Bacteroides fragilis subverts mucosal biology: from syn

Journal of Clinical Investigation 124, 4166-4172 DOI: 10.1172/jci72334

Citation Report

#	Article	IF	Citations
1	The microbiome revolution. Journal of Clinical Investigation, 2014, 124, 4162-4165.	3.9	233
2	The intestinal microbiome and health. Current Opinion in Infectious Diseases, 2015, 28, 464-470.	1.3	136
3	Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis. Drug Design, Development and Therapy, 2015, 9, 2941.	2.0	31
4	Regulatory T-cell Response to Enterotoxigenic <i>Bacteroides fragilis</i> Colonization Triggers IL17-Dependent Colon Carcinogenesis. Cancer Discovery, 2015, 5, 1098-1109.	7.7	133
5	Autoimmune host–microbiota interactions at barrier sites and beyond. Trends in Molecular Medicine, 2015, 21, 233-244.	3.5	100
6	T Regulatory Cells Gone Bad: An Oncogenic Immune Response against Enterotoxigenic B. fragilis Infection Leads to Colon Cancer. Cancer Discovery, 2015, 5, 1021-1023.	7.7	13
7	Dps and DpsL Mediate Survival <i>In Vitro</i> and <i>In Vivo</i> during the Prolonged Oxidative Stress Response in Bacteroides fragilis. Journal of Bacteriology, 2015, 197, 3329-3338.	1.0	17
8	The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBP <i>β</i> rather than Enterotoxigenic <i>Bacteroides fragilis</i> Infection. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	1.9	63
9	Tissue-Associated Bacterial Alterations in Rectal Carcinoma Patients Revealed by 16S rRNA Community Profiling. Frontiers in Cellular and Infection Microbiology, 2016, 6, 179.	1.8	125
10	A Critical Evaluation of Bifidobacterial Adhesion to the Host Tissue. Frontiers in Microbiology, 2016, 7, 1220.	1.5	49
11	Role of Gut Microbiome in the Modulation of Environmental Toxicants and Therapeutic Agents. , 2016, , 491-518.		2
12	Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. Science Translational Medicine, 2016, 8, 366ra164.	5.8	54
13	The microbiome, microbial-generated proinflammatory neurotoxins, and Alzheimer's disease. Journal of Sport and Health Science, 2016, 5, 393-396.	3.3	27
14	Identification of a New Lipoprotein Export Signal in Gram-Negative Bacteria. MBio, 2016, 7, .	1.8	23
15	Bacteroides fragilis Enterotoxin Upregulates Heme Oxygenase-1 in Intestinal Epithelial Cells via a Mitogen-Activated Protein Kinase- and NF-κB-Dependent Pathway, Leading to Modulation of Apoptosis. Infection and Immunity, 2016, 84, 2541-2554.	1.0	22
16	Intestinal Microbiota in Inflammatory Bowel Disease and Carcinogenesis: Implication for Therapeutics. Clinical Pharmacology and Therapeutics, 2016, 99, 585-587.	2.3	10
17	Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes, 2016, 7, 201-215.	4.3	224
18	Targeting colorectal cancer-associated bacteria: A new area of research for personalized treatments. Gut Microbes, 2016, 7, 329-333.	4.3	19

