Eosinophils and Type 2 Cytokine Signaling in Macropha Functional Beige Fat

Cell 157, 1292-1308 DOI: 10.1016/j.cell.2014.03.066

Citation Report

#	Article	IF	CITATIONS
2	Tissue macrophage identity and selfâ€renewal. Immunological Reviews, 2014, 262, 56-73.	2.8	183
3	Adipocytes. Current Biology, 2014, 24, R988-R993.	1.8	25
4	Maintenance of white adipose tissue in man. International Journal of Biochemistry and Cell Biology, 2014, 56, 123-132.	1.2	19
6	Macrophage Polarization in Obesity and Type 2 Diabetes: Weighing Down Our Understanding of Macrophage Function?. Frontiers in Immunology, 2014, 5, 470.	2.2	227
7	Regulation of brown adipocyte metabolism by myostatin/follistatin signaling. Frontiers in Cell and Developmental Biology, 2014, 2, 60.	1.8	58
8	Eosinophil Cytokines, Chemokines, and Growth Factors: Emerging Roles in Immunity. Frontiers in Immunology, 2014, 5, 570.	2.2	250
9	Brown adipose tissue and thermogenesis. Hormone Molecular Biology and Clinical Investigation, 2014, 19, 25-37.	0.3	139
10	Obesity and Asthma—Is There a Causal Association?. Immunology and Allergy Clinics of North America, 2014, 34, xi-xii.	0.7	0
11	I-L-C-2 it: type 2 immunity and group 2 innate lymphoid cells in homeostasis. Current Opinion in Immunology, 2014, 31, 58-65.	2.4	48
12	Type 2 immunity at the origin of beige adipocytes. Nature Reviews Endocrinology, 2014, 10, 443-443.	4.3	2
13	A beige immune response. Nature Reviews Immunology, 2014, 14, 433-433.	10.6	1
14	Eosinophils in Fat: Pink Is the New Brown. Cell, 2014, 157, 1249-1250.	13.5	29
15	Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific Reports, 2015, 5, 16643.	1.6	663
16	Brown adipose tissue: a potential target in the fight against obesity and the metabolic syndrome. Clinical Science, 2015, 129, 933-949.	1.8	74
17	Differential activation of airway eosinophils induces <scp>IL</scp> â€13â€mediated allergic Th2 pulmonary responses in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1148-1159.	2.7	47
18	Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning. Frontiers in Endocrinology, 2015, 6, 129.	1.5	33
19	A New Role for Browning as a Redox and Stress Adaptive Mechanism?. Frontiers in Endocrinology, 2015, 6, 158.	1.5	40
20	Bioengineering Beige Adipose Tissue Therapeutics. Frontiers in Endocrinology, 2015, 6, 164.	1.5	26

TATION REDO

#	Article	IF	CITATIONS
21	Modifications of Human Subcutaneous ADMSC after PPAR <i>î³</i> Activation and Cold Exposition. Stem Cells International, 2015, 2015, 1-8.	1.2	10
22	Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators of Inflammation, 2015, 2015, 1-16.	1.4	1,183
23	Eosinophils Reduce Chronic Inflammation in Adipose Tissue by Secreting Th2 Cytokines and Promoting M2 Macrophages Polarization. International Journal of Endocrinology, 2015, 2015, 1-5.	0.6	34
24	Interleukin-1 Family Cytokines in Liver Diseases. Mediators of Inflammation, 2015, 2015, 1-19.	1.4	44
25	Immunopathology of adipose tissue during metabolic syndrome. Turk Patoloji Dergisi, 2015, 31 Suppl 1, 172-80.	0.1	11
26	A worm of one's own: how helminths modulate host adipose tissue function and metabolism. Trends in Parasitology, 2015, 31, 435-441.	1.5	37
27	Innate lymphoid cells: A new paradigm in immunology. Science, 2015, 348, aaa6566.	6.0	683
28	Mucosal Eosinophils. , 2015, , 883-914.		0
29	Innate immunity is a key factor for the resolution of inflammation in asthma. European Respiratory Review, 2015, 24, 141-153.	3.0	46
30	Lack of mature lymphocytes results in obese but metabolically healthy mice when fed a high-fat diet. International Journal of Obesity, 2015, 39, 1548-1557.	1.6	26
31	Inhibition of Sam68 triggers adipose tissue browning. Journal of Endocrinology, 2015, 225, 181-189.	1.2	13
32	Debugging the host browns the fat. Nature Medicine, 2015, 21, 1390-1391.	15.2	3
33	A new role for dystrophin in muscle stem cells. Nature Medicine, 2015, 21, 1391-1393.	15.2	11
34	Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nature Communications, 2015, 6, 10166.	5.8	413
35	Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nature Medicine, 2015, 21, 1497-1501.	15.2	324
36	The evolution of our understanding of macrophages and translation of findings toward the clinic. Expert Review of Clinical Immunology, 2015, 11, 5-13.	1.3	28
37	Human White and Brite Adipogenesis is Supported by MSCA1 and is Impaired by Immune Cells. Stem Cells, 2015, 33, 1277-1291.	1.4	44
38	Activated Type 2 Innate Lymphoid Cells Regulate Beige Fat Biogenesis. Cell, 2015, 160, 74-87.	13.5	565

		CITATION REF	PORT	
#	Article		IF	CITATIONS
39	Adipose Tissue: ILC2 Crank Up the Heat. Cell Metabolism, 2015, 21, 152-153.		7.2	18
40	Interleukin-6 gene transfer reverses body weight gain and fatty liver in obese mice. Bioch Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1001-1011.	himica Et	1.8	74
41	The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabo and cancer. Archives of Pharmacal Research, 2015, 38, 302-312.	lism, immunity,	2.7	52
42	Adipose tissue as an immunological organ. Obesity, 2015, 23, 512-518.		1.5	320
43	White, Brown, and Beige; Type 2 Immunity Gets Hot. Immunity, 2015, 42, 15-17.		6.6	11
44	Brown and beige fat: the metabolic function, induction, and therapeutic potential. Front Medicine, 2015, 9, 162-172.	iers of	1.5	26
45	P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory respondent not in obese mice. American Journal of Physiology - Endocrinology and Metabolism, 201 E496-E505.	onse in lean but 5, 308,	1.8	25
46	Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and typ Frontiers of Medicine, 2015, 9, 139-145.	e 2 diabetes.	1.5	46
47	Insulin resistance and impaired adipogenesis. Trends in Endocrinology and Metabolism, 1 193-200.	2015, 26,	3.1	283
48	Non-traditional cytokines: How catecholamines and adipokines influence macrophages i metabolism and the central nervous system. Cytokine, 2015, 72, 210-219.	n immunity,	1.4	87
49	Eosinophil-specific deletion of lκBα in mice reveals a critical role of NF-κB–induced Bc of apoptosis. Blood, 2015, 125, 3896-3904.	l-xL for inhibition	0.6	47
50	Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity, 2015, 42, 100	5-1019.	6.6	492
51	Interleukin-33 and Interferon-γ Counter-Regulate Group 2 Innate Lymphoid Cell Activati Immune Perturbation. Immunity, 2015, 43, 161-174.	on during	6.6	368
52	The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine	, 2015, 75, 25-37.	1.4	224
53	Macrophage polarization in pathology. Cellular and Molecular Life Sciences, 2015, 72, 4	111-4126.	2.4	487
54	A critical appraisal of brown adipose tissue metabolism in humans. Clinical Lipidology, 20 259-280.	015, 10,	0.4	20
55	Control of Adipocyte Differentiation in Different Fat Depots; Implications for Pathophysi Therapy. Frontiers in Endocrinology, 2015, 6, 1.	ology or	1.5	162
56	The transcription factor XBP1 is selectively required for eosinophil differentiation. Nature Immunology, 2015, 16, 829-837.	2	7.0	154

#	Article	IF	CITATIONS
57	Adiponectin Enhances Cold-Induced Browning of Subcutaneous Adipose Tissue via Promoting M2 Macrophage Proliferation. Cell Metabolism, 2015, 22, 279-290.	7.2	266
58	Type 2 responses at the interface between immunity and fat metabolism. Current Opinion in Immunology, 2015, 36, 67-72.	2.4	43
59	Human Brown Adipose Tissue: What We Have Learned So Far. Diabetes, 2015, 64, 2352-2360.	0.3	171
60	Adipokines and the Endocrine Role of Adipose Tissues. Handbook of Experimental Pharmacology, 2015, 233, 265-282.	0.9	61
61	Immune Cells and Metabolism. Handbook of Experimental Pharmacology, 2015, 233, 221-249.	0.9	31
62	Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. Journal of Clinical Investigation, 2015, 125, 478-486.	3.9	547
63	La redécouverte des adipocytes de type brun chez l'homme : un espoir pour la lutte contre les maladies métaboliques ?. Obesite, 2015, 10, 254-261.	0.1	0
64	Type 2 cytokines: mechanisms and therapeutic strategies. Nature Reviews Immunology, 2015, 15, 271-282.	10.6	535
65	Injecting engineered anti-inflammatory macrophages therapeutically induces white adipose tissue browning and improves diet-induced insulin resistance. Adipocyte, 2015, 4, 123-128.	1.3	35
66	Immune Regulation of Metabolic Homeostasis in Health and Disease. Cell, 2015, 161, 146-160.	13.5	380
67	Blocking high-fat diet-induced obesity, insulin resistance and fatty liver by overexpression of Il-13 gene in mice. International Journal of Obesity, 2015, 39, 1292-1299.	1.6	41
68	Brown Adipose Tissue as a Therapeutic Target for Obesity: From Mice to Humans. The Korean Journal of Obesity, 2015, 24, 1-8.	0.2	3
69	Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate Glucose and Lipid Homeostasis. Cell Metabolism, 2015, 21, 692-705.	7.2	70
70	An activated sympathetic nervous system affects white adipocyte differentiation and lipolysis in a rat model of <scp>P</scp> arkinson's disease. Journal of Neuroscience Research, 2015, 93, 350-360.	1.3	12
71	Transcriptional control and hormonal response of thermogenic fat. Journal of Endocrinology, 2015, 225, R35-R47.	1.2	17
72	Immune Cell and Other Noncardiomyocyte Regulation of Cardiac Hypertrophy and Remodeling. Circulation, 2015, 131, 1019-1030.	1.6	263
73	Eosinophils in mucosal immune responses. Mucosal Immunology, 2015, 8, 464-475.	2.7	158
74	History of interleukin-4. Cytokine, 2015, 75, 3-7.	1.4	135

ARTICLE IF CITATIONS # Physiology and relevance of human adaptive thermogenesis response. Trends in Endocrinology and 3.1 45 75 Metabolism, 2015, 26, 238-247. Ltb4r1 inhibitor: A pivotal insulin sensitizer?. Trends in Endocrinology and Metabolism, 2015, 26, 3.1 221-222. 77 TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Reports, 2015, 12, 1902-1914. 2.9 232 Dermal white adipose tissue: a new component of the thermogenic response. Journal of Lipid Research, 104 2015, 56, 2061-2069. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages 79 7.0 104 to limit neuroinflammation. Nature Immunology, 2015, 16, 1228-1234. Capsaicin and Related Food Ingredients Reducing Body Fat Through the Activation of TRP and Brown 1.5 Fat Thermogenesis. Advances in Food and Nutrition Research, 2015, 76, 1-28. 81 Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metabolism, 2015, 22, 546-559. 7.2 763 The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends 2.9 140 in Immunology, 2015, 36, 578-604. Minireview: Emerging Concepts in Islet Macrophage Biology in Type 2 Diabetes. Molecular Endocrinology, 2015, 29, 946-962. 83 3.7 44 Modulating the Genomic Programming of Adipocytes. Cold Spring Harbor Symposia on Quantitative 84 Biology, 2015, 80, 239-248. Sympathetic Nerve Activity Maintains an Anti-Inflammatory State in Adipose Tissue in Male Mice by 85 1.4 44 Inhibiting TNF-α Gene Expression in Macrophages. Endocrinology, 2015, 156, 3680-3694. Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends in 86 Immunology, 2015, 36, 507-518 Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle 87 2.7 112 homeostasis, regeneration and disease. Cell Death and Disease, 2015, 6, e1830-e1830. Adipose Tissue Inflammation in the Pathogenesis of Type 2 Diabetes. Current Diabetes Reports, 2015, 15, 1.7 92 The Cellular and Molecular Basis of Translational Immunometabolism. Immunity, 2015, 43, 421-434. 89 6.6 161 IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue 1.4 194 inflammation and insulin resistance. Cytokine, 2015, 75, 280-290. Activation of natriuretic peptides and the sympathetic nervous system following Roux-en-Y gastric 91 3.060 bypass is associated with gonadal adipose tissues browning. Molecular Metabolism, 2015, 4, 427-436. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature, 2015, 528, 261 137-141.

