Superhydrophobic Surfaces Developed by Mimicking H Lotus Leaf

Molecules 19, 4256-4283 DOI: 10.3390/molecules19044256

Citation Report

#	Article	IF	CITATIONS
1	Environmentally friendly fabric finishes. , 2015, , 3-33.		7
2	A mechanically bendable superhydrophobic steel surface with self-cleaning and corrosion-resistant properties. Journal of Materials Chemistry A, 2015, 3, 14263-14271.	5.2	219
3	Superhydrophobic laser ablated PTFE substrates. Applied Surface Science, 2015, 349, 715-723.	3.1	56
4	Raspberry-like superhydrophobic silica coatings with self-cleaning properties. Ceramics International, 2015, 41, 11719-11725.	2.3	76
5	Biomimetic surface-conducting silicone rubber obtained by physical deposition of MWCNT. Smart Materials and Structures, 2015, 24, 065040.	1.8	10
6	Self-cleaning superhydrophobic films by supersonic-spraying polytetrafluoroethylene–titania nanoparticles. Journal of Materials Chemistry A, 2015, 3, 3975-3983.	5.2	45
7	Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydrate Polymers, 2015, 131, 337-354.	5.1	136
8	Self-cleaning transparent superhydrophobic coatings through simple sol–gel processing of fluoroalkylsilane. Applied Surface Science, 2015, 351, 897-903.	3.1	208
9	Synthesis and self-assembly of well-defined binary graft copolymer and its use in superhydrophobic cotton fabrics preparation. RSC Advances, 2015, 5, 46132-46145.	1.7	17
10	Self-cleaning and superhydrophobic CuO coating by jet-nebulizer spray pyrolysis technique. CrystEngComm, 2015, 17, 2624-2628.	1.3	66
11	A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying. Journal of Materials Chemistry A, 2015, 3, 11403-11410.	5.2	99
12	Superhydrophobic coatings prepared from methyl-modified silica particles using simple dip-coating method. Ceramics International, 2015, 41, 3017-3023.	2.3	98
13	Surface roughness rather than surface chemistry essentially affects insect adhesion. Beilstein Journal of Nanotechnology, 2016, 7, 1471-1479.	1.5	58
14	From natural to biomimetic: The superhydrophobicity and the contact time. Microscopy Research and Technique, 2016, 79, 712-720.	1.2	13
16	Is there value in chemical modification of fish scale surfaces?. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
17	Superhydrophobic and self-cleaning surfaces prepared from a commercial silane using a single-step drop-coating method. Progress in Organic Coatings, 2016, 99, 322-329.	1.9	43
18	Induced hydrophobicity in micro―and nanostructured nickel thin films obtained by ultraviolet pulsed laser treatment. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2709-2713.	0.8	7
19	Current state and prospects of development of technologies for the production of superhydrophobic materials and coatings. Nanotechnologies in Russia, 2016, 11, 679-695.	0.7	8

ATION REI

#	Article	IF	CITATIONS
20	Enhanced slippery behavior and stability of lubricating fluid infused nanostructured surfaces. EPJ Applied Physics, 2016, 75, 11301.	0.3	11
21	A super hydrophilic modification of poly(vinylidene fluoride) (PVDF) nanofibers: By in situ hydrothermal approach. Applied Surface Science, 2016, 385, 417-425.	3.1	31
22	Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal. Chemosphere, 2016, 164, 142-155.	4.2	79
23	Improvement of water wetting capability of copper wire braids by surface modification approaches. International Communications in Heat and Mass Transfer, 2016, 77, 155-158.	2.9	6
26	Growth and Tunable Surface Wettability of Vertical MoS ₂ Layers for Improved Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2016, 8, 22190-22195.	4.0	94
28	3D spherical-cap fitting procedure for (truncated) sessile nano- and micro-droplets & -bubbles. European Physical Journal E, 2016, 39, 106.	0.7	5
29	Integrated super-hydrophobic and antireflective PDMS bio-templated from nano-conical structures of cicada wings. RSC Advances, 2016, 6, 108974-108980.	1.7	26
30	Dynamically Tunable Smart Nanodrug Perspectives: Promises and challenges of nanoparticle-based drug delivery IEEE Nanotechnology Magazine, 2016, 10, 29-39.	0.9	0
31	One-pot fabrication of fluoride-silica@silica raspberry-like nanoparticles for superhydrophobic coating. Ceramics International, 2016, 42, 14601-14608.	2.3	23
32	Functional nano-textured titania-coatings with self-cleaning and antireflective properties for photovoltaic surfaces. Solar Energy, 2016, 125, 227-242.	2.9	41
33	Characterization of superhydrophobic a-C:F thin film deposited on porous silicon via laser ablation of a PTFE target. Diamond and Related Materials, 2016, 64, 57-63.	1.8	8
34	Developing hydrophobic and superhydrophobic TiO2 coatings by plasma spraying. Surface and Coatings Technology, 2016, 289, 29-36.	2.2	68
35	Precise cutting microstructured superhydrophobic surface. Surface Engineering, 2016, 32, 119-124.	1.1	3
36	Recent advances in superhydrophobic surfaces and their relevance to biology and medicine. Bioinspiration and Biomimetics, 2016, 11, 011001.	1.5	44
37	Modeling Cassie–Baxter State on Superhydrophobic Surfaces. Journal of Dispersion Science and Technology, 2016, 37, 1208-1213.	1.3	29
38	Lotus effect in wetting and self-cleaning. Biotribology, 2016, 5, 31-43.	0.9	208
39	Hierarchical Spring-Block Model for Multiscale Friction Problems. ACS Biomaterials Science and Engineering, 2017, 3, 2845-2852.	2.6	13
40	Triarylmethane Dyes for Artificial Repellent Cotton Fibers. Chemistry - A European Journal, 2017, 23, 3810-3814.	1.7	13