γατιών Ρερώ

#	Article	IF	CITATIONS
19	Probiotics, prebiotics and colorectal cancer prevention. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 119-131.	1.0	177
20	Procarcinogenic regulatory T cells in microbial-induced colon cancer. OncoImmunology, 2016, 5, e1118601.	2.1	9
21	Reduction of Murine Colon Tumorigenesis Driven by Enterotoxigenic <i>Bacteroides fragilis</i> Using Cefoxitin Treatment. Journal of Infectious Diseases, 2016, 214, 122-129.	1.9	67
22	Redundant Innate and Adaptive Sources of IL17 Production Drive Colon Tumorigenesis. Cancer Research, 2016, 76, 2115-2124.	0.4	112
23	Dancing with the Stars: How Choreographed Bacterial Interactions Dictate Nososymbiocity and Give Rise to Keystone Pathogens, Accessory Pathogens, and Pathobionts. Trends in Microbiology, 2016, 24, 477-489.	3.5	224
24	ADAM Proteases and Gastrointestinal Function. Annual Review of Physiology, 2016, 78, 243-276.	5.6	61
25	Bacterial protein toxins in human cancers. Pathogens and Disease, 2016, 74, ftv105.	0.8	32
26	The microbiome and its potential as a cancer preventive intervention. Seminars in Oncology, 2016, 43, 97-106.	0.8	102
27	The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunology, 2017, 10, 421-433.	2.7	136
28	Gut microbiota and colorectal cancer. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 757-769.	1.3	157
29	Colorectal neoplasm in cases of Clostridium septicum and Streptococcus gallolyticus subsp. gallolyticus bacteraemia. European Journal of Internal Medicine, 2017, 41, 68-73.	1.0	30
30	Mismatch Repair Proteins Initiate Epigenetic Alterations during Inflammation-Driven Tumorigenesis. Cancer Research, 2017, 77, 3467-3478.	0.4	46
31	Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nature Reviews Microbiology, 2017, 15, 109-128.	13.6	142
32	Functional Classification of the Gut Microbiota: The Key to Cracking the Microbiota Composition Code. BioEssays, 2017, 39, 1700032.	1.2	31
33	Human Intestinal Microbiota and Colorectal Cancer: Moving Beyond Associative Studies. Gastroenterology, 2017, 153, 1475-1478.	0.6	15
34	A Blueprint to Advance Colorectal Cancer Immunotherapies. Cancer Immunology Research, 2017, 5, 942-949.	1.6	63
35	High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. Npj Biofilms and Microbiomes, 2017, 3, 34.	2.9	237
36	Outer membrane vesicles secreted by pathogenic and nonpathogenic Bacteroides fragilis represent different metabolic activities. Scientific Reports, 2017, 7, 5008.	1.6	83

#	Article	IF	CITATIONS
37	Gram-negative bacteremia as a clinical marker of occult malignancy. Journal of Infection, 2017, 74, 153-162.	1.7	8
38	Estrogen inhibits the overgrowth of EscherichiaÃ ⁻ Âį¼2coli in the rat intestine under simulated microgravity. Molecular Medicine Reports, 2017, 17, 2313-2320.	1.1	22
39	Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. International Journal of Molecular Sciences, 2017, 18, 197.	1.8	888
40	Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer's Disease Brain. Frontiers in Immunology, 2017, 8, 1064.	2.2	125
41	Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathogens, 2017, 9, 53.	1.6	63
42	Complementation of a metK-deficient E. coli strain with heterologous AdoMet synthetase genes. Microbiology (United Kingdom), 2017, 163, 1812-1821.	0.7	7
43	Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterology Report, 2018, 6, 1-12.	0.6	192
44	Food, microbiome and colorectal cancer. Digestive and Liver Disease, 2018, 50, 647-652.	0.4	43
45	Bacteroidetes Neurotoxins and Inflammatory Neurodegeneration. Molecular Neurobiology, 2018, 55, 9100-9107.	1.9	72
46	The Intestinal Microbiota in Colorectal Cancer. Cancer Cell, 2018, 33, 954-964.	7.7	543
47	Exploring Bacteroidetes: Metabolic key points and immunological tricks of our gut commensals. Digestive and Liver Disease, 2018, 50, 635-639.	0.4	137
48	How the microbiome is shaping our understanding of cancer biology and its treatment. Seminars in Colon and Rectal Surgery, 2018, 29, 12-16.	0.2	8
49	The Impact of the Gut Microbiome on Colorectal Cancer. Annual Review of Cancer Biology, 2018, 2, 229-249.	2.3	21
50	Bacteroides spp , 2018, , 177-182.		0
51	Microbiota and Colon Cancer: Orchestrating Neoplasia Through DNA Damage and Immune Dysregulation. , 2018, , 458-458.		0
52	Drug resistance and new therapies in colorectal cancer. World Journal of Gastroenterology, 2018, 24, 3834-3848.	1.4	406
53	MetaPGN: a pipeline for construction and graphical visualization of annotated pangenome networks. GigaScience, 2018, 7, .	3.3	6
54	The Unfolding Story of ATF6, Microbial Dysbiosis, and Colorectal Cancer. Gastroenterology, 2018, 155, 1309-1311.	0.6	10