ARTICLE IF CITATIONS # Regulation of energy balance by inflammation: Common theme in physiology and pathology. Reviews in 93 2.6 110 Endocrine and Metabolic Disorders, 2015, 16, 47-54. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature, 2015, 94 13.7 788 519, 242-246. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting 95 15.2 376 brown adipose tissue thermogenesis. Nature Medicine, 2015, 21, 166-172. Lipid signaling in adipose tissue: Connecting inflammation & amp; metabolism. Biochimica Et Biophysica 1.2 96 Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 503-518. The Immunology of Adipose Tissue., 2016, , 37-45. 97 0 Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders. Diabetes and 1.8 180 Metabolism Journal, 2016, 40, 12. Eosinophils and Type 2 Cytokine Signaling in Macrophages Support the Biogenesis of Cold-induced 99 0.0 2 Beige Fat. Journal of Bacteriology and Virology, 2016, 46, 44. Nutrigenomic Functions of PPARs in Obesogenic Environments. PPAR Research, 2016, 2016, 1-17. 1.1 14 101 Eosinophils., 2016, , 334-344. 1 Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity. International Journal of Endocrinology, 2016, 2016, 1-10. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Frontiers in 103 792 1.5 Endocrinology, 2016, 7, 30. The Macrophage Switch in Obesity Development. Frontiers in Immunology, 2015, 6, 637. 2.2 397 Influencing Factors of Thermogenic Adipose Tissue Activity. Frontiers in Physiology, 2016, 7, 29. 105 1.3 48 IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans. JCI 2.3 Insight, 2016, 1, e88689. Eosinophils in Homeostasis and Their Contrasting Roles during Inflammation and Helminth Infections. 107 1.0 23 Critical Reviews in Immunology, 2016, 36, 193-238. Immunity by equilibrium. Nature Reviews Immunology, 2016, 16, 524-532. 161 Parasitic helminths and their beneficial impact on type 1 and type 2 diabetes. Diabetes/Metabolism 109 1.7 56 Research and Reviews, 2016, 32, 238-250. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells. 34 European Journal of Immunology, 2016, 46, 1315-1325.

#	Article	IF	CITATIONS
111	The complex immunological and inflammatory network of adipose tissue in obesity. Molecular Nutrition and Food Research, 2016, 60, 43-57.	1.5	139
112	White Adipose Tissue Browning: A Double-edged Sword. Trends in Endocrinology and Metabolism, 2016, 27, 542-552.	3.1	88
113	Microorganisms as scaffolds of host individuality: an eco-immunity account of the holobiont. Biology and Philosophy, 2016, 31, 819-837.	0.7	22
114	IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity. Scientific Reports, 2016, 6, 24135.	1.6	18
115	Emerging Roles for Eosinophils in the Tumor Microenvironment. Trends in Cancer, 2016, 2, 664-675.	3.8	87
116	AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to β-adrenergic signalling. Scientific Reports, 2016, 6, 23426.	1.6	29
117	Brown adipose tissue and its therapeutic application. Science Bulletin, 2016, 61, 1498-1503.	4.3	7
118	Macrophages and Dendritic Cells. Circulation Research, 2016, 118, 637-652.	2.0	86
119	CMKLR1 deficiency influences glucose tolerance and thermogenesis in mice on high fat diet. Biochemical and Biophysical Research Communications, 2016, 473, 435-441.	1.0	22
120	Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E676-E687.	1.8	106
121	Nuclear receptors and AMPK: can exercise mimetics cure diabetes?. Journal of Molecular Endocrinology, 2016, 57, R49-R58.	1.1	27
122	Continuous cold exposure induces an anti-inflammatory response in mesenteric adipose tissue associated with catecholamine production and thermogenin expression in rats. Endocrine Regulations, 2016, 50, 137-144.	0.5	17
123	Linking the Microbiota, Chronic Disease, and the Immune System. Trends in Endocrinology and Metabolism, 2016, 27, 831-843.	3.1	195
124	iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy. Cell Metabolism, 2016, 24, 510-519.	7.2	139
125	ILâ€33 delivery induces serous cavity macrophage proliferation independent of interleukinâ€4 receptor alpha. European Journal of Immunology, 2016, 46, 2311-2321.	1.6	31
126	Cardiovascular disease and type 2 diabetes in evolutionary perspective: A critical role for helminths?. Evolution, Medicine and Public Health, 2016, 2016, 338-357.	1.1	53
127	The modern interleukin-1 superfamily: Divergent roles in obesity. Seminars in Immunology, 2016, 28, 441-449.	2.7	26
128	Regulation of IL-4 Expression in Immunity and Diseases. Advances in Experimental Medicine and Biology, 2016, 941, 31-77.	0.8	67

#	Article	IF	CITATIONS
129	Adrenomedullin 2 Enhances Beiging in White Adipose Tissue Directly in an Adipocyte-autonomous Manner and Indirectly through Activation of M2 Macrophages. Journal of Biological Chemistry, 2016, 291, 23390-23402.	1.6	44
130	Brown and Beige Adipose Tissue. Endocrinology and Metabolism Clinics of North America, 2016, 45, 605-621.	1.2	43
131	Interleukin 33: an innate alarm for adaptive responses beyond Th2 immunity–emerging roles in obesity, intestinal inflammation, and cancer. European Journal of Immunology, 2016, 46, 1091-1100.	1.6	53
132	Brown adipose tissue in obesity: Fractalkine-receptor dependent immune cell recruitment affects metabolic-related gene expression. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1614-1622.	1.2	15
133	Role of Eosinophil Granulocytes in Allergic Airway Inflammation Endotypes. Scandinavian Journal of Immunology, 2016, 84, 75-85.	1.3	39
134	<scp>IGF1</scp> and adipose tissue homeostasis. Obesity, 2016, 24, 10-10.	1.5	3
135	Control of brown and beige fat development. Nature Reviews Molecular Cell Biology, 2016, 17, 691-702.	16.1	507
136	Eosinophils, probiotics, and the microbiome. Journal of Leukocyte Biology, 2016, 100, 881-888.	1.5	38
137	Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metabolism, 2016, 24, 434-446.	7.2	221
138	CD301b + Mononuclear Phagocytes Maintain Positive Energy Balance through Secretion of Resistin-like Molecule Alpha. Immunity, 2016, 45, 583-596.	6.6	44
139	Activation and recruitment of brown adipose tissue by cold exposure and food ingredients in humans. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 537-547.	2.2	46
140	Cell biology of fat storage. Molecular Biology of the Cell, 2016, 27, 2523-2527.	0.9	162
141	Innate lymphoid cells type 2 – emerging immune regulators of obesity and atherosclerosis. Immunology Letters, 2016, 179, 43-46.	1.1	27
142	Nutrient Regulation: Conjugated Linoleic Acid's Inflammatory and Browning Properties in Adipose Tissue. Annual Review of Nutrition, 2016, 36, 183-210.	4.3	31
143	Acute hyperglycemia impairs ILâ€6 expression in humans. Immunity, Inflammation and Disease, 2016, 4, 91-97.	1.3	15
144	Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell, 2016, 166, 841-854.	13.5	99
145	Metabolic activity of brown, "beige,―and white adipose tissues in response to chronic adrenergic stimulation in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E260-E268.	1.8	92
146	The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nature Communications, 2016, 7, 13479.	5.8	180

#	Article	IF	CITATIONS
147	Adipose tissue macrophage in immune regulation of metabolism. Science China Life Sciences, 2016, 59, 1232-1240.	2.3	11
148	M2 macrophages in metabolism. Diabetology International, 2016, 7, 342-351.	0.7	19
149	Primitive Macrophages Drive Coronary Development. Circulation Research, 2016, 118, 1454-1456.	2.0	0
150	Dietary cholesterol effects on adipose tissue inflammation. Current Opinion in Lipidology, 2016, 27, 19-25.	1.2	43
151	Eosinophils in Helminth Infection: Defenders and Dupes. Trends in Parasitology, 2016, 32, 798-807.	1.5	171
152	Microenvironmental Control of Adipocyte Fate and Function. Trends in Cell Biology, 2016, 26, 745-755.	3.6	87
153	Innate lymphoid cells in defense, immunopathology and immunotherapy. Nature Immunology, 2016, 17, 755-757.	7.0	54
154	Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nature Immunology, 2016, 17, 765-774.	7.0	760
155	GDF1 is a novel mediator of macrophage infiltration in brown adipose tissue of obese mice. Biochemistry and Biophysics Reports, 2016, 5, 216-223.	0.7	4
156	β-Lapachone Prevents Diet-Induced Obesity by Increasing Energy Expenditure and Stimulating the Browning of White Adipose Tissue via Downregulation of miR-382 Expression. Diabetes, 2016, 65, 2490-2501.	0.3	35
157	Targeting adipose tissue in the treatment of obesity-associated diabetes. Nature Reviews Drug Discovery, 2016, 15, 639-660.	21.5	518
158	EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Molecular Metabolism, 2016, 5, 57-65.	3.0	83
159	Cannabinoid Receptor 2 as Antiobesity Target: Inflammation, Fat Storage, and Browning Modulation. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3469-3478.	1.8	53
160	Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metabolism, 2016, 23, 1216-1223.	7.2	274
161	Innate lymphoid cells as novel regulators of obesity and itsâ€associated metabolic dysfunction. Obesity Reviews, 2016, 17, 485-498.	3.1	11
162	SnapShot: Brown and Beige Adipose Thermogenesis. Cell, 2016, 166, 258-258.e1.	13.5	38
163	Adipose Structure (White, Brown, Beige). , 2016, , 369-396.		1
164	Molecular control of activation and priming in macrophages. Nature Immunology, 2016, 17, 26-33.	7.0	392

# 165	ARTICLE Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends in Pharmacological Sciences, 2016, 37, 303-317.	IF 4.0	CITATIONS
166	Adiponectin: a versatile player of innate immunity. Journal of Molecular Cell Biology, 2016, 8, 120-128.	1.5	169
167	14-3-3ζ: A numbers game in adipocyte function?. Adipocyte, 2016, 5, 232-237.	1.3	7
168	Wnt inhibition enhances browning of mouse primary white adipocytes. Adipocyte, 2016, 5, 224-231.	1.3	24
169	Innate cell communication kick-starts pathogen-specific immunity. Nature Immunology, 2016, 17, 356-363.	7.0	195
171	Emerging evidence for beneficial macrophage functions in atherosclerosis and obesity-induced insulin resistance. Journal of Molecular Medicine, 2016, 94, 267-275.	1.7	35
172	Rapamycin Blocks Induction of the Thermogenic Program in White Adipose Tissue. Diabetes, 2016, 65, 927-941.	0.3	67
173	Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte, 2016, 5, 119-129.	1.3	58
174	Heterogeneity of white adipose tissue: molecular basis and clinical implications. Experimental and Molecular Medicine, 2016, 48, e215-e215.	3.2	150
175	The role of innate immunity in the regulation of brown and beige adipogenesis. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 41-49.	2.6	16
176	Adipose tissue macrophages: going off track during obesity. Diabetologia, 2016, 59, 879-894.	2.9	324
177	Convertible visceral fat as a therapeutic target to curb obesity. Nature Reviews Drug Discovery, 2016, 15, 405-424.	21.5	177
178	Development and Function of Arterial and Cardiac Macrophages. Trends in Immunology, 2016, 37, 32-40.	2.9	64
179	Gut Microbiota Cool-Down Burning Fat! The Immune Hypothesis. Trends in Endocrinology and Metabolism, 2016, 27, 67-68.	3.1	6
180	PPARÎ ³ Antagonist Gleevec Improves Insulin Sensitivity and Promotes the Browning of White Adipose Tissue. Diabetes, 2016, 65, 829-839.	0.3	80
181	Regulation of metabolism by the innate immune system. Nature Reviews Endocrinology, 2016, 12, 15-28.	4.3	502
182	Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity. Molecular and Cellular Biology, 2016, 36, 184-196.	1.1	41
183	The helminth T2 RNase ï‰1 promotes metabolic homeostasis in an ILâ€33―and group 2 innate lymphoid cellâ€dependent mechanism. FASEB Journal, 2016, 30, 824-835.	0.2	70

