Recovery of Biomolecules from Food Wastes â€" A Revi

Molecules

19, 14821-14842

DOI: 10.3390/molecules190914821

Citation Report

#	Article	IF	CITATIONS
2	Optimisation of Ultrasonic Conditions as an Advanced Extraction Technique for Recovery of Phenolic Compounds and Antioxidant Activity from Macadamia (Macadamia tetraphylla) Skin Waste. Technologies, 2015, 3, 302-320.	3.0	13
3	Emerging trends in nutraceutical applications of whey protein and its derivatives. Journal of Food Science and Technology, 2015, 52, 6847-6858.	1.4	116
4	Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC - Trends in Analytical Chemistry, 2015, 71, 26-38.	5 . 8	244
5	Valorization of hazelnut, coffee and grape wastes through supercritical fluid extraction of triglycerides and polyphenols. Journal of Supercritical Fluids, 2015, 104, 204-211.	1.6	68
6	Preliminary Evaluation of a Nutraceutical Product Made with Residue of Cocos Nucifera for Use in the Treatment of Obesity. Translational Medicine (Sunnyvale, Calif), 2016, 06, .	0.4	0
7	Applications of Pulsed Electric Energy forÂBiomass Pretreatment in Biorefinery. , 2016, , 151-168.		4
8	Review: Food Industry By-Products used as a Functional Food Ingredients. International Journal of Waste Resources, $2016, 6, .$	0.2	72
9	Mass Proportion, Bioactive Compounds and Antioxidant Capacity of Carrot Peel as Affected by Various Solvents. Technologies, 2016, 4, 36.	3.0	21
10	Progress towards Sustainable Utilisation and Management of Food Wastes in the Global Economy. International Journal of Food Science, 2016, 2016, 1-22.	0.9	73
11	Optimum Conditions for Microwave Assisted Extraction for Recovery of Phenolic Compounds and Antioxidant Capacity from Macadamia (Macadamia tetraphylla) Skin Waste Using Water. Processes, 2016, 4, 2.	1.3	21
12	Kinetics of Ultrasound-Assisted Flavonoid Extraction from Agri-Food Solid Wastes Using Water/Glycerol Mixtures. Resources, 2016, 5, 7.	1.6	17
13	Tackling Uncertainty through Business Plan Analysis—A Case Study on Citrus Waste Valorisation in the South of Italy. Agriculture (Switzerland), 2016, 6, 5.	1.4	6
14	Chemical and antioxidant profiles of acorn tissues from Quercus spp.: Potential as new industrial raw materials. Industrial Crops and Products, 2016, 94, 143-151.	2. 5	48
15	Extraction From Foods and Biomaterials Enhanced by Pulsed Electric Energy. , 2016, , 31-56.		4
16	A New Age for <i>Quercus</i> spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 947-981.	5.9	96
17	Nutritive value, antioxidant activity and phenolic compounds profile of brewer's spent yeast extract. Journal of Food Composition and Analysis, 2016, 52, 44-51.	1.9	121
18	Ultrasound-assisted extraction of biologically active substances from tomato seeds. Surface Engineering and Applied Electrochemistry, 2016, 52, 270-275.	0.3	6
19	Crop and Plant Biomass as Valuable Material for BBB. Alternatives for Valorization of Green Wastes. , 2016, , 1-19.		6

#	Article	IF	CITATIONS
20	Using a novel spiral-filter press technology to biorefine horticultural by-products: The case of tomato. Part I: Process optimization and evaluation of the process impact on the antioxidative capacity. Innovative Food Science and Emerging Technologies, 2016, 38, 198-205.	2.7	4
21	Acid-free microwave-assisted hydrothermal extraction of pectin and porous cellulose from mango peel waste – towards a zero waste mango biorefinery. Green Chemistry, 2016, 18, 5280-5287.	4.6	64
22	Physical and antioxidant properties of flexible soy protein isolate films by incorporating chestnut (Castanea mollissima) bur extracts. LWT - Food Science and Technology, 2016, 71, 33-39.	2.5	75
23	Opportunity for high value-added chemicals from food supply chain wastes. Bioresource Technology, 2016, 215, 123-130.	4.8	145
24	Ultrasound-Assisted Green Extraction of Eggplant Peel (Solanum melongena) Polyphenols Using Aqueous Mixtures of Glycerol and Ethanol: Optimisation and Kinetics. Environmental Processes, 2016, 3, 369-386.	1.7	57
25	Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. Journal of Cleaner Production, 2017, 140, 924-932.	4.6	51
26	Pie waste $\hat{a} \in A$ component of food waste and a renewable substrate for producing ethanol. Waste Management, 2017, 62, 247-254.	3.7	11
27	Pigments and Colorants from Filamentous Fungi. , 2017, , 499-568.		28
28	Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresources and Bioprocessing, 2017, 4 , .	2.0	289
29	Edible By-products. , 2017, , 679-696.		8
30	Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods. Topics in Current Chemistry, 2017, 375, 46.	3.0	44
34	Gastrointestinal fate of emulsion-based ï‰-3 oil delivery systems stabilized by plant proteins: Lentil, pea, and faba bean proteins. Journal of Food Engineering, 2017, 207, 90-98.	2.7	60
35	Valorisation of chicken feathers: a review on recycling and recovery routeâ€"current status and future prospects. Clean Technologies and Environmental Policy, 2017, 19, 2363-2378.	2.1	89
36	Effect of Storage and Extraction Protocols on the Lipid and Fatty Acid Profiles of Dicentrarchus labrax Brain. Food Analytical Methods, 2017, 10, 4003-4012.	1.3	9
37	A roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry, 2017, 8, 18-23.	3.2	213
39	Recovery of Pectinase Obtained by Solid-State Cultivation of Agro-Industrial Residues. Industrial Biotechnology, 2017, 13, 141-148.	0.5	3
40	Bioactives Obtained From Plants, Seaweeds, Microalgae and Food By-Products Using Pressurized Liquid Extraction and Supercritical Fluid Extraction. Comprehensive Analytical Chemistry, 2017, 76, 27-51.	0.7	27
	27 31.		