#	Article	IF	CITATIONS
55	Insights Into the Relationship Between Gut Microbiota and Colorectal Cancer. Current Colorectal Cancer Reports, 2018, 14, 251-265.	1.0	2
56	Polyamine catabolism and oxidative damage. Journal of Biological Chemistry, 2018, 293, 18736-18745.	1.6	151
57	High-speed, ultrahigh-resolution distal scanning OCT endoscopy at 800 nm for in vivo imaging of colon tumorigenesis on murine models. Biomedical Optics Express, 2018, 9, 3731.	1.5	27
59	Significance of Streptococcus gallolyticus subsp. gallolyticus Association With Colorectal Cancer. Frontiers in Microbiology, 2018, 9, 614.	1.5	96
60	Tetz's theory and law of longevity. Theory in Biosciences, 2018, 137, 145-154.	0.6	1
61	Interaction between the microbiome and TP53 in human lung cancer. Genome Biology, 2018, 19, 123.	3.8	247
62	Prebiotics and Probiotics in Altering Microbiota. , 2018, , 403-413.		3
63	A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Research International, 2019, 126, 108590.	2.9	65
64	Potential Mechanisms of Probiotics Action in the Prevention and Treatment of Colorectal Cancer. Nutrients, 2019, 11, 2453.	1.7	103
65	The Four Horsemen in Colon Cancer. Journal of Oncology, 2019, 2019, 1-12.	0.6	29
66	Cooperative and Escaping Mechanisms between Circulating Tumor Cells and Blood Constituents. Cells, 2019, 8, 1382.	1.8	45
67	A Reasonable Diet Promotes Balance of Intestinal Microbiota: Prevention of Precolorectal Cancer. BioMed Research International, 2019, 2019, 1-10.	0.9	37
68	Long noncoding RNA BFAL1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis in colorectal cancer via the RHEB/mTOR pathway. Cell Death and Disease, 2019, 10, 675.	2.7	59
69	Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 690-704.	8.2	686
70	Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Experimental and Molecular Medicine, 2019, 51, 1-15.	3.2	69
71	Maternal dyslipidaemic diet induces sex-specific alterations in intestinal function and lipid metabolism in rat offspring. British Journal of Nutrition, 2019, 121, 721-734.	1.2	13
72	Microbiota and gastrointestinal cancer. Journal of the Formosan Medical Association, 2019, 118, S32-S41.	0.8	61
73	Regulation of Shaoyao Ruangan Mixture on Intestinal Flora in Mice With Primary Liver Cancer. Integrative Cancer Therapies, 2019, 18, 153473541984317.	0.8	16

#	Article	IF	CITATIONS
74	Feeding the World Inside Us: Our Gut Microbiomes, Diet, and Health. , 2019, , 203-231.		0
75	The presence of antibiotic resistance genes and bft genes as well as antibiotic susceptibility testing of Bacteroides fragilis strains isolated from inpatients of the Infant Jesus Teaching Hospital, Warsaw during 2007–2012. Anaerobe, 2019, 56, 109-115.	1.0	15
76	Innate Immune Pattern Recognition and theÂDevelopment of Intestinal Cancer. Current Cancer Research, 2019, , 299-316.	0.2	3
77	Intestinal Epithelial Cells Exposed to Bacteroides fragilis Enterotoxin Regulate NF-κB Activation and Inflammatory Responses through β-Catenin Expression. Infection and Immunity, 2019, 87, .	1.0	11
78	Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach. Scientific Reports, 2019, 9, 19780.	1.6	37
79	Investiture of next generation probiotics on amelioration of diseases – Strains do matter. Medicine in Microecology, 2019, 1-2, 100002.	0.7	45
80	Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer?. Microorganisms, 2019, 7, 561.	1.6	25
81	Dietary Factors in the Control of Gut Homeostasis, Intestinal Stem Cells, and Colorectal Cancer. Nutrients, 2019, 11, 2936.	1.7	25
82	Safety aspects of next generation probiotics. Current Opinion in Food Science, 2019, 30, 8-13.	4.1	76
83	Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron?. Journal of Biomedical Science, 2019, 26, 1.	2.6	204
84	The role of microbiota in the development of colorectal cancer. International Journal of Cancer, 2019, 145, 2032-2041.	2.3	85
85	Single probiotic supplement suppresses colitisâ€associated colorectal tumorigenesis by modulating inflammatory development and microbial homeostasis. Journal of Gastroenterology and Hepatology (Australia), 2019, 34, 1182-1192.	1.4	31
86	Role of Gut Microbiota in the Development and Treatment of Colorectal Cancer. Digestion, 2019, 100, 72-78.	1.2	80
87	Aluminum-induced generation of lipopolysaccharide (LPS) from the human gastrointestinal (Cl)-tract microbiome-resident Bacteroides fragilis. Journal of Inorganic Biochemistry, 2020, 203, 110886.	1.5	25
88	Toll-like Receptor-6 Signaling Prevents Inflammation and Impacts Composition of the Microbiota During Inflammation-Induced Colorectal Cancer. Cancer Prevention Research, 2020, 13, 25-40.	0.7	15
89	Enterotoxigenic <i>Bacteroides fragilis</i> induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes, 2020, 12, 1788900.	4.3	55
90	The Intestinal Microbiota and Colorectal Cancer. Frontiers in Immunology, 2020, 11, 615056.	2.2	258
91	Bacteroides fragilis Enterotoxin Induces Sulfiredoxin-1 Expression in Intestinal Epithelial Cell Lines Through a Mitogen-Activated Protein Kinases- and Nrf2-Dependent Pathway, Leading to the Suppression of Apoptosis. International Journal of Molecular Sciences, 2020, 21, 5383.	1.8	10