ARTICLE IF CITATIONS # Innate lymphoid cells in intestinal immunity and inflammation. Cellular and Molecular Life Sciences, 184 2.4 85 2016, 73, 237-252. Breaking BAT: can browning create a better white?. Journal of Endocrinology, 2016, 228, R19-R29. 1.2 Adipose tissue macrophages in non-rodent mammals: a comparative study. Cell and Tissue Research, 186 1.5 26 2016, 363, 461-478. Elementary immunology: Na+ as a regulator of immunity. Pediatric Nephrology, 2017, 32, 201-210. 0.9 Negative Regulation of Type 2 Immunity. Trends in Immunology, 2017, 38, 154-167. 188 2.9 21 Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function. British Journal of Pharmacology, 2017, 174, 3466-3481. 189 2.7 A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in 190 5.8 77 brown adipocytes. Nature Communications, 2017, 8, 14147. Intracellular ATP in balance of pro- and anti-inflammatory cytokines in adipose tissue with and 1.6 without tissue expansion. International Journal of Obesity, 2017, 41, 645-651. 192 Mechanisms by which obesity impacts upon asthma. Thorax, 2017, 72, 174-177. 2.7 64 Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising 4.8 39 therapeutic target for obesity. Protein and Cell, 2017, 8, 446-454. The biochemical alterations underlying post-burn hypermetabolism. Biochimica Et Biophysica Acta -194 1.8 74 Molecular Basis of Disease, 2017, 1863, 2633-2644. First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment. Cell Reports, 2017, 18, 200 1893-1905. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biology, 2017, 12, 196 3.9 70 82-102. Isolation of Immune Cells from Adipose Tissue for Flow Cytometry. Methods in Molecular Biology, 0.4 2017, 1566, 49-59. Mast Cells Promote Seasonal White Adipose Beiging in Humans. Diabetes, 2017, 66, 1237-1246. 198 0.3 62 VEGF-Aâ€"Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation 199 and Confers IL-4–Independent Metabolic Improvements. Diabetes, 2017, 66, 1479-1490. 200 The S(c)ensory Immune System Theory. Trends in Immunology, 2017, 38, 777-788. 2.9 21 Hypoxia determines survival outcomes of bacterial infection through HIF-1α–dependent reprogramming 5.6 of leukocyte metabolism. Science Immunology, 2017, 2, .

#	ARTICLE	IF	CITATIONS
202	Physiological roles of macrophages. Pflugers Archiv European Journal of Physiology, 2017, 469, 365-374.	1.3	147
203	Sorting out adipocyte precursors and their role in physiology and disease. Genes and Development, 2017, 31, 127-140.	2.7	104
204	IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge. Cell Reports, 2017, 19, 225-234.	2.9	150
205	A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nature Immunology, 2017, 18, 654-664.	7.0	139
206	Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nature Medicine, 2017, 23, 623-630.	15.2	282
207	Macrophage functions in lean and obese adipose tissue. Metabolism: Clinical and Experimental, 2017, 72, 120-143.	1.5	220
208	Warming the mouse to model human diseases. Nature Reviews Endocrinology, 2017, 13, 458-465.	4.3	147
209	Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nature Immunology, 2017, 18, 665-674.	7.0	200
210	Regulation of eosinophil development and survival. Current Opinion in Hematology, 2017, 24, 9-15.	1.2	26
211	IL-6 Signal From the Bone Marrow is Required for the Browning of White Adipose Tissue Post Burn Injury. Shock, 2017, 47, 33-39.	1.0	49
212	Brown adipose tissue and lipid metabolism imaging. Methods, 2017, 130, 105-113.	1.9	22
213	Nonâ€shivering thermogenesis as a mechanism to facilitate sustainable weight loss. Obesity Reviews, 2017, 18, 819-831.	3.1	54
214	SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. EBioMedicine, 2017, 20, 137-149.	2.7	311
215	Systems Pharmacology-based strategy to screen new adjuvant for hepatitis B vaccine from Traditional Chinese Medicine Ophiocordyceps sinensis. Scientific Reports, 2017, 7, 44788.	1.6	13
216	The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nature Immunology, 2017, 18, 519-529.	7.0	279
217	Targeting white, brown and perivascular adipose tissue in atherosclerosis development. European Journal of Pharmacology, 2017, 816, 82-92.	1.7	82
218	Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. Journal of Experimental Medicine, 2017, 214, 943-957.	4.2	76
219	Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Scientific Reports, 2017, 7, 44571.	1.6	78

#	Article	IF	CITATIONS
220	Circadian Rhythms in Adipose Tissue Physiology. , 2017, 7, 383-427.		44
221	Hypoxia causes <scp>IL</scp> â€8 secretion, Charcot Leyden crystal formation, and suppression of corticosteroidâ€induced apoptosis in human eosinophils. Clinical and Experimental Allergy, 2017, 47, 770-784.	1.4	23
222	Helminths, hygiene hypothesis and type 2 diabetes. Parasite Immunology, 2017, 39, e12404.	0.7	52
223	Brown fat thermogenesis: Stability of developmental programming and transient effects of temperature and gut microbiota in adults. Biochimie, 2017, 134, 93-98.	1.3	12
224	Mouse Eosinophils: Identification, Isolation, and Functional Analysis. Current Protocols in Immunology, 2017, 119, 14.43.1-14.43.22.	3.6	11
225	Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	30
226	Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nature Communications, 2017, 8, 1087.	5.8	58
227	The FGF21-CCL11 Axis Mediates Beiging of White Adipose Tissues by Coupling Sympathetic Nervous System to Type 2 Immunity. Cell Metabolism, 2017, 26, 493-508.e4.	7.2	113
228	Interplay of innate lymphoid cells and the microbiota. Immunological Reviews, 2017, 279, 36-51.	2.8	50
229	Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity, 2017, 47, 406-420.	6.6	340
230	Functions of tissue-resident eosinophils. Nature Reviews Immunology, 2017, 17, 746-760.	10.6	376
231	Dense Intra-adipose Sympathetic Arborizations Are Essential for Cold-Induced Beiging of Mouse White Adipose Tissue. Cell Metabolism, 2017, 26, 686-692.e3.	7.2	148
232	Adaptive Immunity and Metabolic Health: Harmony Becomes Dissonant in Obesity and Aging. , 2017, 7, 1307-1337.		15
233	Brown and Beige Adipose Tissues in Health and Disease. , 2017, 7, 1281-1306.		127
234	Critical review of beige adipocyte thermogenic activation and contribution to whole-body energy expenditure. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	19
235	CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nature Communications, 2017, 8, 286.	5.8	178
236	A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function. Cell Metabolism, 2017, 26, 475-492.e7.	7.2	71
237	Oral administration of visceral adipose tissue antigens ameliorates metabolic disorders in mice and elevates visceral adipose tissue-resident CD4 + CD25 + Foxp3 + regulatory T cells. Vaccine, 2017, 35, 4612-4620	1.7	6

ARTICLE IF CITATIONS # Circulating sex steroids coregulate adipose tissue immune cell populations in healthy men. American 238 1.8 7 Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E528-E539. CD300f:IL-5 cross-talk inhibits adipose tissue eosinophil homing and subsequent IL-4 production. 1.6 24 Scientific Reports, 2017, 7, 5922. Activated macrophages control human adipocyte mitochondrial bioenergetics via secreted factors. 240 3.0 25 Molecular Metabolism, 2017, 6, 1226-1239. Human brown adipose tissue — function and therapeutic potential in metabolic disease. Current 241 Opinion in Pharmacology, 2017, 37, 1-9. Characterization of the central neural projections to brown, white, and beige adipose tissue. FASEB 242 0.2 35 Journal, 2017, 31, 4879-4890. Estrogens and Body Weight Regulation in Men. Advances in Experimental Medicine and Biology, 2017, 1043, 285-313. 0.8 Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and 244 1.3 73 macrophage polarization. Adipocyte, 2018, 7, 1-8. The Lives and Times of Brown Adipokines. Trends in Endocrinology and Metabolism, 2017, 28, 855-867. 245 3.1 Adipose tissue macrophages develop from bone marrowâ€"independent progenitors in <i>Xenopus 246 1.5 67 laevis</i> and mouse. Journal of Leukocyte Biology, 2017, 102, 845-855. Helminth antigens counteract a rapid high-fat diet-induced decrease in adipose tissue eosinophils. 247 1.1 Journal of Molecular Endocrinology, 2017, 59, 245-255. Innate immunity orchestrates adipose tissue homeostasis. Hormone Molecular Biology and Clinical 248 0.3 8 Investigation, 2017, 31, . How Does Fat Transition from White to Beige?. Cell Metabolism, 2017, 26, 14-16. 249 7.2 The barrier hypothesis and Oncostatin M: Restoration of epithelial barrier function as a novel 250 1.6 48 therapeutic strategy for the treatment of type 2 inflammatory disease. Tissue Barriers, 2017, 5, e1341367. The expanding problem of adipose depot remodeling and postnatal adipocyte progenitor recruitment. 1.6 Molecular and Cellular Endocrinology, 2017, 445, 95-108 252 Immune Modulation of Brown(ing) Adipose Tissue in Obesity. Endocrine Reviews, 2017, 38, 46-68. 8.9 50 Immunomodulation by helminths: Similar impact on type 1 and type 2 diabetes?. Parasite Immunology, 2017, 39, e12401. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary 254 65 disease with eosinophilic inflammation., 2017, 169, 57-77. Macrophage Polarization. Annual Review of Physiology, 2017, 79, 541-566. 5.6 1,934

#	Article	IF	Citations
256	Attenuation of diet-induced obesity and induction of white fat browning with a chemical inhibitor of histone deacetylases. International Journal of Obesity, 2017, 41, 289-298.	1.6	41
257	Tissue Immunometabolism: Development, Physiology, and Pathobiology. Cell Metabolism, 2017, 25, 11-26.	7.2	96
258	Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Research Reviews, 2017, 35, 200-221.	5.0	483
259	Inter-organ regulation of adipose tissue browning. Cellular and Molecular Life Sciences, 2017, 74, 1765-1776.	2.4	22
260	Brown adipose tissue as a secretory organ. Nature Reviews Endocrinology, 2017, 13, 26-35.	4.3	493
261	Myeloid adrenergic signaling via CaMKII forms a feedforward loop of catecholamine biosynthesis. Journal of Molecular Cell Biology, 2017, 9, 422-434.	1.5	15
262	Angiogenesis in metabolic-vascular disease. Thrombosis and Haemostasis, 2017, 117, 1289-1295.	1.8	17
263	Taming the Flames: Targeting White Adipose Tissue Browning in Hypermetabolic Conditions. Endocrine Reviews, 2017, 38, 538-549.	8.9	50
264	The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovascular Research, 2017, 113, 1009-1023.	1.8	302
265	Regulatory Eosinophils in Inflammation and Metabolic Disorders. Immune Network, 2017, 17, 41.	1.6	23
266	Eosinophil Cytokines in Allergy. , 2017, , 173-218.		14
267	The Influence of a KDT501, a Novel Isohumulone, on Adipocyte Function in Humans. Frontiers in Endocrinology, 2017, 8, 255.	1.5	8
268	The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs. Frontiers in Immunology, 2017, 8, 1353.	2.2	134
269	Metabolic Regulation of Innate Lymphoid Cell-Mediated Tissue Protection—Linking the Nutritional State to Barrier Immunity. Frontiers in Immunology, 2017, 8, 1742.	2.2	28
270	Homeostatic Eosinophils: Characteristics and Functions. Frontiers in Medicine, 2017, 4, 101.	1.2	124
271	Hepatic Immune Microenvironment in Alcoholic and Nonalcoholic Liver Disease. BioMed Research International, 2017, 2017, 1-12.	0.9	43
272	Human ADMC-Derived Adipocyte Thermogenic Capacity Is Regulated by IL-4 Receptor. Stem Cells International, 2017, 2017, 1-10.	1.2	16
273	Metabolically distinct weight loss by 10,12 CLA and caloric restriction highlight the importance of subcutaneous white adipose tissue for glucose homeostasis in mice. PLoS ONE, 2017, 12, e0172912.	1.1	33