#	Article	IF	CITATIONS
43	Production of High-Value Nanoparticles via Biogenic Processes Using Aquacultural and Horticultural Food Waste. Materials, 2017, 10, 852.	1.3	60
44	Food Aroma Compounds. , 2017, , 297-334.		18
45	Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability, 2017, 9, 1492.	1.6	123
46	Fermentation of Food Wastes for Generation of Nutraceuticals and Supplements. , 2017, , 707-734.		6
47	Extraction of Bioactive Compounds from Grape Processing By-Products., 2017,, 105-135.		18
48	Exploitation of Brewing Industry Wastes to Produce Functional Ingredients. , 0, , .		30
49	Food Wastes as Valuable Sources of Bioactive Molecules. , 0, , .		15
50	Antioxidant Compounds Recovered from Food Wastes. , 2017, , .		9
51	Recent developments in biohythane production from household food wastes: A review. Bioresource Technology, 2018, 257, 311-319.	4.8	122
52	Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 512-531.	5.9	674
53	An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science and Technology, 2018, 76, 28-37.	7.8	423
54	Electric field-based technologies for valorization of bioresources. Bioresource Technology, 2018, 254, 325-339.	4.8	108
55	Are by-products from beeswax recycling process a new promising source of bioactive compounds with biomedical properties?. Food and Chemical Toxicology, 2018, 112, 126-133.	1.8	36
56	A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 2018, 100, 82-102.	5.8	278
57	Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions. Food Reviews International, 2018, 34, 581-612.	4.3	43
58	Extraction and characterization of proteins from banana (Musa Sapientum L) flower and evaluation of antimicrobial activities. Journal of Food Science and Technology, 2018, 55, 658-666.	1.4	22
59	Recovery of Nutraceuticals from Agri-Food Industry Waste by Lactic Acid Fermentation. Energy, Environment, and Sustainability, 2018, , 185-203.	0.6	6
60	Review on environmental models in the food chain - Current status and future perspectives. Journal of Cleaner Production, 2018, 176, 1012-1025.	4.6	65

#	ARTICLE	IF	CITATIONS
61	Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocolloids, 2018, 74, 207-218.	5.6	239
62	29. Ethical perspectives on molecular gastronomy: food for tomorrow or just a food fad?., 2018,,.		0
63	Intensification of the Process of Ultrasonic Extraction of Dehydroquercetin from Wood Waste. , 2018, , .		3
64	Advances in Fractionation and Analysis of Milk Carbohydrates. , 0, , .		3
66	Stability assessment of anthocyanins obtained from skin grape applied in kefir and carbonated water as a natural colorant. Journal of Food Processing and Preservation, 2018, 42, e13698.	0.9	25
67	Beeswax by-Products Efficiently Counteract the Oxidative Damage Induced by an Oxidant Agent in Human Dermal Fibroblasts. International Journal of Molecular Sciences, 2018, 19, 2842.	1.8	7
68	From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules, 2018, 23, 1844.	1.7	101
69	Microbial Polysaccharides in Food Industry. , 2018, , 95-123.		35
70	Collagen and collagenolytic proteases: A review. Biocatalysis and Agricultural Biotechnology, 2018, 15, 43-55.	1.5	63
71	Food Supply Chain Waste: A Functional Periodic Table of Bio-Based Resources. , 2018, , 219-236.		2
72	Photo-mediated Biosynthesis of Silver Nanoparticles Using the Non-edible Accrescent Fruiting Calyx of Physalis peruviana L. Fruits and Investigation of its Radical Scavenging Potential and Cytotoxicity Activities. Journal of Photochemistry and Photobiology B: Biology, 2018, 188, 116-125.	1.7	31
73	Global Provisioning of Red Meat for Flexitarian Diets. Frontiers in Nutrition, 2018, 5, 50.	1.6	42
74	Exploitable fish waste and stranded beach debris in the Emilia-Romagna Region (Italy). Waste Management, 2018, 78, 566-575.	3.7	17
75	Estimation of Phenolic and Flavonoid Compounds and Antioxidant Activity of Spent Coffee and Black Tea (Processing) Waste for Potential Recovery and Reuse in Sudan. Recycling, 2018, 3, 27.	2.3	39
76	Antioxidants from Natural Sources. , 0, , .		42
77	Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Frontiers in Sustainable Food Systems, 0, 2, .	1.8	206
78	Valorization of food solid waste by recovery of polyphenols using hybrid molecular imprinted membrane. Journal of Environmental Chemical Engineering, 2018, 6, 4160-4170.	3.3	17
79	Food Waste Valorization: New Manufacturing Processes for Long-Term Sustainability., 2019,, 429-433.		1