#	Article	IF	CITATIONS
92	Microbiota and Lung Cancer. Opportunities and Challenges for Improving Immunotherapy Efficacy. Frontiers in Oncology, 2020, 10, 568939.	1.3	15
93	To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microbial Pathogenesis, 2020, 149, 104506.	1.3	36
94	Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion, 2021, 102, 508-515.	1.2	77
95	<i>Bacteroides fragilis</i> prevents <i>Salmonella</i> Heidelberg translocation in co-culture model mimicking intestinal epithelium. Beneficial Microbes, 2020, 11, 391-401.	1.0	16
96	Airway Microbiota as a Modulator of Lung Cancer. International Journal of Molecular Sciences, 2020, 21, 3044.	1.8	35
97	The impact of maternal and early life malnutrition on health: a diet-microbe perspective. BMC Medicine, 2020, 18, 135.	2.3	25
98	New Insights into Molecular Links Between Microbiota and Gastrointestinal Cancers: A Literature Review. International Journal of Molecular Sciences, 2020, 21, 3212.	1.8	23
99	Toxigenic and non-toxigenic patterns I, II and III and biofilm-forming ability in Bacteroides fragilis strains isolated from patients diagnosed with colorectal cancer. Gut Pathogens, 2020, 12, 28.	1.6	18
100	Bacteria as a double-action sword in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188388.	3.3	38
101	Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nature Communications, 2020, 11, 1512.	5.8	167
102	The colonic mucosa-associated microbiome in SIV infection: shift towards Bacteroidetes coincides with mucosal CD4+ T cell depletion and enterocyte damage. Scientific Reports, 2020, 10, 10887.	1.6	9
103	Oral and intestinal bacterial exotoxins: Potential linked to carcinogenesis. Progress in Molecular Biology and Translational Science, 2020, 171, 131-193.	0.9	16
104	Potential Use of Biotherapeutic Bacteria to Target Colorectal Cancer-Associated Taxa. International Journal of Molecular Sciences, 2020, 21, 924.	1.8	18
105	Temporal changes in gut microbiota profile in children with acute lymphoblastic leukemia prior to commencement-, during-, and post-cessation of chemotherapy. BMC Cancer, 2020, 20, 151.	1.1	39
106	The Influence of Lung Microbiota on Lung Carcinogenesis, Immunity, and Immunotherapy. Trends in Cancer, 2020, 6, 86-97.	3.8	123
107	Enterotoxigenic Bacteroides fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Frontiers in Cellular and Infection Microbiology, 2019, 9, 449.	1.8	84
108	Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annual Review of Immunology, 2020, 38, 23-48.	9.5	294
109	The effect of intermittent hypoxia and fecal microbiota of OSAS on genes associated with colorectal cancer. Sleep and Breathing, 2021, 25, 1075-1087.	0.9	8

