12, 67.	0.1	4
176	Scyphomedusae of the Mediterranean: State of the Art and Future Perspectives. Central Nervous System Agents in Medicinal Chemistry, 2015, 15, 81-94.	0.5	13
177	The role of fish scale derived scaffold and platelet rich plasma in healing of rabbit tibial defect: an experimental study. Acta Veterinaria Brno, 2018, 87, 363-370.	0.2	4
178	Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation. Biomedicines, 2021, 9, 16.	1.4	24
179	Beneficial effects of food supplements based on hydrolyzed collagen for skin care (Review). Experimental and Therapeutic Medicine, 2020, 20, 12-17.	0.8	18
180	Microwave Technology Using Low Energy Concentrated Beam for Processing of Solid Waste Materials from Rapana thomasiana Seashells. Energies, 2021, 14, 6780.	1.6	3
182	First report on the swim bladder index, proximate composition, and fatty acid analysis of swim bladder from cultured Totoaba macdonaldi fed compound aquafeeds. Aquaculture Reports, 2021, 21, 100901.	0.7	3
183	Biomedical Applications of Marine Sponge Collagens. , 2016, , 373-381.		1
184	Electrospinning of Marine-Origin Biopolymers toward Tissue Regeneration. , 2017, , 435-451.		0
185	The Possible Protective Role of Powder Cuttlefish Bone, Crabshell and Eggshell on Osteoporotic Rats. Journal of Food and Dairy Sciences, 2018, 2018, 111-121.	0.1	1
186	Fabrication of Tissue Engineering Scaffolds Using Marine Bioactive Materials for Diverse Applications. Journal of Coastal Research, 2019, 86, 170.	0.1	1
187	A Review on Biphasic Calcium Phosphate Materials Derived from Fish Discards. Nanomaterials, 2021, 11, 2856.	1.9	9
188	Cytotoxicity evaluation of bovine tooth hydroxyapatite. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	Citations
190	Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomaterials Science, 2022, 10, 318-353.	2.6	34
191	Đ¯Đ¡ĐŸĐžĐ>ЬЗОВĐĐĐ~Đ• ĐЫБĐĐŽĐ™ ЧЕĐ"Đ£Đ~ Đ' ĐŸĐ~Đ ©Đ•Đ'Đ«Đ¥ ЦЕĐ>Đ~Đ¥. Izvestia KGTU, 2	02 0,1 , 99-1	106.
192	Method for purification of collagen: A systematic review. Asia-Pacific Journal of Molecular Biology and Biotechnology, 0, , 99-112.	0.2	0
193	COLLAGEN: STRUCTURE, METABOLISM, PRODUCTION AND INDUSTRIAL APPLICATION. Biotechnologia Acta, 2020, 13, 42-61.	0.3	5
194	Isolation of Collagen from Marine Resources from the Black Sea. Current Health Sciences Journal, 2017, 43, 301-305.	0.2	0
195	Natural polymeric biomaterials for tissue engineering. , 2022, , 75-110.		0
196	Design for large-scale maricultures of the Mediterranean demosponge Chondrosia reniformis Nardo, 1847 for collagen production. Aquaculture, 2022, 548, 737702.	1.7	6
197	Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds. International Journal of Bioprinting, 2021, 7, 426.	1.7	11
198	A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers, 2021, 13, 3868.	2.0	68
199	On the Path to Thermo-Stable Collagen: Culturing the Versatile Sponge Chondrosia reniformis. Marine Drugs, 2021, 19, 669.	2.2	5
200	Prospects for the Disposal of By-Products from the Processing of Aquatic Biological Resources. E3S Web of Conferences, 2021, 320, 01006.	0.2	0
201	Characterization and Biological Performance of Marine Sponge Collagen. Brazilian Archives of Biology and Technology, 0, 64, .	0.5	0
202	Progresses and future prospects in biodegradation of marine biopolymers and emerging biopolymer-based materials for sustainable marine ecosystems. Green Chemistry, 2022, 24, 1762-1779.	4.6	14