#	Article	IF	Citations
80	Usefulness of Dietary Components as Sustainable Nutraceuticals for Chronic Kidney Disease. , 2019, , 323-331.		1
81	Bioavailability and Bioactivity of Encapsulated Phenolics and Carotenoids Isolated from Red Pepper Waste. Molecules, 2019, 24, 2837.	1.7	54
82	Improvement of Enzymatic Assisted Extraction Conditions on Anthocyanin Recovery from Different Varieties of V. vinifera and V. labrusca Grape Pomaces. Food Analytical Methods, 2019, 12, 2056-2068.	1.3	16
83	Food Wastes as a Potential new Source for Edible Insect Mass Production for Food and Feed: A review. Fermentation, 2019, 5, 81.	1.4	75
84	Polyphenols From Vitis vinifera Lambrusco By-Products (Leaves From Pruning): Extraction Parameters Evaluation Through Design of Experiment. Natural Product Communications, 2019, 14, 1934578X1986290.	0.2	3
85	Cereal supply chain waste in the context of circular economy. E3S Web of Conferences, 2019, 112, 03031.	0.2	16
86	Proteins Recovery From Meat Processing Coproducts. , 2019, , 69-83.		9
87	Facilitators and Barriers for Foods Containing Meat Coproducts. , 2019, , 237-250.		1
88	Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 2019, 375, 121983.	6.6	218
89	Sequential hydrolysis of spent brewer's yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochemistry, 2019, 84, 91-102.	1.8	43
90	Exploitation of apple pomace towards extraction of triterpenic acids, antioxidant potential, cytotoxic effects, and inhibition of clinically important enzymes. Food and Chemical Toxicology, 2019, 131, 110563.	1.8	39
91	Functional and structural effects of hydrocolloids on Ca(II)-alginate beads containing bioactive compounds extracted from beetroot. LWT - Food Science and Technology, 2019, 111, 520-526.	2.5	17
92	Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. Plant Cell Reports, 2019, 38, 1199-1215.	2.8	52
93	Polyphenols in Almond Skins after Blanching Modulate Plasma Biomarkers of Oxidative Stress in Healthy Humans. Antioxidants, 2019, 8, 95.	2.2	33
94	Avocado (<i>Persea americana</i> Mill.) byâ€products and their impact: from bioactive compounds to biomass energy and sorbent material for removing contaminants. A review. International Journal of Food Science and Technology, 2019, 54, 943-951.	1.3	38
95	Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food and Bioproducts Processing, 2019, 115, 143-153.	1.8	62
96	Biomineralization of orange peel peroxidase within metal organic frameworks (OPP–MOFs) for dye degradation. Journal of Environmental Chemical Engineering, 2019, 7, 102969.	3.3	43
97	Biohythane Production From Food Wastes. , 2019, , 347-368.		13

#	Article	IF	Citations
98	Food industry processing by-products in foods. , 2019, , 239-281.		7
99	Extraction conditions evaluation of pectin methylesterase produced by solid state culture of Aspergillus niger. Czech Journal of Food Sciences, 2018, 36, 476-479.	0.6	1
100	Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules, 2019, 24, 4212.	1.7	88
102	Optimization of Enzyme-Assisted Extraction of Flavonoids from Corn Husks. Processes, 2019, 7, 804.	1.3	21
103	Supercritical Carbon Dioxide Extraction of Value-Added Products and Thermochemical Synthesis of Platform Chemicals from Food Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 2821-2829.	3.2	23
104	An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management, 2019, 233, 352-370.	3.8	261
105	Extraction of umbu (Spondias tuberosa) seed oil using CO2, ultrasound and conventional methods: Evaluations of composition profiles and antioxidant activities. Journal of Supercritical Fluids, 2019, 145, 10-18.	1.6	40
106	Chemical characterisation, antioxidant and antimicrobial screening for the revaluation of wine supply chain by-products oriented to circular economy. Plant Biosystems, 2019, 153, 809-816.	0.8	12
107	Possible Uses of Processed Slaughter Byproducts. , 2019, , 145-160.		10
108	High pressure extraction and its application in the extraction of bioâ€active compounds: A review. Journal of Food Process Engineering, 2019, 42, e12896.	1.5	64
109	Supercritical ï¬,uid extraction of free amino acids from sugar beet and sugar cane molasses. Journal of Supercritical Fluids, 2019, 144, 48-55.	1.6	23
110	Spectrophotometric Estimation of Total Phenolic Content and Antioxidant Capacity of Molasses and Vinasses Generated from the Sugarcane Industry. Waste and Biomass Valorization, 2020, 11, 3453-3463.	1.8	25
111	Antioxidant Activity of Polyphenols Extracted From Hop Used in Craft Beer., 2020,, 283-310.		9
112	Bioactive potential of fruit and vegetable wastes. Advances in Food and Nutrition Research, 2020, 91, 157-225.	1.5	146
113	New powder material obtained from spent coffee ground and whey protein; Thermal and morphological analysis. Materials Chemistry and Physics, 2020, 240, 122171.	2.0	15
114	A comparison in protein extraction from four major crop residues in Europe using chemical and enzymatic processes-a review. Innovative Food Science and Emerging Technologies, 2020, 59, 102239.	2.7	26
115	Biomolecules from municipal and food industry wastes: An overview. Bioresource Technology, 2020, 298, 122346.	4.8	70
116	Recovery and utilization of bioactives from food processing waste. , 2020, , 37-68.		2