ARTICLE IF CITATIONS # Unusual Suspects in the Development of Obesity-Induced Inflammation and Insulin Resistance: NK cells, 274 1.8 39 iNKT cells, and ILCs. Diabetes and Metabolism Journal, 2017, 41, 229. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. 1.7 World Journal of Biological Chemistry, 2017, 8, 120. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated 276 3.9 128 macrophages. Journal of Clinical Investigation, 2017, 127, 4148-4162. Loss of OcaB Prevents Age-Induced Fat Accretion and Insulin Resistance by Altering B-Lymphocyte 0.3 Transition and Promoting Energy Expenditure. Diabetes, 2018, 67, 1285-1296. Group 2 innate lymphocytes at the interface between innate and adaptive immunity. Annals of the New 278 1.8 24 York Academy of Sciences, 2018, 1417, 87-103. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic 279 5.8 phospho-switch. Nature Communications, 2018, 9, 1566. Jak-TGF¹² cross-talk links transient adipose tissue inflammation to beige adipogenesis. Science Signaling, 280 1.6 41 2018, 11, . Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. Journal 281 1.5 of Leukocyte Biology, 2018, 104, 95-108. Beyond Host Defense: Emerging Functions of the Immune System in Regulating Complex Tissue 282 13.5 192 Physiology. Cell, 2018, 173, 554-567. Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis, 0.4 2018, 271, 102-110. Circulating molecules that control brown/beige adipocyte differentiation and thermogenic capacity. 284 4 1.4 Cell Biology International, 2018, 42, 701-710. Omega-3 fatty acids and adipose tissue biology. Molecular Aspects of Medicine, 2018, 64, 147-160. Acute lung injury induced by intestinal ischemia and reperfusion is altered in obese female mice. 286 1.1 9 Pulmonary Pharmacology and Therapeutics, 2018, 49, 54-59. Resident intestinal eosinophils constitutively express antigen presentation markers and include two phenotypically distinct subsets of eosinophils. Immunology, 2018, 154, 298-308. Inhibitory Effects of Toll-Like Receptor 4, NLRP3 Inflammasome, and Interleukin-112 on White Adipocyte 288 1.7 61 Browning. Inflammation, 2018, 41, 626-642. Highly Dispersible and Bioavailable Curcumin but not Native Curcumin Induces Brownâ€Like Adipocyte Formation in Mice. Molecular Nutrition and Food Research, 2018, 62, 1700731. An Adipose Tissue Atlas: An Image-Guided Identification of Human-like BAT and Beige Depots in Rodents. 290 7.2 174 Cell Metabolism, 2018, 27, 252-262.e3. Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue 291 metabolic impairments. Molecular Metabolism, 2018, 8, 86-95.

# Arrors F Cran 292 Modulation of the IL-33IL-13 Avis in Obesity by L1:38R52. Journal of Innumology. 2018, 200, 1347-1359. 0.4 27 293 Toward on Understanding of How Immune Cells Control Brown and Bage Adipobilology. Cell Redeelen, 2018, 27, 959-961. 7.2 3.0 294 Woldertours and Inderstanding of How Immune Cells Control Brown and Bage Adipobilology. Cell Redeelen, 2018, 27, 959-961. 6.8 7.2 295 Molecticus B Junging reveals intradicion of seven and the platicity regulated by NGF-TrRA signal Im. 1.6 7.2 296 Adrenomedulin 2intermedin: a platative drug candidate for treatment of cardiometabolic diseases. 2.0 7.2 297 Bibbets and Adipocyte Dysfunction. 2018, 69-84. 1.0			CITATION RE	PORT	
201Towards an Understanding of How Immune Cells Control Brown and Beige Adipobiology. Cell7.21.55203Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TribA signal in4.857204Celdinatuced beiging. Protein and Cell 2016, 9, 527-539.1.676205Adrenomedulin 2/intermedin: a putative dug candidate for treatment of cardiometabolic diseases.2.747206Adrenomedulin 2/intermedin: a putative dug candidate for treatment of cardiometabolic diseases.2.747207The role of innate lymphoid cells in health and disease. Journal of Cellular Physiology, 2018, 233.2.037208Disbetes and Adipocyte Dysfunction., 2018, 69-84.031209Cellular and Molecular Neurobiology, 2018, 155, 1230-1240.1.031300Repeated Stress Exaggerates Lipopolysacchardle Indummatory Response in the Rat Spleen.1.719301Innate lymphoid cells at the interface between obesity and attima. Immunology, 2018, 153, 21-30.2.041302JAXISTAT &C' Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65.3.1198303Lauradia General Theory of immunity7. Trends in Inmunology, 2018, 191, 29-44.2.2288304Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachesis. Frontiers of Syndhing Kemodels Adipose Chomatin Architecture to Limit Thermogenesis and Energy1.64.7304Towards a General Theory of immunity7. Trends in Inmunology, 2018, 193, 191, 29-44.2.22.8305Role of bro	#	Article		IF	CITATIONS
233 Metabolism, 2018, 27, 954-961. 242 153 254 Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beging. Protein and Cell, 2018, 9, 527-539. 4.8 57 255 Helminth infection protects against high fat diet induced obesity via induction of alternatively activated macrophages. Scientific Reports, 2018, 8, 4607. 1.6 76 256 Adrenomedulin 2/Intermedin: a putative drug candidate for treatment of cardiometabolic diseases. 2.7 47 257 The role of innate lymphoid cells in health and disease. Journal of Cellular Physiology, 2018, 233, 2018, 187, 2431. 0 37 258 Diabetes and Adipocyte Dysfunction., 2018, 69-84. 0 0 259 Destrogens enhance activation of brown and beiging of adipose tissues?. Physiology and Behavior. 1.0 31 300 Repeated Stress Exaggerates Upopolysaccharide-induced Inflammatory Response in the Rat Spleen. 1.7 19 301 Innate lymphoid cells at the interface between obesity and asthma. Immunology, 2018, 153, 21-30. 2.0 41 302 JAK/STAT &C Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65. 3.1 198 303 Lo Signaling Remodels Adipose Choromatin Archintecture to Limit Thermogenesis and Energy<	292	Modulation of the IL-33/IL-13 Axis in Obesity by IL-13Rα2. Journal of Immunology, 2018	3, 200, 1347-1359.	0.4	27
244 cold-induced beiging. Protein and Cell, 2018, 9, 527-539. 4.5 57 205 Helminth Infection protects against high fat det induced obesity via induction of alternatively 1.6 76 206 Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases. 2.7 47 207 The role of innate lymphoid cells in health and disease. Journal of Cellular Physiology, 2018, 233. 2.0 37 208 Diabetes and Adipocyte Dysfunction., 2018, 69-84. 0 209 Do estrogens enhance activation of brown and beiging of adipose tissues?. Physiology and Behavior, 1.0 31 300 Repeated Stress Exaggerates Lipopolysacchande-induced Inflammatory Response in the Rat Spleen. 1.7 19 301 Innate lymphoid cells at the Interface between obesity and asthma. Immunology, 2018, 153, 21-30. 2.0 41 302 Innate lymphoid cells at the Interface between obesity and asthma. Immunology, 2018, 153, 21-30. 2.0 41 303 Innate lymphoid cells at the Interface between obesity and asthma. Immunology, 2018, 153, 21-30. 2.0 41 304 Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263. 2.9 2.8 305 Macrophage polarization and meta-inflammation. Translation	293	Toward an Understanding of How Immune Cells Control Brown and Beige Adipobiology Metabolism, 2018, 27, 954-961.	. Cell	7.2	155
299 activated macrophages. Scientific Reports, 2018, 8, 4607. 1.0 76 296 Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases. 2.7 47 297 The role of innate lymphoid cells in health and disease. Journal of Cellular Physiology, 2018, 233, 45 2.0 37 298 Diabetes and Adipocyte Dysfunction., 2018, 69-84. 0 299 Do estrogens enhance activation of brown and beiging of adipose tissues?. Physiology and Behavior, 2018, 157, 24-31. 1.0 31 300 Repeated Stress Exaggerates Upopolysacchande-Induced Inflammatory Response in the Rat Spleen. 1.7 19 301 Innate lymphoid cells at the Interface between obesity and asthma. Immunology, 2018, 153, 21-30. 2.0 41 302 JAKISTAT & C * Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65. 3.1 198 303 L-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy 1.3.5 142 304 Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263. 2.9 28 305 Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44. 2.2 238 306 Role of brown adipose tissue in metabolic	294	Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF cold-induced beiging. Protein and Cell, 2018, 9, 527-539.	TrkA signal in	4.8	57
200British Journal of Pharmacology, 2018, 175, 1230-1240.2.747207The role of Innate lymphoid cells in health and disease. Journal of Cellular Physiology, 2018, 233, 4512-4529.2.037208Diabetes and Adipocyte Dysfunction., 2018, 69-84.0209Do estrogens enhance activation of brown and beiging of adipose tissues?. Physiology and Behavior, Cellular and Molecular Neurobiology, 2018, 38, 195-208.1.031300Repeated Stress Exaggerates Lipopolysaccharide-induced Inflammatory Response in the Rat Spleen. Cellular and Molecular Neurobiology, 2018, 38, 195-208.1.719301Innate lymphoid cells at the interface between obesity and asthma. Immunology, 2018, 153, 21-30.2.041302JAK/ISTAT ać" Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65.3.1198303IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy 	295	Helminth infection protects against high fat diet-induced obesity via induction of altern activated macrophages. Scientific Reports, 2018, 8, 4607.	atively	1.6	76
2974512-4529.20837298Diabetes and Adipocyte Dysfunction., 2018,, 69-84.0299Do estrogens enhance activation of brown and beiging of adipose tissues?. Physiology and Behavior, 2018, 187, 24-31.1.0300Repeated Stress Exaggerates Lipopolysaccharide-Induced Inflammatory Response in the Rat Spleen. Cellular and Molecular Neurobiology, 2018, 38, 195-208.1.7301Innate lymphoid cells at the Interface between obesity and asthma. Immunology, 2018, 153, 21-30.2.0302JAKISTAT & C Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65.3.1303L-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy13.5304Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263.2.9305Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.2.2238306Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of Medicine, 2018, 12, 130-138.1.547307Ecosomes From Adipose Derived Stem Cells Attenuate Adipose Tissue. Diabetes, 2018, 67, 235-247.0.3436308Prior Repeated Stress Attenuates Cold-Induced Immunodulation Associated with &&CoeBrowning&C-in and Molecular Neurobiology, 2018, 38, 93-661.1.712	296		lic diseases.	2.7	47
299Do estrogens enhance activation of brown and beiging of adipose tissues?. Physiology and Behavior, 2018, 187, 24-31.1.031300Repeated Stress Exaggerates Lipopolysaccharide-Induced Inflammatory Response in the Rat Spleen. Cellular and Molecular Neurobiology, 2018, 38, 195-208.1.719301Innate lymphoid cells at the interface between obesity and asthma. Immunology, 2018, 153, 21-30.2.041302JAK/STAT &C" Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65.3.1198303IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233.e17.1.22.8304Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263.2.92.8305Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.2.22.38306Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of Medicine, 2018, 12, 130-138.1.547307Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018, 67, 255-247.0.3436308Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with acceBrowningaCin Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361.1.712	297	The role of innate lymphoid cells in health and disease. Journal of Cellular Physiology, 20 4512-4529.	018, 233,	2.0	37
2992018, 187, 2431.10031300Repeated Stress Exaggerates Lipopolysaccharide-Induced Inflammatory Response in the Rat Spleen. Cellular and Molecular Neurobiology, 2018, 38, 195-208.1.719301Innate lymphoid cells at the interface between obesity and asthma. Immunology, 2018, 153, 21-30.2.041302JAK/STAT & C Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65.3.1198303IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233, e17.142304Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263.2.928305Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.2.2238306Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of Medicine, 2018, 12, 130-138.1.547307Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through 	298	Diabetes and Adipocyte Dysfunction. , 2018, , 69-84.			0
300Cellular and Molecular Neurobiology, 2018, 38, 195-208.1.719301Innate lymphoid cells at the interface between obesity and asthma. Immunology, 2018, 153, 21-30.2.041302JAK/STAT â€" Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65.3.1198303IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy13.5142304Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263.2.928305Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.2.2238306Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of Medicine, 2018, 12, 130-138.1.547307Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018, 67, 235-247.0.3436308Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with ã&ceBrowningã∈ Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361.1.712	299		and Behavior,	1.0	31
302JAK/STAT âć" Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65.3.1198303IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233.e17.142304Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263.2.928305Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.2.2238306Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of Medicine, 2018, 12, 130-138.142307Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018, 67, 235-247.0.3436308Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with â€cœBrowningã€-in Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361.1.712	300	Repeated Stress Exaggerates Lipopolysaccharide-Induced Inflammatory Response in the Cellular and Molecular Neurobiology, 2018, 38, 195-208.	? Rat Spleen.	1.7	19
303L-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233,e17.142304Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263.2.928305Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.2.2238306Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of Medicine, 2018, 12, 130-138.1.547307Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018, 67, 235-247.0.3436308Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with â&cœBrowningâ∈ Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361.1.712	301	Innate lymphoid cells at the interface between obesity and asthma. Immunology, 2018,	153, 21-30.	2.0	41
303Expenditure. Čell, 2018, 172, 218-233.e17.13.3142304Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263.2.928305Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.2.2238306Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of Medicine, 2018, 12, 130-138.1.547307Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018, 67, 235-247.0.3436308Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with "Browningâ€in Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361.1.712	302	JAK/STAT – Emerging Players in Metabolism. Trends in Endocrinology and Metabolism	, 2018, 29, 55-65.	3.1	198
305Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.2.2238306Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of Medicine, 2018, 12, 130-138.1.547307Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018, 67, 235-247.0.3436308Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with "Browning―in Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361.1.712	303	IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Expenditure. Cell, 2018, 172, 218-233.e17.	Energy	13.5	142
306Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Frontiers of Medicine, 2018, 12, 130-138.1.547307Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018, 67, 235-247.0.3436308Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with "Browning―in Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361.1.712	304	Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263.		2.9	28
306 Medicine, 2018, 12, 130-138. 1.3 47 307 Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018, 67, 235-247. 0.3 436 308 Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with "Browning―in Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361. 1.7 12	305	Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 2	9-44.	2.2	238
307 Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018, 67, 235-247. 0.3 436 308 Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with "Browning―in Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361. 1.7 12	306		ers of	1.5	47
Mesenteric Fat of Rats. Cellular and Molecular Neurobiology, 2018, 38, 349-361.	307			0.3	436
309Adipose Organ Development and Remodeling. , 2018, 8, 1357-1431.127	308		æBrowning―in	1.7	12
	309	Adipose Organ Development and Remodeling. , 2018, 8, 1357-1431.			127