		CITATION REPORT		
#	Article		IF	CITATIONS
41	Surface Tailoring of Aluminum Sheets by PVD Sputtering. Procedia Engineering, 2017,	183, 375-380.	1.2	0
42	Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hy paper and textile composites. Journal of Materials Chemistry A, 2017, 5, 8376-8384.	vdrophobic	5.2	87
43	Isatin thiosemicarbazones promote honeycomb structure formation in spin-coated pol concentration effect and release studies. RSC Advances, 2017, 7, 12945-12952.	ymer films:	1.7	7
44	Antimicrobial activity and fouling resistance of a polyvinylidene fluoride (PVDF) hollow- membrane. Journal of Industrial and Engineering Chemistry, 2017, 47, 260-271.	fiber	2.9	21
45	Fabrication of a lotus leaf-like hierarchical structure to induce an air lubricant for drag r Surface and Coatings Technology, 2017, 331, 48-56.	eduction.	2.2	22
46	New insights and perspectives into biological materials for flexible electronics. Chemica Reviews, 2017, 46, 6764-6815.	al Society	18.7	322
47	A facile and low-cost preparation of durable amphiphobic coatings with fluoride–silica@poly(methacrylic acid) hybrid nanocomposites. Journal of Coatings T Research, 2017, 14, 1369-1380.	echnology	1.2	4
48	Roughness Versus Chemistry: Effect of Different Surface Properties on Insect Adhesion Biologically-inspired Systems, 2017, , 33-46.		0.4	0
49	Surface Wrinkling and Porosity of Polymer Particles toward Biological and Biomedical A Advanced Materials Interfaces, 2017, 4, 1700929.	Applications.	1.9	20
50	3.19 Effect of Surface Roughness on Wetting Properties. , 2017, , 276-305.			7
51	The Effects of Biopolymers Composite Based Waste Cooking Oil and Titanium Dioxide Superhydrophobic Coatings IOP Conference Series: Materials Science and Engineering 012161.	Fillers as g, 2017, 226,	0.3	2
52	Frontier of Inorganic Synthesis and Preparative Chemistry (I) Biomimetic Synthesis. , 20	017,,687-721.		6
53	Bio-mimicking nano and micro-structured surface fabrication for antibacterial propertie implants. Journal of Nanobiotechnology, 2017, 15, 64.	es in medical	4.2	308
54	Nanobiodiversity: The Potential of Extracellular Nanostructures. Journal of Renewable N 2017, 5, 199-207.	/laterials,	1.1	1
55	Hydrophobic ultrathin films formed by fluorofunctional cage silsesquioxanes. Applied S Science, 2018, 443, 280-290.	urface	3.1	10
56	Controlled Growth of MoS ₂ Flakes from in-Plane to Edge-Enriched 3D Net Surface-Energy Studies. ACS Applied Nano Materials, 2018, 1, 2356-2367.	work and Their	2.4	44
57	Wettability Property In Natural Systems: A Case of Flying Insects. MRS Advances, 2018	5, 3, 2697-2703.	0.5	7
58	A â€~NanoSuit' successfully protects petals of cherry blossoms in high vacuum: exa plants in an FE-SEM. Scientific Reports, 2018, 8, 1685.	amination of living	1.6	11

#	Article	IF	CITATIONS
60	Annealing dependent evolution of columnar nanostructures in RF magnetron sputtered PTFE films for hydrophobic applications. Materials Research Express, 2018, 5, 015312.	0.8	7
61	Superior lubrication properties of biomimetic surfaces with hierarchical structure. Tribology International, 2018, 119, 131-142.	3.0	26
62	Controlling the Secondary Surface Morphology of Electrospun PVDF Nanofibers by Regulating the Solvent and Relative Humidity. Nanoscale Research Letters, 2018, 13, 285.	3.1	76
63	Effect of calcination temperature on morphology, wettability and anatase/rutile phase ratio of titanium dioxide nanotube arrays. Materials Today: Proceedings, 2018, 5, 14950-14954.	0.9	11
64	Phase-dependent structural and electrochemical properties of single crystalline MnS thin films deposited by DC reactive sputtering. Journal of Applied Physics, 2018, 124, .	1.1	34
65	The Hydrophobic Surface Prepared by Sandblasting-Electroplating on Carbon Steel. , 2018, , .		0
66	Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning. RSC Advances, 2018, 8, 42353-42360.	1.7	49
67	Crosslinked polybenzoxazine coatings with hierarchical surface structures from a biomimicking process exhibiting high robustness and anticorrosion performance. Polymer, 2018, 155, 168-176.	1.8	21
68	Preparation of Parabolic Superhydrophobic Material for Oil-Water Separation. Materials, 2018, 11, 1914.	1.3	9
69	PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices. Sensors, 2018, 18, 2996.	2.1	37
70	Self-cleaning and wear-resistant polymer nanocomposite surfaces. Surface and Coatings Technology, 2018, 348, 111-120.	2.2	24
71	Metal Ionâ€assisted Fabrication of Hierarchically Structured Superhydrophobic Surfaces on Mg Plates. Bulletin of the Korean Chemical Society, 2018, 39, 837-839.	1.0	0
72	Nanostructured biomimetic, bioresponsive, and bioactive biomaterials. , 2018, , 35-65.		1
73	Mechanical Durability of Engineered Superhydrophobic Surfaces for Anti-Corrosion. Coatings, 2018, 8, 162.	1.2	51
75	ODS – modified TiO2 nanoparticles for the preparation of self-cleaning superhydrophobic coating. AIP Conference Proceedings, 2018, , .	0.3	11
76	Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology, 2018, 67, 627-650.	1.7	88
77	Evolution and Body Plans, as Nature Designs. , 2019, , 11-28.		0
78	Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration. Textile Research Journal, 2019, 89, 2406-2422	1.1	43