#	Article	IF	CITATIONS
110	Microbiota Effects on Carcinogenesis: Initiation, Promotion, and Progression. Annual Review of Medicine, 2021, 72, 243-261.	5.0	40
111	Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188490.	3.3	29
112	A clostripainâ€like protease plays a major role in generating the secretome of enterotoxigenic <i>Bacteroides fragilis</i> . Molecular Microbiology, 2021, 115, 290-304.	1.2	3
113	Oral administration of <i>Bifidobacterium breve</i> promotes antitumor efficacy via dendritic cells-derived interleukin 12. OncoImmunology, 2021, 10, 1868122.	2.1	24
114	Role of Bacteria in the Development of Cancer. , 2021, , 91-108.		1
115	A Procarcinogenic Colon Microbe Promotes Breast Tumorigenesis and Metastatic Progression and Concomitantly Activates Notch and β-Catenin Axes. Cancer Discovery, 2021, 11, 1138-1157.	7.7	88
116	Polymicrobial communities in periodontal disease: Their quasiâ€organismal nature and dialogue with the host. Periodontology 2000, 2021, 86, 210-230.	6.3	126
117	Drug–Microbiota Interaction in Colon Cancer Therapy: Impact of Antibiotics. Biomedicines, 2021, 9, 259.	1.4	14
118	G-protein coupled receptor 35 (GPR35) regulates the colonic epithelial cell response to enterotoxigenic Bacteroides fragilis. Communications Biology, 2021, 4, 585.	2.0	20
119	Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome, 2021, 9, 119.	4.9	479
120	A Comprehensive Overview of Colon Cancer- A Grim Reaper of the 21st Century. Current Medicinal Chemistry, 2021, 28, 2657-2696.	1.2	19
121	Association of Fusobacterium nucleatum in the Progression of Colorectal Cancer. Journal of Bacteriology and Virology, 2021, 51, 39-53.	0.0	0
122	Role of Bacteria in the Incidence of Common GIT Cancers: The Dialectical Role of Integrated Bacterial DNA in Human Carcinogenesis. Infection and Drug Resistance, 2021, Volume 14, 2003-2014.	1.1	7
123	Association of Fusobacterium nucleatum in the Progression of Colorectal Cancer. Journal of Bacteriology and Virology, 2021, 51, 39-53.	0.0	0
124	Nanoparticles and Gut Microbiota in Colorectal Cancer. Frontiers in Nanotechnology, 2021, 3, .	2.4	7
125	Exploring Gut Microbiota in Patients with Colorectal Disease Based on 16S rRNA Gene Amplicon and Shallow Metagenomic Sequencing. Frontiers in Molecular Biosciences, 2021, 8, 703638.	1.6	8
126	The Role of DNA Damage Response in Dysbiosis-Induced Colorectal Cancer. Cells, 2021, 10, 1934.	1.8	21
127	Host–Microbiota Interactions in Liver Inflammation and Cancer. Cancers, 2021, 13, 4342.	1.7	9