#	ARTICLE	IF	CITATIONS
117	Modeling and optimization of supercritical carbon dioxide extraction for isolation of valuable lipophilic constituents from elderberry (Sambucus nigra L.) pomace. Journal of CO2 Utilization, 2020, 35, 225-235.	3.3	19
118	Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renewable and Sustainable Energy Reviews, 2020, 117, 109493.	8.2	136
119	Consecutive high-pressure and enzyme assisted fractionation of blackberry (Rubus fruticosus L.) pomace into functional ingredients: Process optimization and product characterization. Food Chemistry, 2020, 312, 126072.	4.2	24
120	The use of emergent technologies to extract added value compounds from grape by-products. Trends in Food Science and Technology, 2020, 106, 182-197.	7.8	49
121	Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Critical Reviews in Food Science and Nutrition, 2022, 62, 693-725.	5.4	23
122	Comparing the Effectiveness of Three Different Biorefinery Processes at Recovering Bioactive Products from Hemp (Cannabis sativa L.) Byproduct. Food and Bioprocess Technology, 2020, 13, 2156-2171.	2.6	10
123	Pineapple. , 2020, , 203-225.		3
124	Nutraceutical potential and utilization aspects of food industry by-products and wastes. , 2020, , 89-111.		9
125	Introductory Chapter: From Waste to New Resources. , 0, , .		2
126	Magnetic nanobiocatalyst for extraction of bioactive ingredients: A novel approach. Trends in Food Science and Technology, 2020, 103, 225-238.	7.8	14
128	Bioactive metal oxide nanoparticles from some common fruit wastes and <i>Euphorbia condylocarpa</i> plant. Food Science and Nutrition, 2020, 8, 5521-5531.	1.5	8
129	Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods, 2020, 9, 1243.	1.9	42
130	Applications of Compounds from Coffee Processing By-Products. Biomolecules, 2020, 10, 1219.	1.8	57
131	Monitoring and Optimization of Cupuaçu Seed Fermentation, Drying and Storage Processes. Microorganisms, 2020, 8, 1314.	1.6	7
132	Optimization of a Novel Method Based on Ultrasound-Assisted Extraction for the Quantification of Anthocyanins and Total Phenolic Compounds in Blueberry Samples (Vaccinium corymbosum L.). Foods, 2020, 9, 1763.	1.9	28
133	Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Applied Sciences (Switzerland), 2020, 10, 7432.	1.3	107
134	Valorization of bio-residuals in the food and forestry sectors in support of a circular bioeconomy: A review. Journal of Cleaner Production, 2020, 267, 122093.	4.6	53
135	Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan. Resources, 2020, 9, 53.	1.6	25

#	Article	IF	Citations
136	Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene) Tj ETQq0 0 0 rg	BŢ Overl	ock 10 Tf 50
137	Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Industrial Crops and Products, 2020, 154, 112621.	2.5	59
138	Specialty chemicals and nutraceuticals production from food industry wastes. , 2020, , 189-209.		6
139	Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 2: Ultrasound-Assisted Extraction. Agronomy, 2020, 10, 326.	1.3	23
140	Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity. Powder Technology, 2020, 364, 654-663.	2.1	47
141	Simultaneous extraction and separation of bioactive compounds from apple pomace using pressurized liquids coupled on-line with solid-phase extraction. Food Chemistry, 2020, 318, 126450.	4.2	50
142	Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 2020, 302, 122889.	4.8	144
143	Viability of pre-treatment drying methods on mango peel by-products to preserve flavouring active compounds for its revalorisation. Journal of Food Engineering, 2020, 279, 109953.	2.7	22
144	Phenolic Compounds and Bioaccessibility Thereof in Functional Pasta. Antioxidants, 2020, 9, 343.	2.2	35
145	A Biocascade Approach Towards the Recovery of High-Value Natural Products from Biowaste: State-of-Art and Future Trends. Waste and Biomass Valorization, 2021, 12, 1143-1166.	1.8	14
146	Effects of yeast and yeast extract on growth performance, antioxidant ability and intestinal microbiota of juvenile Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 2021, 530, 735941.	1.7	31
147	Effective valorization of food wastes and byâ€products through pulsed electric field: A systematic review. Journal of Food Process Engineering, 2021, 44, e13629.	1.5	47
148	Flaxseed and Camelina Meals as Potential Sources of Health-Beneficial Compounds. Plants, 2021, 10, 156.	1.6	17
149	Recent trends on the food wastes valorization to value-added commodities. , 2021, , 171-196.		2
150	A review of thermal and thermocatalytic valorization of food waste. Green Chemistry, 2021, 23, 2806-2833.	4.6	28
151	Valorization of Industrial Wastes for Biofuel Production: Challenges and Opportunities., 2021,, 231-245.		O
152	Bioactivity assessment of ethanolic extracts from Theobroma cacao and Cola spp. wastes after solid state fermentation by Pleurotus ostreatus and Calocybe indica. Advances in Traditional Medicine, 0 , 1 .	1.0	3
153	Variation in Levels of Flavonols Myricetin, Quercetin and Kaempferolâ€"In Kenyan Tea (<i>Camellia) Tj ETQq Sciences, 2021, 11, 736-749.</i>	1 1 0.784 0.2	314 rgBT /O