#	Article	IF	CITATIONS
79	Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. Materials Science and Engineering C, 2019, 105, 110078.	3.8	60
80	Production of Hydrophobic Zein-Based Films Bioinspired by The Lotus Leaf Surface: Characterization and Bioactive Properties. Microorganisms, 2019, 7, 267.	1.6	29
81	Perspective on the Interfacial Reduction Reaction. Langmuir, 2019, 35, 9647-9659.	1.6	7
82	Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Progress in Organic Coatings, 2019, 137, 105373.	1.9	129
83	Influence of leaf surface wettability on the drop splash phenomenon. Agricultural and Forest Meteorology, 2019, 279, 107762.	1.9	28
84	Fabrication of superhydrophobic aluminum surface by droplet etching and chemical modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 205-212.	2.3	55
85	Preparation of novel side-chain fluoroalkyl polyether oligomers with terminal acrylate for emulsion copolymerization and application on cotton fabric finishing. Chemical Papers, 2019, 73, 2563-2574.	1.0	5
86	Experimental and theoretical studies of hybrid multifunctional TiO2/TiN/TiO2. Ceramics International, 2019, 45, 19036-19043.	2.3	60
87	Downstream Monomer Capture and Polymerization during Vapor Phase Fabrication of Porous Membranes. Industrial & Engineering Chemistry Research, 2019, 58, 9908-9914.	1.8	4
88	Titania-Containing Recycled Polypropylene Surfaces with Photo-Induced Reversible Switching Wettability. Journal of Polymers and the Environment, 2019, 27, 1564-1571.	2.4	23
89	Ultrascalable Multifunctional Nanoengineered Copper and Aluminum for Antiadhesion and Bactericidal Applications. ACS Applied Bio Materials, 2019, 2, 2726-2737.	2.3	26
90	Fluorous hydrophobic fluorescent (E)-Stilbene derivatives for application on security paper. Dyes and Pigments, 2019, 170, 107597.	2.0	5
91	The role of viscous and capillary forces in the prediction of critical conditions defining super-hydrophobic and hydrophilic characteristics. Chemical Engineering Science, 2019, 207, 527-541.	1.9	11
92	Preparation of mechanically durable superhydrophobic aluminum surface by sandblasting and chemical modification. Progress in Organic Coatings, 2019, 133, 77-84.	1.9	53
93	Flexible Self-Cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings. ACS Applied Materials & Interfaces, 2019, 11, 17019-17027.	4.0	67
94	Biomimetic fabrication of micro-/nanostructure on polypropylene surfaces with high dynamic superhydrophobic stability. Materials Today Communications, 2019, 19, 487-494.	0.9	26
95	Amphiphobic Nanostructured Coatings for Industrial Applications. Materials, 2019, 12, 787.	1.3	7
96	Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019. 377. 20180268.	1.6	51