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
128	Spot-light on microbiota in obesity and cancer. International Journal of Obesity, 2021, 45, 2291-2299.	1.6	10
129	Enterotoxigenic Bacteroides fragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149-3p. Gastroenterology, 2021, 161, 1552-1566.e12.	0.6	130
130	The Microbiome Colorectal Cancer Puzzle: Initiator, Propagator, and Avenue for Treatment and Research. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 986-992.	2.3	6
131	Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2021, 165, 233-240.	0.2	4
132	Gut Microbiota and Colorectal Cancer. , 2022, , 357-357.		0
133	Gut Microbial Signatures in Sporadic and Hereditary Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 1312.	1.8	14
134	Physiological and Pathological Inflammation at the Mucosal Frontline. , 2016, , 567-590.		2
135	High prevalence of division II (cfiA positive) isolates among blood stream Bacteroides fragilis in Slovenia as determined by MALDI-TOF MS. Anaerobe, 2019, 58, 30-34.	1.0	20
137	Genomic Diversity of Enterotoxigenic Strains of Bacteroides fragilis. PLoS ONE, 2016, 11, e0158171.	1.1	47
138	Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE, 2017, 12, e0171602.	1.1	171
139	Role of human microbiota in the development of colorectal cancer. OnkologiÄeskaâ Koloproktologiâ, 2019, 9, 11-17.	0.1	3
140	The effect of immunoregulatory bacteria on the transcriptional activity of Foxp3 and RORyt genes in the gut-associated lymphoid tissue with Salmonella-induced inflammation in the presence of vancomycin and Ваcteroides fragilis. Iranian Journal of Microbiology, 0, , .	0.8	1
141	Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas. Oncotarget, 2020, 11, 309-321.	0.8	22
142	The Mechanism of Bacteroides fragilis Toxin Contributes to Colon Cancer Formation. The Malaysian Journal of Medical Sciences, 2020, 27, 9-21.	0.3	65
143	Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics, 2020, 9, 59.	1.5	465
144	<i>Bacteroides fragilis</i> enterotoxin upregulates heme oxygenase-1 in dendritic cells <i>via</i> reactive oxygen species-, mitogen-activated protein kinase-, and Nrf2-dependent pathway. World Journal of Gastroenterology, 2020, 26, 291-306.	1.4	7
145	Inflammation-associated microsatellite alterations: Mechanisms and significance in the prognosis of patients with colorectal cancer. World Journal of Gastrointestinal Oncology, 2018, 10, 1-14.	0.8	39
146	Tumorigenic bacteria in colorectal cancer: mechanisms and treatments. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	29

#	Article	IF	CITATIONS
147	Bacteroides fragilis restricts colitis-associated cancer via negative regulation of the NLRP3 axis. Cancer Letters, 2021, 523, 170-181.	3.2	44
149	Nutrition, the Gastrointestinal Microbiota and Cancer Prevention. Food Chemistry, Function and Analysis, 2019, , 261-293.	0.1	0
150	Purulent Pericarditis Caused by Bacteroides fragilis: A Rare Complication of Cholangitis. Cardiology Research, 2019, 10, 309-311.	0.5	0
151	Bacteroides fragilis Enterotoxin Upregulates Matrix Metalloproteinase-7 Expression through MAPK and AP-1 Activation in Intestinal Epithelial Cells, Leading to Syndecan-2 Release. International Journal of Molecular Sciences, 2021, 22, 11817.	1.8	3
152	Microbiotaâ€derived extracellular vesicles in interkingdom communication in the gut. Journal of Extracellular Vesicles, 2021, 10, e12161.	5.5	102
153	What is unknown in using microbiota as a therapeutic?. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 39-44.	1.4	11
154	The effect of immunoregulatory bacteria on the transcriptional activity of Foxp3 and RORyt genes in the gut-associated lymphoid tissue with -induced inflammation in the presence of vancomycin and. Iranian Journal of Microbiology, 2020, 12, 231-241.	0.8	2
155	Gastrointestinal (GI)-Tract Microbiome Derived Neurotoxins and their Potential Contribution to Inflammatory Neurodegeneration in Alzheimer's Disease (AD). , 2021, 11, .		1
156	Gastrointestinal Tract Microbiome-Derived Pro-inflammatory Neurotoxins in Alzheimer's Disease. Journal of Aging Science, 2021, 9, .	0.5	0
157	Putative Antimicrobial Peptides Within Bacterial Proteomes Affect Bacterial Predominance: A Network Analysis Perspective. Frontiers in Microbiology, 2021, 12, 752674.	1.5	3
158	Bringing to Light the Risk of Colorectal Cancer in Inflammatory Bowel Disease: Mucosal Glycosylation as a Key Player. Inflammatory Bowel Diseases, 2021, , .	0.9	3
160	Potential Role of the Gut Microbiome In Colorectal Cancer Progression. Frontiers in Immunology, 2021, 12, 807648.	2.2	56
161	The gut microbiota can be a potential regulator and treatment target of bone metastasis. Biochemical Pharmacology, 2022, 197, 114916.	2.0	3
162	Alterations in the Gut Microbiota and Their Metabolites in Colorectal Cancer: Recent Progress and Future Prospects. Frontiers in Oncology, 2022, 12, 841552.	1.3	29
163	The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiology, 2022, 22, 53.	1.3	25
164	Gut Microbiota in Colorectal Cancer: Associations, Mechanisms, and Clinical Approaches. Annual Review of Cancer Biology, 2022, 6, 65-84.	2.3	7
165	Metagenomics analysis reveals universal signatures of the intestinal microbiota in colorectal cancer, regardless of regional differences. Brazilian Journal of Medical and Biological Research, 2022, 55, e11832.	0.7	7
167	Colorectal cancer: the facts in the case of the microbiota. Journal of Clinical Investigation, 2022, 132,	3.9	63