#	Article	IF	CITATIONS
154	Food processing by-products and molecular gastronomy. , 2021, , 137-163.		1
155	From Fish Waste to Value: An Overview of the Sustainable Recovery of Omega-3 for Food Supplements. Molecules, 2021, 26, 1002.	1.7	65
156	Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods, 2021, 10, 665.	1.9	15
157	The wastes of coffee bean processing for utilization in food: a review. Journal of Food Science and Technology, 2022, 59, 429-444.	1.4	41
159	Bioaccessibility of Bioactive Compounds and Prebiotic Properties of Fruit and Vegetable By-products - A Mini Review. Current Bioactive Compounds, 2021, 17, 100-111.	0.2	3
160	Use of housefly (Musca domestica L.) larvae to bioconversion food waste for animal nutrition and organic fertilizer. Environmental Science and Pollution Research, 2021, 28, 48921-48928.	2.7	23
161	Optimization of an Ultrasound-Assisted Extraction Method for the Analysis of Major Anthocyanin Content in Erica australis Flowers. Molecules, 2021, 26, 2884.	1.7	6
162	Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods, 2021, 10, 1174.	1.9	65
163	Circular bioeconomy strategies: From scientific research to commercially viable products. Journal of Cleaner Production, 2021, 295, 126407.	4.6	72
164	Non-food applications of natural dyes extracted from agro-food residues: A critical review. Journal of Cleaner Production, 2021, 301, 126920.	4.6	40
165	A Sustainable Approach for Extracting Non-Extractable Phenolic Compounds from Mangosteen Peel Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents. Applied Sciences (Switzerland), 2021, 11, 5625.	1.3	11
166	Recent Advances in Recovery of Lycopene from Tomato Waste: A Potent Antioxidant with Endless Benefits. Molecules, 2021, 26, 4495.	1.7	47
167	Recovery of Chlorogenic Acids from Agri-Food Wastes: Updates on Green Extraction Techniques. Molecules, 2021, 26, 4515.	1.7	17
168	Valorization and Application of Fruit and Vegetable Wastes and By-Products for Food Packaging Materials. Molecules, 2021, 26, 4031.	1.7	41
169	A Novel Ultrasound-Assisted Extraction Method for the Analysis of Anthocyanins in Potatoes (Solanum tuberosum L.). Antioxidants, 2021, 10, 1375.	2.2	17
170	The Yield, Fruit Quality and Some of Nutraceutical Characteristics of Saskatoon Berries (Amelanchier) Tj ETQq1	1 0.78431	4 rgBT /Ove
171	Optimization of ultrasound assistedÂantioxidant extraction from apricot pomace using response surface methodology. Journal of Food Measurement and Characterization, 2021, 15, 5277-5287.	1.6	8
172	Rojo Duro Red Onion Extract Loaded Spray Thermogel as a Sustainable Platform for the Treatment of Oral Mucosa Lesions. Journal of Pharmaceutical Sciences, 2021, 110, 2974-2985.	1.6	4

#	Article	IF	CITATIONS
173	Agro-waste derived compounds (flax and black seed peels): Toxicological effect against the West Nile virus vector, Culex pipiens L. with special reference to GC–MS analysis. Saudi Journal of Biological Sciences, 2021, 28, 5261-5267.	1.8	10
174	Polyphenols Extraction From Vegetable Wastes Using a Green and Sustainable Method. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	7
175	Valorisation of Fruit & Degetable Wastes: A Review. Current Nutrition and Food Science, 2022, 18, 315-328.	0.3	5
176	Recovery processes of sustainable energy using different biomass and wastes. Renewable and Sustainable Energy Reviews, 2021, 150, 111483.	8.2	93
177	Simultaneous analysis of 21 bioactive compounds in biorefinery oil: Multivariate optimization of a method based on liquid chromatography, atmospheric pressure chemical ionization and tandem mass spectrometry. Microchemical Journal, 2021, 170, 106761.	2.3	2
178	Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocolloids, 2022, 123, 106986.	5.6	65
179	Advanced techniques for recovery of active compounds from food by-products., 2021,, 693-710.		1
181	Sustainable valorization of food-processing industry by-products: challenges and opportunities to obtain bioactive compounds., 2021,, 619-644.		2
182	Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules, 2021, 26, 718.	1.7	127
183	Pigments and Colorants from Filamentous Fungi. , 2015, , 1-70.		8
184	Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresource Technology, 2020, 312, 123575.	4.8	147
185	1: Bioactive Compounds in Agricultural and Food Production Waste. , 2017, , 1-26.		4
186	Food Processing Industries, Food Waste Classification and Handling, Target Compounds., 2021,, 17-78.		1
187	Biocascading: Platform Molecules, Value Added Chemicals, and Bioactives., 2021,, 169-229.		1
188	Characterization and Analysis of Food-Sourced Carbohydrates. Methods in Molecular Biology, 2022, 2370, 67-95.	0.4	10
189	Development and Diversification of Sugar Beet in Europe. Sugar Tech, 2022, 24, 992-1009.	0.9	8
190	Deep Eutectic Solvents (DESs) as Green Extraction Media of Beneficial Bioactive Phytochemicals. Separations, 2021, 8, 176.	1.1	30
191	15: Potential Use of Bioactive Compounds from Waste in the Pharmaceutical Industry., 2017,, 383-402.		0

#	Article	IF	CITATIONS
192	Intensification of Acinetobacter calcoaceticus IMV B-7241 Surfactants Synthesis on Waste Sunflower Oil. MikrobiolohichnyÄ-Zhurnal, 2018, 80, 15-26.	0.2	1
193	Intensification of Functional Foods Production. RSC Green Chemistry, 2018, , 365-380.	0.0	1
194	Rice Bran or Apple Pomace? Comparative Data Analysis of Astaxanthin Bioproduction. Tarim Bilimleri Dergisi, 0, , 1-9.	0.4	0
195	Rice Bran or Apple Pomace? Comparative Data Analysis of Astaxanthin Bioproduction. Tarim Bilimleri Dergisi, 0, , 366-373.	0.4	0
196	Solvent Extraction Optimization of Chlorophyll Dye from Conocarpus Lancifolius Leaves. Journal of Engineering and Technological Sciences, 2020, 52, 14.	0.3	2
197	Agricultural crop waste materials – A potential reservoir of molecules. Environmental Research, 2022, 206, 112284.	3.7	9
198	Bio Discarded from Waste to Resource. Foods, 2021, 10, 2652.	1.9	12
199	Recovery and Purification of Antioxidant Compounds from Plant Origin Agro-Industrial By-products. Reference Series in Phytochemistry, 2021, , 1-24.	0.2	0
200	Recovery and Purification of Antioxidant Compounds from Plant Origin Agro-Industrial By-products. Reference Series in Phytochemistry, 2021, , 1-24.	0.2	1
201	Food Aroma Compounds., 2022,, 363-409.		6
202	Fruit peel waste-to-wealth: Bionanomaterials production and their applications in agroecosystems. , 2022, , 231-257.		2
203	Phytochemicals from the Fruits and Vegetable Waste: Holistic and Sustainable Approach. , 2020, , 87-112.		0
204	Production of fine chemicals from food wastes. , 2020, , 163-188.		12
205	Food Processing Waste: A Potential Source for Bioactive Compounds. Reference Series in Phytochemistry, 2020, , 1-25.	0.2	0
206	Food Processing Waste: A Potential Source for Bioactive Compounds. Reference Series in Phytochemistry, 2020, , 625-649.	0.2	8
207	Utilization of Agro Waste. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 129-159.	0.3	0
209	Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of Mediterranean aromatic plants. An approach to the valuation of by-products of the essential oil market $\hat{a} \in A$ review. Industrial Crops and Products, 2022, 175, 114261.	2.5	41
210	Valorization of cereal by-product hemicelluloses: Fractionation and purity considerations. Food Research International, 2022, 151, 110818.	2.9	29