#	Article	IF	CITATIONS
97	Electrospun Fibrous PTFE Supported ZnO for Oil–Water Separation. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1738-1745.	1.9	20
98	Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Progress in Organic Coatings, 2019, 132, 235-256.	1.9	292
99	A review of nanoparticleâ€enhanced membrane distillation membranes: membrane synthesis and applications in water treatment. Journal of Chemical Technology and Biotechnology, 2019, 94, 2757-2771.	1.6	104
100	Preparation Of Superhydrophobic Zinc Oxide Nanorods Coating On Stainless Steel Via Chemical Bath Deposition. IOP Conference Series: Materials Science and Engineering, 2019, 547, 012052.	0.3	2
101	One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability. Applied Surface Science, 2019, 473, 493-499.	3.1	62
102	Hydrophobization of cotton fabric by Gliding Arc plasma discharge. Current Applied Physics, 2019, 19, 128-136.	1.1	18
103	Polytetrafluoroethylene (PTFE): A resin material for possible use in dental prostheses and devices. Dental Materials Journal, 2019, 38, 136-142.	0.8	17
104	Flexible and Stable Omniphobic Surfaces Based on Biomimetic Repulsive Air-Spring Structures. ACS Applied Materials & Interfaces, 2019, 11, 5877-5884.	4.0	23
105	Fractal and multifractal analysis of In-doped ZnO thin films deposited on glass, ITO, and silicon substrates. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	35
106	Self – cleaning superhydrophobic coatings: Potential industrial applications. Progress in Organic Coatings, 2019, 128, 52-58.	1.9	391
107	Preparation of SiO2 nanoparticles with adjustable size for fabrication of SiO2/PMHS ORMOSIL superhydrophobic surface on cellulose-based substrates. Progress in Organic Coatings, 2020, 138, 105384.	1.9	14
108	Recent Advances in durability of superhydrophobic self-cleaning technology: A critical review. Progress in Organic Coatings, 2020, 138, 105381.	1.9	266
109	A correlation of metallic surface roughness with its hydrophobicity for dropwise condensation. Materials Today: Proceedings, 2020, 21, 1446-1452.	0.9	8
110	Parylene micropillars coated with thermally grown SiO2. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	2
111	Self Assembly of Super-hydrophobic Nanotextured Methyl Functionalized Silica on Copper and Aluminium Surfaces for Moist Air Condensation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125379.	2.3	17
112	A scope at antifouling strategies to prevent catheter-associated infections. Advances in Colloid and Interface Science, 2020, 284, 102230.	7.0	55
113	Approaches for Evaluating and Engineering Resilient Superhydrophobic Materials. , 2020, , .		0
114	Fabrication of fluorine-free superhydrophobic cotton fabric using fumed silica and diblock copolymer via mist modification. Progress in Organic Coatings, 2020, 148, 105884.	1.9	25

#	Article	IF	Citations
115	Impact of Hot Water Treated Lotus Leaves on Interfacial and Physico-Mechanical of Gelatin/Lotus Leaf Composites. Journal of Polymers and the Environment, 2020, 28, 3270-3278.	2.4	7
116	Lubricant-infused directly engraved nano-microstructures for mechanically durable endoscope lens with anti-biofouling and anti-fogging properties. Scientific Reports, 2020, 10, 17454.	1.6	16
117	Superhydrophobic Thermoplastic Surfaces with Hierarchical Micro-Nanostructures Fabricated by Hot-Embossing. , 2020, , .		1
119	Magnetically driven active topography for long-term biofilm control. Nature Communications, 2020, 11, 2211.	5.8	55
120	Recent Developments and Practical Feasibility of Polymerâ€Based Antifouling Coatings. Advanced Functional Materials, 2020, 30, 2000936.	7.8	358
121	Designing CO ₂ reduction electrode materials by morphology and interface engineering. Energy and Environmental Science, 2020, 13, 2275-2309.	15.6	251
122	Development of a metal-to-metal imprinting process: Transcription quality analysis and surface wettability characterization. Applied Surface Science, 2020, 527, 146823.	3.1	6
123	UV-curable superhydrophobic organosilicon/silica hybrid coating on cotton fabric for oil–water separation. Journal of Coatings Technology Research, 2020, 17, 1413-1423.	1.2	7
124	Lotus Effect and Friction: Does Nonsticky Mean Slippery?. Biomimetics, 2020, 5, 28.	1.5	24
125	Lotus Leaf-Inspired Hydrothermal Synthesis of Composite Nanoparticles and Application for Photocatalytic Oil Denitrification. Catalysis Letters, 2020, 150, 2474-2486.	1.4	4
126	Inner surface of <i>Nepenthes</i> slippery zone: ratchet effect of lunate cells causes anisotropic superhydrophobicity. Royal Society Open Science, 2020, 7, 200066.	1.1	11
127	Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part I: Molecular Basis of Biofilm Recalcitrance. Passive Anti-Biofouling Nanocoatings. Nanomaterials, 2020, 10, 1230.	1.9	38
128	Fabrication of micro-patterned ZrO2/TiO2 composite surfaces with tunable super-wettability via a photosensitive sol-gel technique. Applied Surface Science, 2020, 529, 147136.	3.1	16
129	Oneâ€pot fluorineâ€free superhydrophobic surface towards corrosion resistance and water droplet bouncing. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 2011-2020.	0.8	4
130	Fabrication of robust PDMS micro-structure with hydrophobic and antifouling properties. Microelectronic Engineering, 2020, 224, 111255.	1.1	24
131	Fabrication of Micro-/Submicro-/Nanostructured Polypropylene/Graphene Superhydrophobic Surfaces with Extreme Dynamic Pressure Resistance Assisted by Single Hierarchically Porous Anodic Aluminum Oxide Template. Journal of Physical Chemistry C, 2020, 124, 6197-6205.	1.5	19
132	f-MWCNTs/AgNPs-coated superhydrophobic PVDF nanofibre membrane for organic, colloidal, and biofouling mitigation in direct contact membrane distillation. Journal of Environmental Chemical Engineering, 2020, 8, 103654.	3.3	31
133	Polyaniline and manganese oxide decorated on carbon nanofibers as a superior electrode material for supercapacitor. Journal of Electroanalytical Chemistry, 2020, 867, 114188.	1.9	20