203	Post-enzymatic hydrolysis heat treatment as an essential unit operation for collagen solubilization from poultry by-products. Food Chemistry, 2022, 382, 132201.	4.2	9
204	Turning Waste into A Resource: Isolation and Characterization of High-Quality Collagen and Oils from Atlantic Bluefin Tuna Discards. Applied Sciences (Switzerland), 2022, 12, 1542.	1.3	4
205	Collagenic architecture and morphotraits in a marine basal metazoan as a model for bioinspired applied research. Journal of Morphology, 2022, 283, 585-604.	0.6	3
207	Marine Biopolymers for Transdermal Drug Delivery. , 2022, , 157-207.		2
208	Proximate composition and amino acid profile of European eel skin: influence of body weight. European Food Research and Technology, 2022, 248, 1437-1446.	1.6	4

#	Article	IF	CITATIONS
209	Preparation of Super Absorbent and Highly Active Fish Collagen Sponge and its Hemostatic Effect in vivo and in vitro. Frontiers in Bioengineering and Biotechnology, 2022, 10, 862532.	2.0	10
210	Fish Collagen Peptides Protect against Cisplatin-Induced Cytotoxicity and Oxidative Injury by Inhibiting MAPK Signaling Pathways in Mouse Thymic Epithelial Cells. Marine Drugs, 2022, 20, 232.	2.2	5
211	Seafood Discards: A Potent Source of Enzymes and Biomacromolecules With Nutritional and Nutraceutical Significance. Frontiers in Nutrition, 2022, 9, 879929.	1.6	20
212	The effect of NaOH addition on the characteristics of tilapia skin collagen. IOP Conference Series: Earth and Environmental Science, 2021, 924, 012089.	0.2	1
213	Immunomodulatory effects of fish peptides on cardiometabolic syndrome associated risk factors: A review. Food Reviews International, 2023, 39, 3926-3969.	4.3	8
214	Mineralized collagen as a bioactive ink to support encapsulation of human adipose stem cells: A step towards the future of bone regeneration. Materials Science and Engineering C, 2022, 133, 112600.	3.8	5
215	Tropical Marine Fish Surimi By-products: Utilisation and Potential as Functional Food Application. Food Reviews International, 2023, 39, 3455-3480.	4.3	13
216	Oral Intake of Enzymatically Decomposed AP Collagen Peptides Improves Skin Moisture and Ceramide and Natural Moisturizing Factor Contents in the Stratum Corneum. Nutrients, 2021, 13, 4372.	1.7	13
217	Development of New Collagen/Clay Composite Biomaterials. International Journal of Molecular Sciences, 2022, 23, 401.	1.8	13
219	Fish collagen for skin wound healing: a systematic review in experimental animal studies. Cell and Tissue Research, 2022, 388, 489-502.	1.5	11
221	Progressive Application of Marine Biomaterials in Targeted Cancer Nanotherapeutics. Current Pharmaceutical Design, 2022, 28, 3337-3350.	0.9	1
223	Marine Biomaterials for Pharmaceutical Applications: A Review. Current Traditional Medicine, 2022, 08, .	0.1	0
224	Extraction and Characterization of Bioactive Fish By-Product Collagen as Promising for Potential Wound Healing Agent in Pharmaceutical Applications: Current Trend and Future Perspective. International Journal of Food Science, 2022, 2022, 1-10.	0.9	13
225	Development of fish collagen in tissue regeneration and drug delivery. Engineered Regeneration, 2022, 3, 217-231.	3.0	56
226	Method for Obtaining and Physico-Chemical Characterization of Collagenic Extract of Rhizostoma Pulmo from the Black Sea. European Journal of Natural Sciences and Medicine, 2022, 5, 49-58.	0.1	1