#	Article	IF	CITATIONS
310	Downregulation of macrophage Irs2 by hyperinsulinemia impairs IL-4-indeuced M2a-subtype macrophage activation in obesity. Nature Communications, 2018, 9, 4863.	5.8	60
311	IL-1β- and IL-4-polarized macrophages have opposite effects on adipogenesis of intramuscular fibro-adipogenic progenitors in humans. Scientific Reports, 2018, 8, 17005.	1.6	59
312	PD-1 Is Involved in the Dysregulation of Type 2 Innate Lymphoid Cells in a Murine Model of Obesity. Cell Reports, 2018, 25, 2053-2060.e4.	2.9	62
313	Uncoupling protein-1 deficiency promotes brown adipose tissue inflammation and ER stress. PLoS ONE, 2018, 13, e0205726.	1.1	26
314	A Renewable Source of Human Beige Adipocytes for Development of Therapies to Treat Metabolic Syndrome. Cell Reports, 2018, 25, 3215-3228.e9.	2.9	46
315	T Cells in Adipose Tissue in Aging. Frontiers in Immunology, 2018, 9, 2945.	2.2	42
316	INDUCTION OF BROWN ADIPOSE TISSUE: A REVIEW. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 472.	0.3	0
317	Inflammation in human adipose tissues–Shades of gray, rather than white and brown. Cytokine and Growth Factor Reviews, 2018, 44, 28-37.	3.2	16
318	Dietary n-3 long-chain polyunsaturated fatty acids upregulate energy dissipating metabolic pathways conveying anti-obesogenic effects in mice. Nutrition and Metabolism, 2018, 15, 65.	1.3	23
319	Partial depletion of CD206-positive M2-like macrophages induces proliferation of beige progenitors and enhances browning after cold stimulation. Scientific Reports, 2018, 8, 14567.	1.6	24
320	Interleukin-6 is important for regulation of core body temperature during long-term cold exposure in mice. Biomedical Reports, 2018, 9, 206-212.	0.9	17
321	Adipose Tissue as an Endocrine Organ. , 0, , .		3
322	Leptin Elicits LTC4 Synthesis by Eosinophils Mediated by Sequential Two-Step Autocrine Activation of CCR3 and PGD2 Receptors. Frontiers in Immunology, 2018, 9, 2139.	2.2	19
323	Increased FGF21 in brown adipose tissue of tyrosine hydroxylase heterozygous mice: implications for cold adaptation. Journal of Lipid Research, 2018, 59, 2308-2320.	2.0	5
324	Emerging Potential of Immediate Early Response Gene Xâ€1 in Cardiovascular and Metabolic Diseases. Journal of the American Heart Association, 2018, 7, e009261.	1.6	3
325	Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovascular Diabetology, 2018, 17, 134.	2.7	119
326	Murine eosinophil development and allergic lung eosinophilia are largely dependent on the signaling adaptor GRB2. European Journal of Immunology, 2018, 48, 1786-1795.	1.6	7
327	Carboxytherapy-Induced Fat loss is Associated with VEGF-Mediated Vascularization. Aesthetic Plastic Surgery, 2018, 42, 1681-1688.	0.5	10

	Сіта	tion Report	
#	Article	IF	CITATIONS
328	Innate T Cells Govern Adipose Tissue Biology. Journal of Immunology, 2018, 201, 1827-1834.	0.4	28
329	Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. International Journal of Molecular Sciences, 2018, 19, 2569.	1.8	15
330	Defining Eosinophil Function in Adiposity and Weight Loss. BioEssays, 2018, 40, e1800098.	1.2	13
331	Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements. Cell Metabolism, 2018, 28, 907-921.e7.	7.2	170
332	PPAR-Î ³ in innate and adaptive lung immunity. Journal of Leukocyte Biology, 2018, 104, 737-741.	1.5	32
333	A direct tissue-grafting approach to increasing endogenous brown fat. Scientific Reports, 2018, 8, 7957.	1.6	22
334	Microenvironment of Immune Cells Within the Visceral Adipose Tissue Sensu Lato vs. Epicardial Adipose Tissue: What Do We Know?. Inflammation, 2018, 41, 1142-1156.	1.7	4
335	Spectral Unmixing Imaging for Differentiating Brown Adipose Tissue Mass and Its Activation. Contrast Media and Molecular Imaging, 2018, 2018, 1-7.	0.4	4
336	Eosinophils support adipocyte maturation and promote glucose tolerance in obesity. Scientific Reports, 2018, 8, 9894.	1.6	75
337	Adiponectin Regulation and Function. , 2018, 8, 1031-1063.		412
338	Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity. Frontiers in Immunology, 2018, 9, 169.	2.2	116
339	Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells. Frontiers in Immunology, 2018, 9 191.	, 2.2	74
340	IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View. Frontiers in Immunology, 2018, 9, 1037.	2.2	32
341	Type 2 immunity: Expanding our view. Science Immunology, 2018, 3, .	5.6	190
342	Sympathetic inputs regulate adaptive thermogenesis in brown adipose tissue through cAMP-Salt inducible kinase axis. Scientific Reports, 2018, 8, 11001.	1.6	33
343	Therapeutic Targeting of the Interleukin-4/Interleukin-13 Signaling Pathway: In Allergy and Beyond. BioDrugs, 2018, 32, 201-220.	2.2	46
344	Adipocyte HDAC4 activation leads to beige adipocyte expansion and reduced adiposity. Journal of Endocrinology, 2018, 239, 153-165.	1.2	13
345	Fatty Acid Metabolites as Novel Regulators of Non-shivering Thermogenesis. Handbook of Experimental Pharmacology, 2018, 251, 183-214.	0.9	10

#	Article	IF	CITATIONS
346	CXCL14, a Brown Adipokine that Mediates Brown-Fat-to-Macrophage Communication in Thermogenic Adaptation. Cell Metabolism, 2018, 28, 750-763.e6.	7.2	164
347	Innate Immunity and Inflammation. , 2018, , 74-128.		0
348	MicroRNA-30 modulates metabolic inflammation by regulating Notch signaling in adipose tissue macrophages. International Journal of Obesity, 2018, 42, 1140-1150.	1.6	76
349	Innate immune cells in the adipose tissue. Reviews in Endocrine and Metabolic Disorders, 2018, 19, 283-292.	2.6	61
350	Contributions of innate type 2 inflammation to adipose function. Journal of Lipid Research, 2019, 60, 1698-1709.	2.0	30
351	Brown and beige fat: From molecules to physiology and pathophysiology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 37-50.	1.2	45
352	LIGHT/TNFSF14 signaling attenuates beige fat biogenesis. FASEB Journal, 2019, 33, 1595-1604.	0.2	16
353	High intensity intermittent training induces anti-inflammatory cytokine responses and improves body composition in overweight adolescent boys. Hormone Molecular Biology and Clinical Investigation, 2019, 39, .	0.3	2
354	Innate Immune Control of Adipose Tissue Homeostasis. Trends in Immunology, 2019, 40, 857-872.	2.9	114
355	Switching on the furnace: Regulation of heat production in brown adipose tissue. Molecular Aspects of Medicine, 2019, 68, 60-73.	2.7	52
356	M2â€like macrophages serve as a niche for adipocyte progenitors in adipose tissue. Journal of Diabetes Investigation, 2019, 10, 1394-1400.	1.1	21
357	Functional Inactivation of Mast Cells Enhances Subcutaneous Adipose Tissue Browning in Mice. Cell Reports, 2019, 28, 792-803.e4.	2.9	45
358	Intrinsic expression of viperin regulates thermogenesis in adipose tissues. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17419-17428.	3.3	27
359	Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiological Reviews, 2019, 99, 1701-1763.	13.1	157
360	<p>A case of chronic eosinophilic pneumonia in a patient treated with dupilumab</p> . Therapeutics and Clinical Risk Management, 2019, Volume 15, 869-875.	0.9	49
361	Adipogenesis: A Necessary but Harmful Strategy. International Journal of Molecular Sciences, 2019, 20, 3657.	1.8	43
362	Immune Cells Gate White Adipose Tissue Expansion. Endocrinology, 2019, 160, 1645-1658.	1.4	33
363	The Impact of the Adipose Organ Plasticity on Inflammation and Cancer Progression. Cells, 2019, 8, 662.	1.8	60