#	Article	IF	CITATIONS
134	Hard Quasicrystalline Coatings Deposited by HVOF Thermal Spray to Reduce Ice Accretion in Aero-Structures Components. Coatings, 2020, 10, 290.	1.2	28
135	Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process. Vacuum, 2020, 177, 109353.	1.6	19
136	Mechanical Innovations of a Climbing Cactus: Functional Insights for a New Generation of Growing Robots. Frontiers in Robotics and Al, 2020, 7, 64.	2.0	18
137	Pulsed Water Mists for Suppression of Strawberry Powdery Mildew. Plant Disease, 2021, 105, 71-77.	0.7	13
138	Tuning the wettability of highly transparent Nb2O5 nano-sliced coatings to enhance anti-corrosion property. Materials Science in Semiconductor Processing, 2021, 123, 105513.	1.9	19
139	Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces. Applied Surface Science, 2021, 542, 148560.	3.1	56
140	Fabrication of a fast curing super-hydrophobic FEVE/MMA coating and its property research. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114746.	1.7	7
141	The effects of bio-inspired micro/nano scale structures on anti-icing properties. Soft Matter, 2021, 17, 447-466.	1.2	24
142	Fabrication and Evaluation of Nano-TiO2 Superhydrophobic Coating on Asphalt Pavement. Materials, 2021, 14, 211.	1.3	12
143	Critical Aspects in Fabricating Multifunctional Super-Nonwettable Coatings Exhibiting Icephobic and Anti-Biofouling Properties. Coatings, 2021, 11, 339.	1.2	6
144	Facile approach for modulating wetting of hierarchically structured metallic surface. Surface Innovations, 2022, 10, 25-36.	1.4	5
145	Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections. Nanomaterials, 2021, 11, 1046.	1.9	26
146	The effect of sintering regime on superhydrophobicity of silicon nitride modified ceramic surfaces. Journal of Asian Ceramic Societies, 2021, 9, 734-744.	1.0	10
147	Self-cleaned zirconia coatings prepared using a co-precursor sol–gel method. Surface Engineering, 2021, 37, 1059-1066.	1.1	9
148	Synthesis of Cubic Aluminum Nitride (AlN) Coatings through Suspension Plasma Spray (SPS) Technology. Coatings, 2021, 11, 500.	1.2	5
149	Superhydrophobic wood surface fabricated by Cu ₂ 0 nano-particles and stearic acid: its acid/alkali and wear resistance. Holzforschung, 2021, 75, 917-931.	0.9	6
150	Fluorine-free anti-droplet surface modification by hexadecyltrimethoxysilane-modified silica nanoparticles-coated carbon nanofibers for self-cleaning applications. Progress in Organic Coatings, 2021, 153, 106165.	1.9	6
151	The Biomimetic Evolution of Composite Materials: From Straw Bricks to Engineering Structures and Nanocomposites. Journal of Composites Science, 2021, 5, 123.	1.4	3

#	Article	IF	CITATIONS
152	Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. Advanced Science, 2021, 8, e2004082.	5.6	28
153	The preparation of superhydrophobic photocatalytic fluorosilicone/SiO2–TiO2 coating and its self-cleaning performance. Journal of Coatings Technology Research, 2021, 18, 1245-1259.	1.2	16
154	DYNAMICS RESPONSE OF THE FORCED FANGZHU FRACTAL DEVICE FOR WATER COLLECTION FROM AIR. Fractals, 2021, 29, .	1.8	11
155	Highâ€flux strategy for electrospun nanofibers in membrane distillation to treat aquaculture wastewater: a review. Journal of Chemical Technology and Biotechnology, 2021, 96, 3259-3272.	1.6	20
156	Bactericidal surfaces: An emerging 21st-century ultra-precision manufacturing and materials puzzle. Applied Physics Reviews, 2021, 8, .	5.5	23
157	Molecular Insights on the Wetting Behavior of a Surface Corrugated with Nanoscale Domed Pillars. Langmuir, 2021, 37, 9336-9345.	1.6	5
158	Enhancement of continuous flow cooling using hydrophobic surface treatment. Journal of Food Engineering, 2021, 300, 110524.	2.7	2
159	Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator. Nano Energy, 2021, 85, 105978.	8.2	54
160	Capturing Methomyl Droplet by Calix[4]arene Modified Surface. ChemistrySelect, 2021, 6, 7247-7251.	0.7	0
161	Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS). Science of the Total Environment, 2021, 778, 146192.	3.9	22
162	A Synergistic Effect between Stearic Acid and (+)-α-Tocopherol as a Green Inhibitor on Ferritic Stainless Steel Corrosion Inhibition in 3.0% NaCl Solution. Coatings, 2021, 11, 971.	1.2	4
163	Photoredox Catalysis for the Fabrication of Water-Repellent Surfaces with Application for Oil/Water Separation. Langmuir, 2021, 37, 11592-11602.	1.6	0
164	Antifungal versus antibacterial defence of insect wings. Journal of Colloid and Interface Science, 2021, 603, 886-897.	5.0	27
165	The introduction and comparison of two techniques of fluid transport at the microscale. Journal of Physics: Conference Series, 2021, 1759, 012008.	0.3	0
166	Fabrication of High Aspect Ratio Micro-Structures with Superhydrophobic and Oleophobic Properties by Using Large-Area Roll-to-Plate Nanoimprint Lithography. Nanomaterials, 2021, 11, 339.	1.9	20
167	The challenges, achievements and applications of submersible superhydrophobic materials. Chemical Society Reviews, 2021, 50, 6569-6612.	18.7	81
168	Wettability of a microgridâ€structured polymer film with microfabrication utilizing the stick–slip phenomenon. Journal of Applied Polymer Science, 2017, 134, 45140.	1.3	3
169	Isopentyltriphenylphosphonium bromideionic liquid as a newly effective corrosion inhibitor on metal-electrolyte interface in acidic medium: Experimental, surface morphological (SEM-EDX & amp;) Tj ETQq1 1	0.7284314	rg 8 4 /Overloo