227	Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Marine Drugs, 2022, 20, 372.	2.2	22
228	Suitability of Marine- and Porcine-Derived Collagen Type I Hydrogels for Bioprinting and Tissue Engineering Scaffolds. Marine Drugs, 2022, 20, 366.	2.2	12
229	Production and Characterization of Micro-Collagen from Carp Scales Waste (Cyprinus carpio). Research Journal of Pharmacy and Technology, 2022, , 1995-2002.	0.2	0

#	Article	IF	CITATIONS
230	Collagen Extraction from Animal Skin. Biology, 2022, 11, 905.	1.3	32
231	Collagen Membrane Derived from Fish Scales for Application in Bone Tissue Engineering. Polymers, 2022, 14, 2532.	2.0	10
232	Bioplastics in the Sea: Rapid In-Vitro Evaluation of Degradability and Persistence at Natural Temperatures. Frontiers in Marine Science, 0, 9, .	1.2	8
233	Use of Nile tilapia fish skin in oral submucous fibrosis therapeutics. Medical Hypotheses, 2022, 165, 110889.	0.8	0
234	Đ'Đ¸Đ¾ÑĐ°Đ¾Đ»Đ¾Đ³Đ¸Ñ‡ĐμÑĐ°Đ¸Đ¹ Đ¿Đ¾Ñ,ĐμĐ½Ñ†Đ¸Đ°Đ» Đ¼Đ¾Ñ€ÑĐ°Đ¾Đ3¾ Đ¿Đ»Đ°Ñ†ĐμĐ½Ñ	,Đ ʻÑ€ Đ½	Đ¾0Đ3Đ3¼ Đ9
236	Functional proteins through green refining of seafood side streams. Frontiers in Nutrition, 0, 9, .	1.6	9
237	Natural/Synthetic Polymer Materials for Bioink Development. Biotechnology and Bioprocess Engineering, 2022, 27, 482-493.	1.4	6
238	Mechanically Enhanced Salmo salar Gelatin by Enzymatic Cross-linking: Premise of a Bioinspired Material for Food Packaging, Cosmetics, and Biomedical Applications. Marine Biotechnology, 2022, 24, 801-819.	1.1	5
239	A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines, 2022, 10, 2307.	1.4	48
240	Valorization of Fish Waste: Isolation and Characterization of Acid- and Pepsin-Soluble Collagen from the Scales of Mediterranean Fish and Fabrication of Collagen-Based Nanofibrous Scaffolds. Marine Drugs, 2022, 20, 664.	2.2	8
241	A novel Atlantic salmon (Salmo salar) bone collagen peptide delays osteoarthritis development by inhibiting cartilage matrix degradation and anti-inflammatory. Food Research International, 2022, 162, 112148.	2.9	8
242	Simultaneous extraction of calcium phosphates and proteins from fish bones. Innovative valorisation of food by-products. Journal of Cleaner Production, 2023, 385, 135656.	4.6	6
243	Structural, physicochemical properties and function of swim bladder collagen in promoting fibroblasts viability and collagen synthesis. LWT - Food Science and Technology, 2023, 173, 114294.	2.5	6
244	The Composition of Collagen-Containing Preparations from Rhopilema asamushi Uchida Jellyfish and Assessment of the Safety of their External Use. Applied Biochemistry and Microbiology, 2022, 58, 864-872.	0.3	0
245	Bioactive Components of Meat Powder and Viscera-Gonad Holothuria Scabra from Terung Island Waters, Batam, Indonesia. IOP Conference Series: Earth and Environmental Science, 2022, 1118, 012032.	0.2	1
246	Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. Materials, 2022, 15, 8802.	1.3	5
247	Isolation and Characterization of Collagen and Collagen Peptides with Hyaluronidase Inhibition Activity Derived from the Skin of Marlin (Istiophoridae). Molecules, 2023, 28, 889.	1.7	1
248	Characterization of Dual-Layer Hybrid Biomatrix for Future Use in Cutaneous Wound Healing. Materials, 2023, 16, 1162.	1.3	4

#	Article	IF	CITATIONS
249	Characterization of the Biophysical Properties and Cell Adhesion Interactions of Marine Invertebrate Collagen from Rhizostoma pulmo. Marine Drugs, 2023, 21, 59.	2.2	5