#	Article	IF	CITATIONS
364	The Beige Adipocyte as a Therapy for Metabolic Diseases. International Journal of Molecular Sciences, 2019, 20, 5058.	1.8	63
365	The interplay of type 2 immunity, helminth infection and the microbiota in regulating metabolism. Clinical and Translational Immunology, 2019, 8, e01089.	1.7	27
366	Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet. BMJ Open Diabetes Research and Care, 2019, 7, e000783.	1.2	65
367	Thermogenic crosstalk occurs between adipocytes from different species. Scientific Reports, 2019, 9, 15177.	1.6	2
368	Hoxa5 alleviates obesityâ€induced chronic inflammation by reducing ER stress and promoting M2 macrophage polarization in mouse adipose tissue. Journal of Cellular and Molecular Medicine, 2019, 23, 7029-7042.	1.6	30
369	Co-Administration of Curcumin and Artepillin C Induces Development of Brown-Like Adipocytes in Association with Local Norepinephrine Production by Alternatively Activated Macrophages in Mice. Journal of Nutritional Science and Vitaminology, 2019, 65, 328-334.	0.2	9
370	A role of eosinophils in mediating the anti-tumour effect of cryo-thermal treatment. Scientific Reports, 2019, 9, 13214.	1.6	14
371	Dysregulated fatty acid metabolism in nasal polypâ€derived eosinophils from patients with chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1113-1124.	2.7	52
372	From white to beige adipocytes: therapeutic potential of dietary molecules against obesity and their molecular mechanisms. Food and Function, 2019, 10, 1263-1279.	2.1	41
373	Metabolic adaptations of tissue-resident immune cells. Nature Immunology, 2019, 20, 793-801.	7.0	115
374	Adipose Tissue Mast Cells Promote Human Adipose Beiging in Response to Cold. Scientific Reports, 2019, 9, 8658.	1.6	29
375	Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. Journal of Lipid Research, 2019, 60, 1648-1697.	2.0	197
376	An analysis of the immune compartment within bovine adipose tissue. Developmental and Comparative Immunology, 2019, 100, 103411.	1.0	3
377	Adaptive adipose tissue stromal plasticity in response to cold stress and antibody-based metabolic therapy. Scientific Reports, 2019, 9, 8833.	1.6	10
378	High dose of linagliptin induces thermogenic beige adipocytes in the subcutaneous white adipose tissue in diet-induced obese C57BL/6 mice. Endocrine, 2019, 65, 252-262.	1.1	7
379	Cytokine Diversity in Human Peripheral Blood Eosinophils: Profound Variability of IL-16. Journal of Immunology, 2019, 203, 520-531.	0.4	8
380	Type 2 immune regulation of adipose tissue homeostasis. Current Opinion in Physiology, 2019, 12, 20-25.	0.9	3
381	Brown Fat Promotes Muscle Growth During Regeneration. Journal of Orthopaedic Research, 2019, 37, 1817-1826.	1.2	22

#	Article	IF	CITATIONS
382	Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocrine Reviews, 2019, 40, 1092-1107.	8.9	213
383	Prolyl Isomerase Pin1 Suppresses Thermogenic Programs in Adipocytes by Promoting Degradation of Transcriptional Co-activator PRDM16. Cell Reports, 2019, 26, 3221-3230.e3.	2.9	12
384	Diet Supplementation in ω3 Polyunsaturated Fatty Acid Favors an Anti-Inflammatory Basal Environment in Mouse Adipose Tissue. Nutrients, 2019, 11, 438.	1.7	18
385	SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nature Immunology, 2019, 20, 581-592.	7.0	168
386	Inflammation and Immunity: From an Adipocyte's Perspective. Journal of Interferon and Cytokine Research, 2019, 39, 459-471.	0.5	19
387	ILC2 Orchestration of Local Immune Function in Adipose Tissue. Frontiers in Immunology, 2019, 10, 171.	2.2	34
388	Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines. Frontiers in Immunology, 2019, 10, 263.	2.2	69
389	Deficiency of heat shock protein A12A promotes browning of white adipose tissues in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1451-1459.	1.8	4
390	Telmisartan induces browning of fully differentiated white adipocytes via M2 macrophage polarization. Scientific Reports, 2019, 9, 1236.	1.6	21
391	Guggulsterone Activates Adipocyte Beiging through Direct Effects on 3T3-L1 Adipocytes and Indirect Effects Mediated through RAW264.7 Macrophages. Medicines (Basel, Switzerland), 2019, 6, 22.	0.7	12
392	Adrenoceptors in white, brown, and brite adipocytes. British Journal of Pharmacology, 2019, 176, 2416-2432.	2.7	42
393	Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Advances in Nutrition, 2019, 10, 321-330.	2.9	121
394	Is Adipose Tissue an Immunological Organ?. Critical Reviews in Immunology, 2019, 39, 481-490.	1.0	9
395	Foxo in T Cells Regulates Thermogenic Program through Ccr4/Ccl22 Axis. IScience, 2019, 22, 81-96.	1.9	4
396	The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 387-397.	2.6	68
397	Eosinophil Activation by Toll-Like Receptor 4 Ligands Regulates Macrophage Polarization. Frontiers in Cell and Developmental Biology, 2019, 7, 329.	1.8	20
398	Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cellular and Molecular Life Sciences, 2019, 76, 1341-1363.	2.4	66
399	Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019, 20, 242-258.	16.1	836

#	Article	IF	CITATIONS
400	Uncoupling mechanism and redox regulation of mitochondrial uncoupling protein 1 (UCP1). Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 259-269.	0.5	35
401	Heterogeneity of White Adipose Tissue. , 2019, , 271-288.		0
402	Loss of SMYD1 Results in Perinatal Lethality via Selective Defects within Myotonic Muscle Descendants. Diseases (Basel, Switzerland), 2019, 7, 1.	1.0	20
404	Immune cells and CNS physiology: Microglia and beyond. Journal of Experimental Medicine, 2019, 216, 60-70.	4.2	165
405	The role of hypoxia-inducible factors in metabolic diseases. Nature Reviews Endocrinology, 2019, 15, 21-32.	4.3	254
406	Asthma alleviates obesity in males through regulating metabolism and energy expenditure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 350-359.	1.8	8
407	Alternatively Activated Macrophages Drive Browning of White Adipose Tissue in Burns. Annals of Surgery, 2019, 269, 554-563.	2.1	29
408	BMP4 facilitates beige fat biogenesis via regulating adipose tissue macrophages. Journal of Molecular Cell Biology, 2019, 11, 14-25.	1.5	28
409	Adaptive thermogenesis by dietary n-3 polyunsaturated fatty acids: Emerging evidence and mechanisms. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 59-70.	1.2	40
410	S100 proteins in obesity: liaisons dangereuses. Cellular and Molecular Life Sciences, 2020, 77, 129-147.	2.4	31
411	Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocrine Reviews, 2020, 41, 53-65.	8.9	109
412	Origin and Differentiation of Nerve-Associated Macrophages. Journal of Immunology, 2020, 204, 271-279.	0.4	57
413	Omega-3 fatty acids as regulators of brown/beige adipose tissue: from mechanisms to therapeutic potential. Journal of Physiology and Biochemistry, 2020, 76, 251-267.	1.3	18
414	The homeobox factor Irx3 maintains adipogenic identity. Metabolism: Clinical and Experimental, 2020, 103, 154014.	1.5	12
415	Apple polyphenols induce browning of white adipose tissue. Journal of Nutritional Biochemistry, 2020, 77, 108299.	1.9	28
416	Obesity: a neuroimmunometabolic perspective. Nature Reviews Endocrinology, 2020, 16, 30-43.	4.3	91
417	The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. International Archives of Allergy and Immunology, 2020, 181, 11-23.	0.9	65
418	Weight gain in patients with severe atopic dermatitis treated with dupilumab: a cohort study. BMC Dermatology, 2020, 20, 8.	2.1	6

#	Article	IF	CITATIONS
419	Characterization and Treatment of Inflammation and Insulin Resistance in Obese Adipose Tissue. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 3449-3460.	1.1	6
420	Tissue-Specific Role of Macrophages in Noninfectious Inflammatory Disorders. Biomedicines, 2020, 8, 400.	1.4	20
421	Aging and Immunometabolic Adaptations to Thermogenesis. Ageing Research Reviews, 2020, 63, 101143.	5.0	6
422	Fas mutation reduces obesity by increasing IL-4 and IL-10 expression and promoting white adipose tissue browning. Scientific Reports, 2020, 10, 12001.	1.6	20
423	Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Frontiers in Cardiovascular Medicine, 2020, 7, 602088.	1.1	49
424	Efecto de la electroestimulación a baja frecuencia en E36, en un modelo murino de obesidad mediante un análisis proteómico del tejido adiposo. Revista Internacional De Acupuntura, 2020, 14, 96-103.	0.0	0
425	B-Cell-Activating Factor Depletion Ameliorates Aging-Dependent Insulin Resistance via Enhancement of Thermogenesis in Adipose Tissues. International Journal of Molecular Sciences, 2020, 21, 5121.	1.8	6
426	Fate of Adipose Progenitor Cells in Obesity-Related Chronic Inflammation. Frontiers in Cell and Developmental Biology, 2020, 8, 644.	1.8	19
427	Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB Journal, 2020, 34, 9755-9770.	0.2	16
428	Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance Thermogenesis. Cell Reports, 2020, 32, 107998.	2.9	60
429	Adipose tissue, immune aging, and cellular senescence. Seminars in Immunopathology, 2020, 42, 573-587.	2.8	28
430	The M2 Macrophage. Agents and Actions Supplements, 2020, , .	0.2	3
431	T reg–specific insulin receptor deletion prevents diet-induced and age-associated metabolic syndrome. Journal of Experimental Medicine, 2020, 217, .	4.2	32
432	Induction of Adipose Tissue Browning as a Strategy to Combat Obesity. International Journal of Molecular Sciences, 2020, 21, 6241.	1.8	113
433	There and Back Again: Leptin Actions in White Adipose Tissue. International Journal of Molecular Sciences, 2020, 21, 6039.	1.8	62
434	Dietary Regulation of Immunity. Immunity, 2020, 53, 510-523.	6.6	64
435	Perturbations to Homeostasis in Experimental Models Revealed Innate Pathways Driving Food Allergy. Frontiers in Immunology, 2020, 11, 603272.	2.2	11
436	Lysyl oxidase inhibition enhances browning of white adipose tissue and adaptive thermogenesis. Genes and Diseases, 2022, 9, 140-150.	1.5	1

#	Article	IF	CITATIONS
437	Secreted Phospholipase PLA2G2D Contributes to Metabolic Health by Mobilizing ω3 Polyunsaturated Fatty Acids in WAT. Cell Reports, 2020, 31, 107579.	2.9	42
438	The Targeted Impact of Flavones on Obesity-Induced Inflammation and the Potential Synergistic Role in Cancer and the Gut Microbiota. Molecules, 2020, 25, 2477.	1.7	22
439	Metabolic Inflammation and Insulin Resistance in Obesity. Circulation Research, 2020, 126, 1549-1564.	2.0	438
440	Leukocyte Heterogeneity in Adipose Tissue, Including in Obesity. Circulation Research, 2020, 126, 1590-1612.	2.0	44
441	Insulin- and Lipopolysaccharide-Mediated Signaling in Adipose Tissue Macrophages Regulates Postprandial Glycemia through Akt-mTOR Activation. Molecular Cell, 2020, 79, 43-53.e4.	4.5	29
442	Eosinophil function in adipose tissue is regulated by Krüppel-like factor 3 (KLF3). Nature Communications, 2020, 11, 2922.	5.8	35
443	The S100B Protein and Partners in Adipocyte Response to Cold Stress and Adaptive Thermogenesis: Facts, Hypotheses, and Perspectives. Biomolecules, 2020, 10, 843.	1.8	9
444	Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2020, 7, 22.	1.1	614
445	Effects of BMP7 produced by group 2 innate lymphoid cells on adipogenesis. International Immunology, 2020, 32, 407-419.	1.8	8
446	Safety of Eosinophil-Depleting Therapy for Severe, Eosinophilic Asthma: Focus on Benralizumab. Drug Safety, 2020, 43, 409-425.	1.4	47
447	EoTHINophils: Eosinophils as key players in adipose tissue homeostasis. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1495-1505.	0.9	14
448	The Role of the Gut Microbiome in Energy Balance With a Focus on the Gut-Adipose Tissue Axis. Frontiers in Genetics, 2020, 11, 297.	1.1	52
449	The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients, 2020, 12, 1899.	1.7	125
450	Origin and Function of Stress-Induced IL-6 in Murine Models. Cell, 2020, 182, 372-387.e14.	13.5	148
451	Targeting p16 ^{INK4a} Promotes Lipofibroblasts and Alveolar Regeneration after Early-Life Injury. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1088-1104.	2.5	15
452	Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nature Metabolism, 2020, 2, 688-702.	5.1	64
453	Effect of rapamycin on repeated immobilization stress-induced immune alterations in the rat spleen. Journal of Neuroimmunology, 2020, 346, 577309.	1.1	4
454	Characterization of Myeloid Cellular Populations in Mesenteric and Subcutaneous Adipose Tissue of Holstein-Friesian Cows. Scientific Reports, 2020, 10, 1771.	1.6	8