#	Article	IF	CITATIONS
170	Preparation and characterization of self-matting waterborne polymer–An overview. Progress in Organic Coatings, 2020, 142, 105569.	1.9	21
171	Analysis of approaches to mathematical description of the characteristics of materials with high hydrophobicity. Eastern-European Journal of Enterprise Technologies, 2015, 5, 30.	0.3	2
172	Preparation of Self-cleaning Polyester Fabrics by Chemical Vapor Deposition of Methyltrichlorosilane/Dimethyldichlorosilane. Fibres and Textiles in Eastern Europe, 2017, 25, 121-124.	0.2	4
173	Biomimicry: Recent Updates on Nanotechnology Innovations Inspired by Nature Creations. Current Nanoscience, 2021, 17, 659-669.	0.7	2
174	Facile Fabricating Strategy for Bioinspired Flexible Film with Cavitation: Liquid Superâ€Repellent Material with Stimulateâ€Response on Liquid Adhesion. Macromolecular Materials and Engineering, 2021, 306, 2000605.	1.7	0
175	Cotton fiber modified via N-phenyl anhydride in situ ring-opening polymerization with controllable surface morphology and its wettability. Progress in Organic Coatings, 2022, 162, 106565.	1.9	0
176	Introduction to Nanoscience, Nanotechnology and Nanoparticles. , 2020, , 1-39.		5
177	New Approaches to Increasing the Superhydrophobicity of Coatings Based on ZnO and TiO2. Coatings, 2021, 11, 1369.	1.2	3
178	Preparation of super-hydrophobic cotton fabrics with the controllable roughening fiber surface by carbene polymerization grafting. Progress in Organic Coatings, 2022, 163, 106635.	1.9	6
179	Recent Progress on Tailoring and Modification of Membranes for Membrane Distillation: A Review. Journal of Applied Membrane Science & Technology, 2021, 25, 93-117.	0.3	0
180	Calcium Carbonate@silica Composite with Superhydrophobic Properties. Molecules, 2021, 26, 7180.	1.7	6
181	An effective approach to fabricate the corrosion resistance of superhydrophobic ZnO/Ni composite coating on carbon steel substrate. Journal of Adhesion Science and Technology, 2022, 36, 2328-2345.	1.4	3
182	Effect of Perfluorinated Side-Chain Length on the Morphology, Hydrophobicity, and Stability of Xerogel Coatings. Langmuir, 2021, 37, 14390-14397.	1.6	4
183	A study of light amplification and dispersion by surface tension on water droplet above taro (Colocasia Esculenta) leaf. Eastern-European Journal of Enterprise Technologies, 2020, 5, 6-19.	0.3	1
184	Tropical Climate Adaptation via Biomimicry and Surface Functionalization for Electronic Circuitry. Key Engineering Materials, 0, 908, 605-611.	0.4	0
185	Superhydrophobic coating based on silica derived from bagasse modified with vinyltriethoxysilane and copper (Cu) as antibacterial agent. IOP Conference Series: Earth and Environmental Science, 2022, 963, 012023.	0.2	2
186	Superhydrophobic Coating Based on Porous Aluminum Oxide Modified by Polydimethylsiloxane (PDMS). Materials, 2022, 15, 1042.	1.3	5
187	Hierarchical porous metal–organic framework materials for efficient oil–water separation. Journal of Materials Chemistry A, 2022, 10, 2751-2785.	5.2	48