#	Article	IF	CITATIONS
168	Progress in the Study of Colorectal Cancer Caused by Altered Gut Microbiota After Cholecystectomy. Frontiers in Endocrinology, 2022, 13, 815999.	1.5	9
169	Bacteroides fragilis Toxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 by the E-Cadherin/β-Catenin/NF-κB Dependent Pathway. Biomedicines, 2022, 10, 827.	1.4	9
170	Gastrointestinal tumors and infectious agents: A wide field to explore. World Journal of Meta-analysis, 2021, 9, 505-521.	0.1	0
171	Colorectal Cancer-Associated Microbiome Patterns and Signatures. Frontiers in Genetics, 2021, 12, 787176.	1.1	22
172	Crosstalk between autophagy and microbiota in cancer progression. Molecular Cancer, 2021, 20, 163.	7.9	29
173	Gut Microbiota: The Servant of Human Being and the Accessary of Tumorigenesis. Trends in Oncology, 2020, 2, 37-51.	0.0	0
174	A Multi-Omics Study of Familial Lung Cancer: Microbiome and Host Gene Expression Patterns. Frontiers in Immunology, 2022, 13, 827953.	2.2	7
175	Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Frontiers in Oncology, 2022, 12, 836004.	1.3	4
177	Gut microbiota modulation: a tool for the management of colorectal cancer. Journal of Translational Medicine, 2022, 20, 178.	1.8	19
178	Enterotoxigenic Bacteroides fragilis activates IL-8 expression through Stat3 in colorectal cancer cells. Gut Pathogens, 2022, 14, 16.	1.6	10
180	The interaction between gut microbiome and anti-tumor drug therapy American Journal of Cancer Research, 2021, 11, 5812-5832.	1.4	0
181	Gut microbiota: Role and Association with Tumorigenesis in Different Malignancies. Molecular Biology Reports, 2022, 49, 8087-8107.	1.0	4
182	Gastrointestinal neoplasia: carcinogenic interaction between bile acids and Helicobacter pylori in the stomach. Journal of Clinical Investigation, 2022, 132, .	3.9	8
183	Colon Tumors in Enterotoxigenic Bacteroides fragilis (ETBF)-Colonized Mice Do Not Display a Unique Mutational Signature but Instead Possess Host-Dependent Alterations in the APC Gene. Microbiology Spectrum, 2022, 10, e0105522.	1.2	18
184	Implications of Gut Microbiota in Epithelial–Mesenchymal Transition and Cancer Progression: A Concise Review. Cancers, 2022, 14, 2964.	1.7	6
185	Meta-Analysis of Altered Gut Microbiota Reveals Microbial and Metabolic Biomarkers for Colorectal Cancer. Microbiology Spectrum, 2022, 10, .	1.2	30
186	Bacterial membrane vesicles in inflammatory bowel disease. Life Sciences, 2022, 306, 120803.	2.0	6
187	Microbiota and lung cancer. Seminars in Cancer Biology, 2022, 86, 1-10.	4.3	23