#	Article	IF	CITATIONS
455	Contributions of Eosinophils to Human Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 179-209.	9.6	144
456	Impact of Adaptive Thermogenesis in Mice on the Treatment of Obesity. Cells, 2020, 9, 316.	1.8	33
457	Which Child with Asthma is a Candidate for Biological Therapies?. Journal of Clinical Medicine, 2020, 9, 1237.	1.0	13
459	Eosinophil diversity in asthma. Biochemical Pharmacology, 2020, 179, 113963.	2.0	25
460	M2-like, dermal macrophages are maintained via IL-4/CCL24–mediated cooperative interaction with eosinophils in cutaneous leishmaniasis. Science Immunology, 2020, 5, .	5.6	48
461	The Pivotal Role of Macrophages in Metabolic Distress. , 2020, , .		3
462	FTO Intronic SNP Strongly Influences Human Neck Adipocyte Browning Determined by Tissue and PPARÎ ³ Specific Regulation: A Transcriptome Analysis. Cells, 2020, 9, 987.	1.8	24
463	Inflammatory Signaling and Brown Fat Activity. Frontiers in Endocrinology, 2020, 11, 156.	1.5	58
464	Estrogen enhances browning in adipose tissue by M2 macrophage polarization via heme oxygenaseâ€1. Journal of Cellular Physiology, 2021, 236, 1875-1888.	2.0	11
465	Cytokines and the immune response in obesity-related disorders. Advances in Clinical Chemistry, 2021, 101, 135-168.	1.8	16
466	Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metabolism, 2021, 33, 270-282.e8.	7.2	160
467	Can eosinophils in adipose tissue add fuel to the fire?. Immunology and Cell Biology, 2021, 99, 13-16.	1.0	3
468	Kdm6a suppresses the alternative activation of macrophages and impairs energy expenditure in obesity. Cell Death and Differentiation, 2021, 28, 1688-1704.	5.0	22
469	Thermogenic recruitment of brown and brite/beige adipose tissues is not obligatorily associated with macrophage accretion or attrition. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E359-E378.	1.8	5
470	Deficiency of Stat1 in CD11c+ Cells Alters Adipose Tissue Inflammation and Improves Metabolic Dysfunctions in Mice Fed a High-Fat Diet. Diabetes, 2021, 70, 720-732.	0.3	10
471	The role of adipose tissue M1/M2 macrophages in type 2 diabetes mellitus. Diabetology International, 2021, 12, 74-79.	0.7	33
472	Type 2 immunity is maintained during cancer-associated adipose tissue wasting. Immunotherapy Advances, 2021, 1, ltab011.	1.2	13
473	Anti-obesity effect and mechanism of mesenchymal stem cells influence on obese mice. Open Life Sciences, 2021, 16, 653-666.	0.6	8

#	Article	IF	CITATIONS
474	Adipose tissue plasticity and the pleiotropic roles of BMP signaling. Journal of Biological Chemistry, 2021, 296, 100678.	1.6	22
475	The role of innate lymphoid cells in selected disease states – cancer formation, metabolic disorder and inflammation. Archives of Medical Science, 2021, 17, 196-206.	0.4	3
476	Cold-Induced Adaptations to the Proteome of Mouse Subcutaneous White Adipose Tissue (scWAT) Reveal Proteins Relevant for Tissue Remodeling and Plasticity. SSRN Electronic Journal, 0, , .	0.4	0
477	GIPR Signaling in Immune Cells Maintains Metabolically Beneficial Type 2 Immune Responses in the White Fat From Obese Mice. Frontiers in Immunology, 2021, 12, 643144.	2.2	5
478	Macrophage Responses to Environmental Stimuli During Homeostasis and Disease. Endocrine Reviews, 2021, 42, 407-435.	8.9	21
479	Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis. JCI Insight, 2021, 6, .	2.3	54
480	Heterogeneity of Intestinal Tissue Eosinophils: Potential Considerations for Next-Generation Eosinophil-Targeting Strategies. Cells, 2021, 10, 426.	1.8	19
482	Browning of White Adipocytes in Fat Grafts Associated With Higher Level of Necrosis and Type 2 Macrophage Recruitment. Aesthetic Surgery Journal, 2021, 41, NP1092-NP1101.	0.9	7
483	Chronic tissue inflammation and metabolic disease. Genes and Development, 2021, 35, 307-328.	2.7	122
485	Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annual Review of Immunology, 2021, 39, 719-757.	9.5	69
486	Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease. Journal of Innate Immunity, 2022, 14, 4-30.	1.8	49
487	Modulatory Effect of Intermittent Fasting on Adipose Tissue Inflammation: Amelioration of Cardiovascular Dysfunction in Early Metabolic Impairment. Frontiers in Pharmacology, 2021, 12, 626313.	1.6	15
488	Intercellular mitochondria transfer: a new perspective for the treatment of metabolic diseases. Acta Biochimica Et Biophysica Sinica, 2021, 53, 958-960.	0.9	4
489	Obesity, Adipose Tissue and Vascular Dysfunction. Circulation Research, 2021, 128, 951-968.	2.0	243
490	Evidence of Browning of White Adipocytes in Poorly Survived Fat Grafts in Patients. Aesthetic Surgery Journal, 2021, 41, NP1086-NP1091.	0.9	3
491	MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metabolism, 2021, 33, 781-790.e5.	7.2	138
492	A new perspective on mesenchymal–immune interactions in adipose tissue. Trends in Immunology, 2021, 42, 375-388.	2.9	5
493	Emerging concepts in intestinal immune control of obesity-related metabolic disease. Nature Communications, 2021, 12, 2598.	5.8	65

#	Article	IF	CITATIONS
494	Activation of GCN2 in macrophages promotes white adipose tissue browning and lipolysis under leucine deprivation. FASEB Journal, 2021, 35, e21652.	0.2	7
495	Emerging Evidence for Pleiotropism of Eosinophils. International Journal of Molecular Sciences, 2021, 22, 7075.	1.8	18
496	Macrophage beta2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. Molecular Metabolism, 2021, 48, 101220.	3.0	11
497	Intercellular and inter-organ crosstalk in browning of white adipose tissue: molecular mechanism and therapeutic complications. Journal of Molecular Cell Biology, 2021, 13, 466-479.	1.5	8
498	Immunometabolic regulation of adipose tissue resident immune cells. Current Opinion in Pharmacology, 2021, 58, 44-51.	1.7	4
499	Neonatal IL-4 exposure decreases adipogenesis of male rats into adulthood. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E1148-E1157.	1.8	3
500	Sirtuin 6 promotes eosinophil differentiation by activating GATAâ€1 transcription factor. Aging Cell, 2021, 20, e13418.	3.0	5
501	Macrophage ontogeny and functional diversity in cardiometabolic diseases. Seminars in Cell and Developmental Biology, 2021, 119, 119-129.	2.3	2
502	<i>Apolipoprotein E</i> deficiency activates thermogenesis of white adipose tissues in mice through enhancing l²â€hydroxybutyrate production from precursor cells. FASEB Journal, 2021, 35, e21760.	0.2	2
503	Beige adipocytes mediate the neuroprotective and anti-inflammatory effects of subcutaneous fat in obese mice. Nature Communications, 2021, 12, 4623.	5.8	19
504	Interleukin-5-induced eosinophil population improves cardiac function after myocardial infarction. Cardiovascular Research, 2022, 118, 2165-2178.	1.8	24
505	The chemerin-CMKLR1 axis limits thermogenesis by controlling a beige adipocyte/IL-33/type 2 innate immunity circuit. Science Immunology, 2021, 6, .	5.6	22
506	Thymic stromal lymphopoietin induces adipose loss through sebum hypersecretion. Science, 2021, 373, .	6.0	36
507	IL-25–induced shifts in macrophage polarization promote development of beige fat and improve metabolic homeostasis in mice. PLoS Biology, 2021, 19, e3001348.	2.6	19
508	Fat biology and metabolic balance: On the significance of sex. Molecular and Cellular Endocrinology, 2021, 533, 111336.	1.6	10
509	Molecular Imaging of Brown Adipose Tissue Mass. International Journal of Molecular Sciences, 2021, 22, 9436.	1.8	13
510	Type 2 Diabetes Mellitus and Latent Tuberculosis Infection Moderately Influence Innate Lymphoid Cell Immune Responses in Uganda. Frontiers in Immunology, 2021, 12, 716819.	2.2	9
511	Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Frontiers in Immunology, 2021, 12, 727008.	2.2	8

# 512	ARTICLE Neuro-mesenchymal units control ILC2 and obesity via a brain–adipose circuit. Nature, 2021, 597, 410-414.	IF 13.7	CITATIONS
513	Adipose browning response to burn trauma is impaired with aging. JCI Insight, 2021, 6, .	2.3	4
514	The miR-182-5p/FGF21/acetylcholine axis mediates the crosstalk between adipocytes and macrophages to promote beige fat thermogenesis. JCI Insight, 2021, 6, .	2.3	19
515	Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation. Nature Immunology, 2021, 22, 1268-1279.	7.0	40
516	Neuroimmune regulation of white adipose tissues. FEBS Journal, 2022, 289, 7830-7853.	2.2	4
517	Cold-responsive adipocyte progenitors couple adrenergic signaling to immune cell activation to promote beige adipocyte accrual. Genes and Development, 2021, 35, 1333-1338.	2.7	17
518	Transcriptional Landscaping Identifies a Beige Adipocyte Depot in the Newborn Mouse. Cells, 2021, 10, 2368.	1.8	12
519	Crosstalk between Metabolic Disorders and Immune Cells. International Journal of Molecular Sciences, 2021, 22, 10017.	1.8	19
520	Collagen XV Promotes ER Stress-Induced Inflammation through Activating Integrin β1/FAK Signaling Pathway and M1 Macrophage Polarization in Adipose Tissue. International Journal of Molecular Sciences, 2021, 22, 9997.	1.8	12
521	Brown adipose tissue monocytes support tissue expansion. Nature Communications, 2021, 12, 5255.	5.8	23
522	The relationship between Schistosoma and glycolipid metabolism. Microbial Pathogenesis, 2021, 159, 105120.	1.3	3
523	Insights into the adipose stem cell niche in health and disease. , 2022, , 57-80.		2
524	DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-Î ³ production. Nature Communications, 2021, 12, 326.	5.8	12
525	The response of adipose tissues to <i>Mycoplasma pulmonis</i> and Sendai virus infection in C57BL/6 and DBA/2 mice. Journal of Veterinary Medical Science, 2021, 83, 403-411.	0.3	1
526	Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019, 20, 242-258.	16.1	152
527	What Is an M2 Macrophage? Historical Overview of the Macrophage Polarization Model. The Th1/Th2 and M1/M2 Paradigm, the Arginine Fork. Agents and Actions Supplements, 2020, , 3-25.	0.2	1
528	M2 Macrophages in the Metabolic Organs and in the Neuroendocrine System. Agents and Actions Supplements, 2020, , 171-187.	0.2	3
529	Regulation of thermogenic adipocytes during fasting and cold. Molecular and Cellular Endocrinology, 2020, 512, 110869.	1.6	23