#	Article	IF	CITATIONS
188	Fabrication and multifunctional properties of fluorine-free durable nickel stearate based superhydrophobic cotton fabric. Journal of Coatings Technology Research, 0, , 1.	1.2	8
189	Remediation of Fouling on Painted Steel Roofing via Solar Energy Assisted Photocatalytic Selfâ€cleaning Technology: Recent Developments and Future Perspectives. Advanced Engineering Materials, 0, , .	1.6	5
190	New analytical solution of the fractal anharmonic oscillator using an ancient Chinese algorithm: Investigating how plasma frequency changes with fractal parameter values. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 833-841.	1.3	6
191	Electrospun nanofibrous membranes as promising materials for developing high-performance desalination technologies. Desalination, 2022, 528, 115639.	4.0	12
192	Design of a flexible surface/interlayer for packaging. Soft Matter, 2022, 18, 2123-2128.	1.2	4
193	Hybrid Micro Texturing on Metal Surfaces for Anisotropic Locking. Journal of the Korean Society of Manufacturing Technology Engineers, 2022, 31, 41-47.	0.1	0
194	One-Step Fabrication of Superhydrophobic Surfaces with Wettability Gradient Using Three-Dimensional Printing. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 85-96.	2.7	12
195	Surgical Applications of Materials Engineered with Antimicrobial Properties. Bioengineering, 2022, 9, 138.	1.6	6
196	Bioinspired Topographic Surface Modification of Biomaterials. Materials, 2022, 15, 2383.	1.3	8
197	Lotus-Leaf-Inspired Biomimetic Coatings: Different Types, Key Properties, and Applications in Infrastructures. Infrastructures, 2022, 7, 46.	1.4	17
198	Inâ€situ plasma treatment of tomato and rice seeds inâ€liquid to promote seed germination and seedling growth. Plasma Processes and Polymers, 2022, 19, .	1.6	5
199	Effect of ultrasonic vibration-assisted laser treatment on surface roughness and wettability of aluminum. Optics and Laser Technology, 2022, 150, 107969.	2.2	8
200	Contact angle of <i>Nepenthes</i> slippery zone: results from measurement and model analysis. Bioinspired, Biomimetic and Nanobiomaterials, 2021, 10, 114-122.	0.7	2
201	Special Wettability Materials Inspired by Multiorganisms for Fog Collection. Advanced Materials Interfaces, 2022, 9, .	1.9	9
202	Multifunctional superhydrophobic and cool coating surfaces of the blue ceramic nanopigments based on the heulandite zeolite. Ceramics International, 2022, 48, 21913-21925.	2.3	13
203	Biomimicking of phyto-based super-hydrophobic surfaces towards prospective applications: a review. Journal of Materials Science, 2022, 57, 8569-8596.	1.7	4
204	Lotus leaf-inspired droplet-based electricity generator with low-adhesive superhydrophobicity for a wide operational droplet volume range and boosted electricity output. Nano Energy, 2022, 99, 107361.	8.2	25
205	Recent advances in bio-inspired multifunctional coatings for corrosion protection. Progress in Organic Coatings, 2022, 168, 106858.	1.9	22

	CITATION R	EPORT	
#	Article	IF	CITATIONS
206	Micro-structured and self-assembled patterns in PLA-cast films as a function of CTAB content, magnesium and substratum hydrophobicity. Applied Surface Science, 2022, 597, 153676.	3.1	5
207	IMPROVING THE HYDROPHOBICITY OF POLYMERS THROUGH SURFACE TEXTURING, 2021, 2021, 268-274.		0
208	Formation of superhydrophobic porous GaAs layer: effect of substrate doping type. Bulletin of Materials Science, 2022, 45, .	0.8	3
209	Theoretical and experimental study of spontaneous adsorption-induced superhydrophobic Cu coating with hierarchical structures and its anti-scaling property. Surface and Coatings Technology, 2022, 441, 128557.	2.2	10
210	The concept of biomimetics in the development of protective textiles. , 2022, , 133-173.		1
211	Biomimicked large-area anisotropic grooves from Dracaena sanderiana leaf enhances cellular alignment and subsequent differentiation. Bioinspiration and Biomimetics, 2022, 17, 056002.	1.5	1
212	Superhydrophobic Self-Cleaning Composite of a Metal–Organic Framework with Polypropylene Fabric for Efficient Removal of Oils from Oil–Water Mixtures and Emulsions. ACS Applied Nano Materials, 2022, 5, 10003-10014.	2.4	21
213	Antibacterial persistence of hydrophobically glazed ceramic tiles. Journal of the Korean Ceramic Society, 2022, 59, 920-928.	1.1	3
215	Capillary pumping between droplets on superhydrophobic surfaces. AICHE Journal, 0, , .	1.8	0
216	Production and characterization of pullulan/paper/zein laminates as active food packaging materials. Journal of Food Processing and Preservation, 0, , .	0.9	2
217	Oblique impacts of water nanodroplets on superhydrophobic surfaces: A molecular dynamics study. Journal of Molecular Liquids, 2022, 365, 120074.	2.3	6
218	Preparation of ultrafiltration membrane from discarded polyethylene terephthalate bottles. Environmental Science and Pollution Research, 2023, 30, 42728-42737.	2.7	2
219	Biotemplate Replication of Novel Mangifera indica Leaf (MIL) for Atmospheric Water Harvesting: Intrinsic Surface Wettability and Collection Efficiency. Biomimetics, 2022, 7, 147.	1.5	1
220	Wear Behavior of Bronze vs. 100Cr6 Friction Pairs under Different Lubrication Conditions for Bearing Applications. Lubricants, 2022, 10, 212.	1.2	6
221	Multi-layered nanofiber membranes: Preparation, characterization, and application in wastewater treatment. Journal of Industrial Textiles, 2022, 52, 152808372211274.	1.1	0
222	Tailoring Structure: Current Design Strategies and Emerging Trends to Hierarchical Catalysts. Catalysts, 2022, 12, 1152.	1.6	3
223	Flower-like Superhydrophobic Surfaces Fabricated on Stainless Steel as a Barrier against Corrosion in Simulated Acid Rain. Materials, 2022, 15, 7104.	1.3	2
224	Effects of controlled shot peening on multi-scale morphology and hydrophobicity of 316L stainless steel. Digest Journal of Nanomaterials and Biostructures, 2022, 17, 1151-1161.	0.3	0