# 188	ARTICLE Butyrate-producing Eubacterium rectale suppresses lymphomagenesis by alleviating the TNF-induced TLR4/MyD88/NF-κB axis. Cell Host and Microbe, 2022, 30, 1139-1150.e7.	lF 5.1	CITATIONS
189	The bacteria inside human cancer cells: Mainly as cancer promoters. Frontiers in Oncology, 0, 12, .	1.3	3
190	Crohn's disease in endoscopic remission, obesity, and cases of high genetic risk demonstrate overlapping shifts in the colonic mucosal-luminal interface microbiome. Genome Medicine, 2022, 14, .	3.6	8
191	An overview of cancer and the human microbiome. Progress in Molecular Biology and Translational Science, 2022, , 83-139.	0.9	1
192	The Microbiome-Immune Axis Therapeutic Effects in Cancer Treatments. Journal of Microbiology and Biotechnology, 2022, 32, 1086-1097.	0.9	2
193	Comparative analysis of some immunological parameters depending on the tumor location on the right and left sides of colon. Innovative Medicine of Kuban, 2022, , 20-28.	0.0	0
194	Bacteroides fragilis ameliorates Cronobacter malonaticus lipopolysaccharide-induced pathological injury through modulation of the intestinal microbiota. Frontiers in Immunology, 0, 13, .	2.2	2
195	Bacteroides fragilis outer membrane vesicles preferentially activate innate immune receptors compared to their parent bacteria. Frontiers in Immunology, 0, 13, .	2.2	10
196	Mechanisms Leading to Gut Dysbiosis in COVID-19: Current Evidence and Uncertainties Based on Adverse Outcome Pathways. Journal of Clinical Medicine, 2022, 11, 5400.	1.0	16
197	Lipopolysaccharides (LPSs) as Potent Neurotoxic Glycolipids in Alzheimer's Disease (AD). International Journal of Molecular Sciences, 2022, 23, 12671.	1.8	14
198	Effect of two-week red beetroot juice consumption on modulation of gut microbiota in healthy human volunteers – A pilot study. Food Chemistry, 2023, 406, 134989.	4.2	9
199	Bacteroides fragilis derived metabolites, identified by molecular networking, decrease Salmonella virulence in mice model. Frontiers in Microbiology, 0, 13, .	1.5	2
200	Reduction of Staphylococcus epidermidis in the mammary tumor microbiota induces antitumor immunity and decreases breast cancer aggressiveness. Cancer Letters, 2023, 555, 216041.	3.2	6
201	The Role of the Microbiome on the Pathogenesis and Treatment of Colorectal Cancer. Cancers, 2022, 14, 5685.	1.7	11
202	Implication of gut microbes and its metabolites in colorectal cancer. Journal of Cancer Research and Clinical Oncology, 2023, 149, 441-465.	1.2	9
203	Prolonged gut microbial alterations in postâ€transplant survivors of allogeneic haematopoietic stem cell transplantation. British Journal of Haematology, 2023, 201, 725-737.	1.2	6
204	Intratumor microbiota: a novel tumor component. Journal of Cancer Research and Clinical Oncology, 2023, 149, 6675-6691.	1.2	4
205	Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer. Journal of Advanced Research, 2023, 52, 45-57.	4.4	1

	Charlow		
#	Article	IF	Citations
206	Biofilm formation: A well-played game in bacterial pathogenesis. , 2023, , 605-625.		0
207	Gut microbial metabolites and colorectal cancer. , 2023, , 353-373.		0
208	Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome. Advanced Drug Delivery Reviews, 2023, 196, 114774.	6.6	4
209	Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers, 2023, 15, 866.	1.7	15
210	Designing multi-epitope vaccine against important colorectal cancer (CRC) associated pathogens based on immunoinformatics approach. BMC Bioinformatics, 2023, 24, .	1.2	3
212	Basal Diet Fed to Recipient Mice Was the Driving Factor for Colitis and Colon Tumorigenesis, despite Fecal Microbiota Transfer from Mice with Severe or Mild Disease. Nutrients, 2023, 15, 1338.	1.7	Ο
213	Global research on the crosstalk between intestinal microbiome and colorectal cancer: A visualization analysis. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	1
214	The Gut Microbiome, Microsatellite Status and the Response to Immunotherapy in Colorectal Cancer. International Journal of Molecular Sciences, 2023, 24, 5767.	1.8	4
215	Meta-analyses of host metagenomes from colorectal cancer patients reveal strong relationship between colorectal cancer-associated species. Molecular Omics, 2023, 19, 429-444.	1.4	1
216	Traditional mineral medicine realgar and Realgar-Indigo naturalis formula potentially exerted therapeutic effects by altering the gut microbiota. Frontiers in Microbiology, 0, 14, .	1.5	2
224	Bacteria in cancer initiation, promotion and progression. Nature Reviews Cancer, 2023, 23, 600-618.	12.8	21
236	Bacteriotherapy in colorectal cancer. , 2024, , 307-328.		Ο
238	Bacteroides fragilis uses toxins for gut success. Nature Microbiology, 2024, 9, 11-12.	5.9	0