250	Alternative sources of marine bioactive compounds from the Black Sea: Isolation and characterization of fish skin collagen from Neogobius melanostomus (Pallas 1814) (Perciformes:) Tj ETQq1 1 0.7	'84 3.1 4 rgl	3T ‡Overlock
251	Lactose Stabilization Prolongs In Vivo Retention of Cross-linked Fish Collagen Subcutaneous Grafts in Nude Mice. Plastic and Reconstructive Surgery - Global Open, 2022, 10, e4601.	0.3	0
252	Suitability of R. pulmo Jellyfish-Collagen-Coated Well Plates for Cytocompatibility Analyses of Biomaterials. International Journal of Molecular Sciences, 2023, 24, 3007.	1.8	2
253	Preparation of fish decalcified bone matrix and its bone repair effect in rats. Frontiers in Bioengineering and Biotechnology, $0,11,.$	2.0	1
254	Potential Active Marine Peptides as Anti-Aging Drugs or Drug Candidates. Marine Drugs, 2023, 21, 144.	2.2	3
255	Different Species of Marine Sponges Diverge in Osteogenic Potential When Therapeutically Applied as Natural Scaffolds for Bone Regeneration in Rats. Journal of Functional Biomaterials, 2023, 14, 122.	1.8	3
256	Effects of AP Collagen Peptides on Extracellular Matrix Protein Production and Skin Density. Journal of the Korean Society of Food Science and Nutrition, 2023, 52, 138-145.	0.2	0
257	Marine Natural Products as Innovative Cosmetic Ingredients. Marine Drugs, 2023, 21, 170.	2.2	15
258	3D Printed Scaffolds Manufactured with Biosilica from Marine Sponges for Bone Healing in a Cranial Defect in Rats. Marine Biotechnology, 0, , .	1.1	0
259	Jellyfishesâ€"Significant Marine Resources with Potential in the Wound-Healing Process: A Review. Marine Drugs, 2023, 21, 201.	2.2	1
260	Review on marine collagen peptides induce cancer cell apoptosis, necrosis, and autophagy by reducing oxidized free radicals. Biocell, 2023, 47, 965-975.	0.4	1
261	Potential of Atlantic Codfish (Gadus morhua) Skin Collagen for Skincare Biomaterials. Molecules, 2023, 28, 3394.	1.7	4
262	Evaluating dried salted cod amino acid signature for nutritional quality assessment and discriminant analysis. Frontiers in Nutrition, 0, 10, .	1.6	0
263	Marine collagen-chitosan-fucoidan/chondroitin sulfate cryo-biomaterials loaded with primary human cells envisaging cartilage tissue engineering. International Journal of Biological Macromolecules, 2023, 241, 124510.	3.6	9
264	Understanding the Molecular Conformation and Viscoelasticity of Low Sol-Gel Transition Temperature Gelatin Methacryloyl Suspensions. International Journal of Molecular Sciences, 2023, 24, 7489.	1.8	O
274	Protein from seafood., 2023,, 107-129.		0
275	Isolation and Characterization of Marine-Derived Collagens and Gelatins in the Perspective of Biomedical Application. , 2023, , 1-28.		O

#	Article	IF	CITATIONS
284	Electrospun skin dressings for diabetic wound treatment: a systematic review. Journal of Diabetes and Metabolic Disorders, $0, \dots$	0.8	0
285	Bioscaffolds and Cell Source in Cartilage Tissue Engineering. , 2023, , 145-164.		0
287	Harnessing value and sustainability: Fish waste valorization and the production of valuable byproducts. Advances in Food and Nutrition Research, 2023, , .	1.5	1
288	Bioactive Compounds from Marine Water Ecosystem. , 2023, , 433-459.		0
290	Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Applied Biochemistry and Biotechnology, $0, , .$	1.4	0
292	Marine Environment: A Treasure Trove of Natural Polymers for Tissue Engineering. , 2023, , 161-185.		0