#	Article	IF	CITATIONS
211	Cnicus benedictus Oil as a Raw Material for Biodiesel: Extraction Optimization and Biodiesel Yield. Sustainability, 2021, 13, 13193.	1.6	5
212	Sustainable food industrial waste management through single cell protein production and characterization of protein enriched bread. Food Bioscience, 2022, 46, 101406.	2.0	29
213	Bioactivity Potential of Industrial Sunflower Meal Ethanol-Wash Solute Obtained as Waste from Protein Isolation Process. Applied Sciences (Switzerland), 2021, 11, 11007.	1.3	3
214	Bioprocessing of Horticultural Wastes by Solid-State Fermentation into Value-Added/Innovative Bioproducts: A Review. Food Reviews International, 2023, 39, 3009-3065.	4.3	19
215	Other Applications of Pulsed Electric Fields Technology for the Food Industry. Food Engineering Series, 2022, , 439-466.	0.3	2
217	Food biotechnology: Innovations and challenges. , 2022, , 697-719.		4
218	Therapeutically valuable bioactive extracts from Mediterranean plants: Green technologies and molecular modelling for a viable endeavour., 2022,, 425-448.		0
221	Recent Trends in the Management of Mango By-products. Food Reviews International, 2023, 39, 4159-4179.	4.3	9
223	Food Loss and Food Waste for Green Cosmetics and Medical Devices for a Cleaner Planet. Cosmetics, 2022, 9, 19.	1.5	12
224	Sustainable processes for treatment and management of seafood solid waste. Science of the Total Environment, 2022, 817, 152951.	3.9	18
226	Sour-Cherry Seed Polyphenol Contents, Antioxidant Activity and Nutritional Components as a Potential Bioactive Source. Nutrition and Food Sciences Research, 2022, 9, 19-29.	0.3	2
227	Introduction: waste to food – returning nutrients to the food chain. , 2022, , 9-12.		2
228	Chapter 8. From waste to food: legislative insights. , 2022, , 197-208.		4
229	Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce (Lactuca sativa L.). Resources, 2022, 11, 21.	1.6	8
230	Chapter 1. An introduction to the concept of organic waste to food conversion., 2022, , 15-30.		1
231	Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. Journal of Agricultural and Food Chemistry, 2022, 70, 6787-6804.	2.4	104
232	Chapter 12. Potential scenarios of waste to food concept and further research, development and innovation., 2022,, 283-300.		0
233	Chapter 7. Hygienic issues associated with waste to food. , 2022, , 181-193.		2

#	Article	IF	Citations
234	Chapter 9. Environmental impacts of different waste to food approaches., 2022,, 209-233.		0
235	Chapter 4. Conversion of food waste into new food in a closed loop. , 2022, , 103-146.		0
236	Chapter 11. How to optimise food production and nutrients circulation: artificial intelligence & mp; blockchainbased circular food supply chain., 2022,, 257-282.		0
237	3D Printing of Meat Following Supercritical Fluid Extraction. Foods, 2022, 11, 554.	1.9	4
238	Chapter 10. Stakeholder driven co-creation of sustainable resilient climate smart solutions to minimise impacts and maximise benefits of the agrifood value chain., 2022,, 237-256.		0
239	Chapter 5. Extraction of valuable components from waste biomass. , 2022, , 147-168.		1
240	Chapter 2. Requirements for safe and nutritious food and feed production: consideration for wastes and side streams utilisation. , 2022, , 31-45.		0
243	Chapter 6. Eco-efficient electrotechnologies to convert food waste and by-products to high added value food components., 2022,, 169-180.		0
244	Chapter 3. Utilisation of oilseed meals in food industry. , 2022, , 47-102.		0
245	Innovative Recovery of Winemaking Waste for Effective Lead Removal from Wastewater. Agronomy, 2022, 12, 604.	1.3	4
246	Review on technology of making biofuel from food waste. International Journal of Energy Research, 2022, 46, 10301-10319.	2.2	12
247	A comprehensive review on bio-hydrogen production from brewery industrial wastewater and its treatment methodologies. Fuel, 2022, 319, 123594.	3.4	9
248	A comprehensive review on current and emerging technologies toward the valorization of bioâ€based wastes and by products from foods. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 46-105.	5.9	42
250	Valorization of Agri-Food Industry Waste for the Production of Microbial Pigments: An Eco-Friendly Approach., 2022,, 137-167.		3
251	Valorisation of Aloe Vera Skin By-Products to Obtain Bioactive Compounds by Microwave-Assisted Extraction: Antioxidant Activity and Chemical Composition. SSRN Electronic Journal, 0, , .	0.4	0
252	ThÃnh phá°§n dinh dưỡng và hoá°¡t tÃnh kháng oxy hóa cá»§a dịch thá»§y phân ná°¥m men bia Sacch Tap Chi Khoa Hoc = Journal of Science, 2022, 58, 113-120.	aromyces	cerevisiae.
253	Nutritional status, antioxidant activity and total phenolic content of different fruits and vegetables' peels. PLoS ONE, 2022, 17, e0265566.	1.1	17
254	An integrated study using ultrasonic-assisted enzymatic extraction of hydrolysates from rice based distillery byproduct and its characterization. Process Biochemistry, 2022, 119, 128-139.	1.8	2