#	Article	IF	CITATIONS
225	Biology and nature: Bionic superhydrophobic surface and principle. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	10
226	Design and fabrication of nano textured superhydrophobic and anti-corrosive silane-grafted ZnO/bio-based polyurethane bilayer coating. Surface and Coatings Technology, 2022, 451, 129036.	2.2	7
227	Novel Superhydrophobic Surface Cu ₂ O Nanocubes with Fluorine-free Modifier to Achieve Efficient and Repeatable Heavy Oil-water Separation. Chemistry Letters, 2023, 52, 33-36.	0.7	0
228	Antibacterial features of material surface: strong enough to serve as antibiotics?. Journal of Materials Chemistry B, 2023, 11, 280-302.	2.9	4
229	Fabricated polyhydroxyalkanoates blend scaffolds enhance cell viability and cell proliferation. Journal of Biotechnology, 2023, 361, 30-40.	1.9	4
230	Bio-based acrylated epoxidized jatropha oil incorporated with graphene nanoplatelets in the assessment of corrosion resistance coating. Progress in Organic Coatings, 2023, 175, 107349.	1.9	0
231	Bioinspired slippery asymmetric bumps of candle soot coating for condensation and directional transport of water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130574.	2.3	0
232	Mimicking in Tissue Engineering. Engineering Materials, 2023, , 29-45.	0.3	Ο
233	Surface and Interface Engineering for the Catalysts of Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
234	Silver Nanoparticles and Glycyrrhiza glabra (Licorice) Root Extract as Modifying Agents of Hydrogels Designed as Innovative Dressings. International Journal of Molecular Sciences, 2023, 24, 217.	1.8	2
235	Many Facets of Photonic Crystals: From Optics and Sensors to Energy Storage and Photocatalysis. Advanced Materials Technologies, 2023, 8, .	3.0	12
236	Synthesis and characterization of ZnO/silica aerogel nanocomposites. AIP Conference Proceedings, 2023, , .	0.3	0
237	Laser Obtained Superhydrophobic State for Stainless Steel Corrosion Protection, a Review. Coatings, 2023, 13, 194.	1.2	13
238	A 4D-printed programmable soft network with fractal design and adjustable hydrophobic performance. Matter, 2023, 6, 940-962.	5.0	8
239	Engineering the Performance and Stability of Molybdenum Disulfide for Heavy Metal Removal. ACS Applied Materials & Interfaces, 2023, 15, 6603-6611.	4.0	3
240	Biomimetics in smart coatings. , 2023, , 263-285.		1
241	One-Step Fabrication of Paper-Based Inkjet-Printed Graphene for Breath Monitor Sensors. Biosensors, 2023, 13, 209.	2.3	6
242	Advances in Research on Titanium and Titanium Alloys with Antibacterial Functionality for Medical Use—A Review. Journal of Biomaterials and Tissue Engineering, 2023, 13, 1-17.	0.0	2

#	Article	IF	CITATIONS
243	Polyhydroxybutyrate (PHB) in nanoparticulate form improves physical and biological performance of scaffolds. International Journal of Biological Macromolecules, 2023, 236, 123875.	3.6	5
244	Hydrophobicity Improvements of Polymers Used in Biomedical Applications. , 2022, , .		Ο
245	A Bioâ€Mimetic Leaf Wetness Sensor from Replica Molding of Leaves. , 2023, 2, .		0
246	Construction of CNC@SiO2@PL Based Superhydrophobic Wood with Excellent Abrasion Resistance Based on Nanoindentation Analysis and Good UV Resistance. Polymers, 2023, 15, 933.	2.0	4
248	Hydrophobic, fireproof, UV-blocking and antibacterial cotton fabric activated by bio-based PA/ODA/TiO2. Cellulose, 2023, 30, 4713-4733.	2.4	9
249	Sputter-Deposited Nano-porous ZnO Electrode for Highly Efficient Optoelectronic and Solid-State Energy Storage Devices. Journal of Electronic Materials, 0, , .	1.0	1
250	Insight into the Molecular Weight of Hydrophobic Starch Laurate-Based Adhesives for Paper. Polymers, 2023, 15, 1754.	2.0	0
251	Permanent Anticoagulation Bloodâ€Vessel by Mezzoâ€Sized Double Reâ€Entrant Structure. Small, 0, , .	5.2	0
252	Hierarchical â€~rose-petal' ZnO/Si surfaces with reversible wettability reaching complete water repellence without chemical modification. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	1
253	A Novel Alginate Film Based on Nanocoating Approach for Enteric-Release Tablets. AAPS PharmSciTech, 2023, 24, .	1.5	0
254	Antifouling activity of superhydrophobic PDMS/hydrophobic silica coating. Surface Engineering, 2023, 39, 35-48.	1.1	2
255	Microâ€/Nanohierarchical Structures Physically Engineered on Surfaces: Analysis and Perspective. Advanced Materials, 2024, 36, .	11.1	2
266	Research progress of bionic fog collection surfaces based on special structures from natural organisms. RSC Advances, 2023, 13, 27839-27864.	1.7	0
272	A Self-Cleaning Approach Utilizing Metal Oxide Thin Films and Nanocomposites. , 0, , .		0
277	Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing. Materials Horizons, 0, , .	6.4	0
278	Self-Cleaning Textiles and Their Applications. Advanced Structured Materials, 2023, , 105-129.	0.3	0
287	The Effect of Micro/Nano Roughness on Antifouling and Bactericidal Surfaces. , O, , .		0