#	Article	IF	Citations
255	Protein by-products: Composition, extraction, and biomedical applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 9436-9481.	5.4	7
258	Plant Antioxidants from Agricultural Waste: Synergistic Potential with Other Biological Properties and Possible Applications. Reference Series in Phytochemistry, 2022, , 343-380.	0.2	1
259	Recovery and Purification of Antioxidant Compounds from Plant Origin Agro-Industrial By-products. Reference Series in Phytochemistry, 2022, , 775-797.	0.2	2
260	Valorization of Aloe vera Skin By-Products to Obtain Bioactive Compounds by Microwave-Assisted Extraction: Antioxidant Activity and Chemical Composition. Antioxidants, 2022, 11, 1058.	2.2	15
261	Micronized Dietary Okara Fiber: Characterization, Antioxidant, Antihyperglycemic, Antihyperlipidemic, and Pancreato-Protective Effects in High Fat Diet/Streptozotocin-Induced Diabetes Mellitus. ACS Omega, 2022, 7, 19764-19774.	1.6	6
262	Influence on the Optical properties of Green and Chemically Synthesized ZnO. Journal of Physics: Conference Series, 2022, 2267, 012041.	0.3	1
263	Industrial hemp foods and beverages and product properties. , 2022, , 219-246.		1
264	Microbial-assisted remediation of food processing industry waste., 2022,, 391-403.		0
265	Antiproliferative efficacy of the antioxidant bioactive compounds of defatted seeds of <i> Azadirachta indica </i> and <i> Momordica charantia </i> against the regulatory function of tumor suppressor gene inducing oral carcinoma. Journal of Biomolecular Structure and Dynamics, 0, , 1-15.	2.0	1
266	Preliminary Characterization of Phytochemicals and Polysaccharides in Diverse Coffee Cascara Samples: Identification, Quantification and Discovery of Novel Compounds. Foods, 2022, 11, 1710.	1.9	3
267	Functional foods based on the recovery of bioactive ingredients from food and algae by-products by emerging extraction technologies and 3D printing. Food Bioscience, 2022, 49, 101853.	2.0	7
268	Co-Hydrothermal Liquefaction of Sewage Sludge and Beverage Waste for High-Quality Bio-energy Production. Fuel, 2022, 324, 124757.	3.4	15
269	Extracting Total Anthocyanin from Purple Sweet Potato Using an Effective Ultrasound-Assisted Compound Enzymatic Extraction Technology. Molecules, 2022, 27, 4344.	1.7	6
270	Sunflower Oilcake as a Potential Source for the Development of Edible Membranes. Membranes, 2022, 12, 789.	1.4	4
271	Comparative Study of Food-Grade Pickering Stabilizers Obtained from Agri-Food Byproducts: Chemical Characterization and Emulsifying Capacity. Foods, 2022, 11, 2514.	1.9	5
272	Green synthesis of silver nanoparticles from vegetable waste of pea Pisum sativum and bottle gourd Lagenaria siceraria: Characterization and antibacterial properties. Frontiers in Environmental Science, 0, 10, .	1.5	17
273	Sustainability I: Edible by-products., 2023,, 707-726.		0
274	Enzyme technology for value addition in the beverage industry waste. , 2023, , 27-50.		0

#	ARTICLE	IF	CITATIONS
275	The Pioneering Role of Enzymes in the Valorization of Waste: An Insight into the Mechanism of Action. Clean Energy Production Technologies, 2022, , 79-123.	0.3	0
276	Current developments in meat by-products. , 2022, , 649-665.		1
277	Microbial Processing for Valorization of Waste and Application. , 2022, , 188-210.		0
278	Assessment of Different Lactic Acid Bacteria Isolated from Agro-Industrial Residues: First Report of the Potential Role of Weissella soli for Lactic Acid Production from Milk Whey. Applied Microbiology, 2022, 2, 626-635.	0.7	2
279	A review on holistic approaches for fruits and vegetables biowastes valorization. Materials Today: Proceedings, 2023, 73, 54-63.	0.9	5
280	Innovative Management of Vegetable Outgrades as a Means of Food Loss and Waste Reduction. Sustainability, 2022, 14, 12363.	1.6	1
281	Agri-Food Waste from Apple, Pear, and Sugar Beet as a Source of Protective Bioactive Molecules for Endothelial Dysfunction and Its Major Complications. Antioxidants, 2022, 11, 1786.	2.2	9
282	Recovery of silver nanoparticles and management of food wastes: Obstacles and opportunities. Environmental Advances, 2022, 9, 100303.	2.2	8
283	Functional Oligosaccharides Derived from Fruit-and-Vegetable By-Products and Wastes. Horticulturae, 2022, 8, 911.	1,2	2
284	Valorization of oil industry wastes: Extraction of phenolic compounds from different sunflower hull fractions (Helianthus annuus L.). TECNOCIENCIA (México), 2022, 16, e1023.	0.1	O
285	Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction. Foods, 2022, 11, 3068.	1.9	14
286	Biomolecule-Based Optical Metamaterials: Design and Applications. Biosensors, 2022, 12, 962.	2.3	2
287	Exploring the role of green and Industry 4.0 technologies in achieving sustainable development goals in food sectors. Food Research International, 2022, 162, 112068.	2.9	49
288	Industrial Wastes and By-products: A Source of Functional Foods, Nutraceuticals, and Biopolymers. RSC Polymer Chemistry Series, 2022, , 329-360.	0.1	3
289	Vegetable and Fruit Wastes: Utilization in Novel Industrial Applications. , 2022, , 207-235.		0
290	Red Beetroot and Banana Peels as Value-Added Ingredients: Assessment of Biological Activity and Preparation of Functional Edible Films. Polymers, 2022, 14, 4724.	2.0	5
291	Biobutanol from agricultural and municipal solid wastes, techno-economic, and lifecycle analysis. , 2023, , 171-198.		0
292	Blackcurrant (Ribes nigrum L.) Seeds—A Valuable Byproduct for Further Processing. Molecules, 2022, 27, 8679.	1.7	4

#	Article	IF	CITATIONS
293	Introduction on Bioactive Compounds, Sources and their Potential Applications., 2023,, 3-26.		0
294	Effect of the multi-stage block freeze concentration process on the physicochemical and biological properties of noni tea (Morinda citrifolia L.): a case study in Brazil to obtain a promising functional food. Journal of Food Measurement and Characterization, 2023, 17, 2519-2536.	1.6	3
295	A strategy for healthy eating habits of daily fruits revisited: A metabolomics study. Current Research in Food Science, 2023, 6, 100440.	2.7	1
296	Recent advances in whey processing and valorisation: Technological and environmental perspectives. International Journal of Dairy Technology, 2023, 76, 291-312.	1.3	28
297	Microwave-Assisted Extraction of Plant Proteins. , 2023, , 211-236.		1
298	Integral valorisation of tomato by-products towards bioactive compounds recovery: Human health benefits. Food Chemistry, 2023, 410, 135319.	4.2	12
299	Aqueous Two-Phase Systems Based on Ionic Liquids and Deep Eutectic Solvents as a Tool for the Recovery of Non-Protein Bioactive Compounds—A Review. Processes, 2023, 11, 31.	1.3	15
300	Sustainability of biorefineries for waste management. , 2023, , 721-754.		0
301	Microbial Conversion of Waste to Biomolecules. , 2023, , 67-86.		0
302	A systematic review of mathematical modeling for molecular distillation technologies. Chemical Engineering and Processing: Process Intensification, 2023, 184, 109289.	1.8	3
303	Valorization of wastes and by-products of nuts, seeds, cereals and legumes processing. Advances in Food and Nutrition Research, 2023, , 131-174.	1.5	1
304	Emergence of Phytochemical Genomics: Integration of Multi-Omics Approaches for Understanding Genomic Basis of Phytochemicals. , 2022, , 219-261.		0
305	Preparation, characterization and gastrointestinal stability of silk fibroin nanoparticles loaded with red wine polyphenols. Food Bioscience, 2023, 52, 102431.	2.0	5
306	Capsicum Waste as a Sustainable Source of Capsaicinoids for Metabolic Diseases. Foods, 2023, 12, 907.	1.9	5
307	Alpha linolenic acid., 2023,, 17-35.		1
308	Efficacious Utilization of Food Waste for Bioenergy Generation through the Anaerobic Digestion Method. Processes, 2023, 11 , 702.	1.3	1
309	Effect of a Novel Pretreatment Before Freeze-Drying Process on the Antioxidant Activity and Polyphenol Content of Malva sylvestris L., Calendula officinalis L., and Asparagus officinalis L. Infusions. Food and Bioprocess Technology, 2023, 16, 2113-2125.	2.6	4
310	Bioactive Phytochemicals from Walnut (Juglans spp.) Oil Processing By-products. Reference Series in Phytochemistry, 2023, , 537-557.	0.2	1

#	Article	IF	Citations
311	Bioactive Phytochemicals from Cumin (C. cyminum) and Caraway (C. carvi) Oil Processing By-products. Reference Series in Phytochemistry, 2023, , 505-526.	0.2	0
312	Food-Grade Oil-in-Water (O/W) Pickering Emulsions Stabilized by Agri-Food Byproduct Particles. Colloids and Interfaces, 2023, 7, 27.	0.9	1
313	Valorisation through Lactic Fermentation of Industrial Wastewaters from a Bean Blanching Treatment. Fermentation, 2023, 9, 350.	1.4	1
314	Valorization of cocoa, tea and coffee processing by-products-wastes. Advances in Food and Nutrition Research, 2023, , .	1.5	0
315	Food Waste to Bio-Products. Advances in Finance, Accounting, and Economics, 2023, , 306-331.	0.3	0
316	Interaction between Dietary Fibre and Bioactive Compounds in Plant By-Products: Impact on Bioaccessibility and Bioavailability. Antioxidants, 2023, 12, 976.	2.2	7
317	Waste and by-products as sources of lycopene, phytoene, and phytofluene - Integrative review with bibliometric analysis. Food Research International, 2023, 169, 112838.	2.9	5
320	New developments in the sustainable production and utility of Whey protein. AIP Conference Proceedings, 2023, , .	0.3	0
332	Natural Antioxidants: An Update. , 0, , .		0
343	Biofuel Circular Economy in Environmental Sustainability. , 2023, , 199-218.		0
348	Sustainable Environmental Remediation by Valorization of Agro-food Industrial Waste and By-products., 2023,, 70-94.		0
351	Chemical and Biological Valorization of Tomato Waste. , 2023, , 147-168.		0
357	Methods involved in the recycling and valorization of nutrients from agricultural waste biomass. , 2024, , 53-72.		0
361	Safflower Seed Meal: Progress Towards Obtaining New Protein. , 2024, , 221-267.		0
362	Recovery of resources and circular economy from biomass-derived waste through aerobic and anaerobic digestion-based technique., 2024, , 411-463.		0
364	Value-Added Product Development Utilising the Food Wastes. , 2024, , 287-301.		0