#	Article	IF	CITATIONS
530	Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. Journal of Experimental Medicine, 2021, 218, .	4.2	35
532	Inflammation of brown/beige adipose tissues in obesity and metabolic disease. Journal of Internal Medicine, 2018, 284, 492-504.	2.7	189
533	UCP1 expression–associated gene signatures of human epicardial adipose tissue. JCI Insight, 2019, 4, .	2.3	26
534	Increased apoptosis and browning of TAK1-deficient adipocytes protects against obesity. JCI Insight, 2016, 1, e81175.	2.3	17
535	Deletion of p22phox-dependent oxidative stress in the hypothalamus protects against obesity by modulating l²3-adrenergic mechanisms. JCI Insight, 2017, 2, e87094.	2.3	10
536	Red blood cell β-adrenergic receptors contribute to diet-induced energy expenditure by increasing O2 supply. JCI Insight, 2017, 2, .	2.3	4
537	CD8+ T cells in beige adipogenesis and energy homeostasis. JCI Insight, 2018, 3, .	2.3	24
538	Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. Journal of Clinical Investigation, 2019, 129, 2485-2499.	3.9	85
539	Myeloid-specific Asxl2 deletion limits diet-induced obesity by regulating energy expenditure. Journal of Clinical Investigation, 2020, 130, 2644-2656.	3.9	13
540	Critical lipids link breastfeeding to healthy adipose tissue in infancy and adulthood. Journal of Clinical Investigation, 2019, 129, 2198-2200.	3.9	3
541	A hidden residential cell in the lung. Journal of Clinical Investigation, 2016, 126, 3185-3187.	3.9	15
542	PPARγ deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects. Journal of Clinical Investigation, 2018, 128, 2600-2612.	3.9	40
543	Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. PLoS Biology, 2017, 15, e2002176.	2.6	81
544	Brown Adipose Tissue Harbors a Distinct Sub-Population of Regulatory T Cells. PLoS ONE, 2015, 10, e0118534.	1.1	61
545	Type 2 diabetes mellitus, drug addiction, bipolar disorder and epilepsy display overlapping aetiopathogenic mechanisms: Implication for prevention and pharmacotherapy. International Research Journal of Medicine and Medical Sciences, 2015, 06, .	0.0	1
546	On the role of macrophages in the control of adipocyte energy metabolism. Endocrine Connections, 2019, 8, R105-R121.	0.8	19
547	Adipose tissue browning in mice and humans. Journal of Endocrinology, 2019, 241, R97-R109.	1.2	97
548	Necrosis, and then stress induced necrosis-like cell death, but not apoptosis, should be the preferred cell death mode for chemotherapy: clearance of a few misconceptions. Oncoscience, 2014, 1, 407-422	0.9	44

#	Article	IF	CITATIONS
549	Stromal-Immune Cell Crosstalk Maintains Type 2 Immune Cell Populations within Visceral Adipose Tissue. Immunometabolism, 2020, , .	0.7	2
551	Regulation of Systemic Glucose Homeostasis by T Helper Type 2 Cytokines. Diabetes and Metabolism Journal, 2019, 43, 549.	1.8	11
552	The Emerging Role of Eosinophils as Multifunctional Leukocytes in Health and Disease. Immune Network, 2020, 20, e24.	1.6	22
553	Comprehensive map and functional annotation of the mouse white adipose tissue proteome. PeerJ, 2019, 7, e7352.	0.9	7
554	A Tale of Three Systems: Toward a Neuroimmunoendocrine Model of Obesity. Annual Review of Cell and Developmental Biology, 2021, 37, 549-573.	4.0	12
555	Macrophage deletion of Noc4l triggers endosomal TLR4/TRIF signal and leads to insulin resistance. Nature Communications, 2021, 12, 6121.	5.8	6
556	The evolving view of thermogenic adipocytes — ontogeny, niche and function. Nature Reviews Endocrinology, 2021, 17, 726-744.	4.3	81
557	Emerging Role of Eosinophils in Resolution of Arthritis. Frontiers in Immunology, 2021, 12, 764825.	2.2	7
558	Classical Dichotomy of Macrophages and Alternative Activation Models Proposed with Technological Progress. BioMed Research International, 2021, 2021, 1-10.	0.9	2
559	Immune Regulation of Adipose Tissue Browning. , 2022, , 221-234.		0
560	The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. Journal of Medical Microbiology, 2021, 70, .	0.7	56
562	Macrophages Switch: The Fate of Adipose Tissue in Obesity. MOJ Immunology, 2016, 3, .	11.0	0
564	Les cellules immunes résidentes du tissu adipeux. Medecine Des Maladies Metaboliques, 2019, 13, 331-334.	0.1	0
565	Extracellular Vesicles and Circulating miRNAs—Exercise-Induced Mitigation of Obesity and Associated Metabolic Diseases. , 2020, , 59-80.		0
566	Muscle-dependent regulation of adipose tissue function in long-lived growth hormone-mutant mice. Aging, 2020, 12, 8766-8789.	1.4	13
568	Immune Modulation and Macrophage Polarization in the Pathogenesis of Pancreatic Dysfunction and Obesity. , 2020, , 135-151.		0
569	Influenza A Virus Infection Induces White Adipose Tissue Browning: A Metabolic Adaptation to Infection?. , 2020, 2, .		3
571	Immune and non-immune functions of adipose tissue leukocytes. Nature Reviews Immunology, 2022, 22, 371-386.	10.6	53

#	Article	IF	Citations
573	Integrated control of brown adipose tissue. Heart and Metabolism, 2016, 69, 9-14.	2.0	7
574	Abdominal Obesity and Type 2 Diabetes Mellitus are Associated With Higher Seric Levels of IL 4 in Adults. Current Health Sciences Journal, 2016, 42, 231-237.	0.2	2
575	Remote regulation of type 2 immunity by intestinal parasites. Seminars in Immunology, 2021, 53, 101530.	2.7	4
576	IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature, 2021, 600, 314-318.	13.7	70
577	Resident and migratory adipose immune cells control systemic metabolism and thermogenesis. Cellular and Molecular Immunology, 2022, 19, 421-431.	4.8	18
578	Interleukins in adipose tissue: Keeping the balance. Molecular and Cellular Endocrinology, 2022, 542, 111531.	1.6	5
579	Visceral adiposity, inflammation, and hippocampal function in obesity. Neuropharmacology, 2022, 205, 108920.	2.0	14
581	Combined Phyllostachys pubescens and Scutellaria baicalensis Prevent High-Fat Diet-Induced Obesity via Upregulating Thermogenesis and Energy Expenditure by UCP1 in Male C57BL/6J Mice. Nutrients, 2022, 14, 446.	1.7	3
582	Future prospects of translational and clinical eosinophil research. , 2022, , 253-262.		1
583	Eosinophils regulate intra-adipose axonal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
584	Los posibles mecanismos de pardeamiento del tejido adiposo blanco: una diana novedosa para el tratamiento de la obesidad. Nutricion Hospitalaria, 2022, , .	0.2	0
585	An introduction to eosinophils and their biology. , 2022, , 1-18.		1
586	Adipose-tissue plasticity in health and disease. Cell, 2022, 185, 419-446.	13.5	252
588	Herbal medicines for the treatment of metabolic syndrome. , 2022, , 139-191.		0
589	An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
590	Tissue-Dependent Adaptations and Functions of Innate Lymphoid Cells. Frontiers in Immunology, 2022, 13, 836999.	2.2	18
591	Immune Cells in Thermogenic Adipose Depots: The Essential but Complex Relationship. Frontiers in Endocrinology, 2022, 13, 839360.	1.5	2
592	Browning Epicardial Adipose Tissue: Friend or Foe?. Cells, 2022, 11, 991.	1.8	14

#	Article	IF	CITATIONS
593	Hepatic recruitment of eosinophils and their protective function during acute liver injury. Journal of Hepatology, 2022, 77, 344-352.	1.8	27
594	The shades of grey in adipose tissue reprogramming. Bioscience Reports, 2022, 42, .	1.1	5
595	Regulation of Glucose Transport in Adipocytes by Interleukin-4. Journal of Interferon and Cytokine Research, 2022, 42, 127-136.	0.5	2
596	IL-37 isoform D acts as an inhibitor of soluble ST2 to boost type 2 immune homeostasis in white adipose tissue. Cell Death Discovery, 2022, 8, 163.	2.0	6
597	Moderate l-lactate administration suppresses adipose tissue macrophage M1 polarization to alleviate obesity-associated insulin resistance. Journal of Biological Chemistry, 2022, 298, 101768.	1.6	18
598	Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metabolism, 2022, 34, 533-548.e12.	7.2	91
599	Adipose tissue macrophages and atherogenesis – a synergy with cholesterolaemia. Physiological Research, 2021, , S535-S549.	0.4	2
600	Adipose tissue macrophages and atherogenesis – a synergy with cholesterolaemia. Physiological Research, 0, , S535-S549.	0.4	2
601	Macrophages expressing uncoupling protein 1 increase in adipose tissue in response to cold in humans. Scientific Reports, 2021, 11, 23598.	1.6	1
602	Beige Adipocyte as the Flame of White Adipose Tissue: Regulation of Browning and Impact of Obesity. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1778-e1788.	1.8	8
603	Immune and Genome Engineering as the Future of Transplantable Tissue. New England Journal of Medicine, 2021, 385, 2451-2462.	13.9	28
604	Deconstructing Adipose Tissue Heterogeneity One Cell at a Time. Frontiers in Endocrinology, 2022, 13, 847291.	1.5	8
605	The Adipose Tissue Macrophages Central to Adaptive Thermoregulation. Frontiers in Immunology, 2022, 13, 884126.	2.2	12
618	Adipose tissue macrophages and atherogenesis - a synergy with cholesterolaemia Physiological Research, 2021, 70, S535-S549.	0.4	0
619	Role of Innate lymphoid Cells in Obesity and Insulin Resistance. Frontiers in Endocrinology, 2022, 13, 855197.	1.5	5
620	Heartbreakers or Healers? Innate Lymphoid Cells in Cardiovascular Disease and Obesity. Frontiers in Immunology, 2022, 13, .	2.2	5
621	Eosinophils and Lung Cancer: From Bench to Bedside. International Journal of Molecular Sciences, 2022, 23, 5066.	1.8	14
622	Comparative multi-tissue profiling reveals extensive tissue-specificity in transcriptome reprogramming during thermal adaptation. ELife, 2022, 11, .	2.8	8

		CITATION REPORT		
# 624	ARTICLE Brown Adipose Tissue—A Translational Perspective. Endocrine Reviews, 2023, 44, 143	3-192.	IF 8.9	Citations
625	Long-Term Pterostilbene Supplementation of a High-Fat Diet Increases Adiponectin Exp Subcutaneous White Adipose Tissue. Nutraceuticals, 2022, 2, 102-115.	ression in the	0.6	1
626	Role of thymic stromal lymphopoietin in allergy and beyond. Nature Reviews Immunolo 24-37.	gy, 2023, 23,	10.6	54
627	Adrenergic signaling regulation of macrophage function: do we understand it yet?. Imm Advances, 2022, 2, .	unotherapy	1.2	8
628	C1QTNF3 is Upregulated During Subcutaneous Adipose Tissue Remodeling and Stimula Chemotaxis and M1-Like Polarization. Frontiers in Immunology, 2022, 13, .	ates Macrophage	2.2	7
629	How to Choose the Correct Drug in Severe Pediatric Asthma. Frontiers in Pediatrics, 20	22, 10, .	0.9	4
630	Sodium salicylate induces browning of white adipocytes via M2 macrophage polarization upregulation. European Journal of Pharmacology, 2022, 928, 175085.	on by HO-1	1.7	2
631	Small intestinal resident eosinophils maintain gut homeostasis following microbial colo Immunity, 2022, 55, 1250-1267.e12.	nization.	6.6	29
632	Eosinophils protect against acetaminophenâ€induced liver injury through cyclooxygena ILâ€4/ILâ€13 production. Hepatology, 2023, 77, 456-465.	aseâ€mediated	3.6	10
633	Identification of Novel Genes for Cell Fusion during Osteoclast Formation. Internationa Molecular Sciences, 2022, 23, 6421.	Journal of	1.8	1
634	Role of adipocyte browning in prostate and breast tumor microenvironment. Tzu Chi M 2022, 34, 359.	edical Journal,	0.4	1
635	Obesity Control by Ship Inhibition Requires Pan-Paralog Inhibition and an Intact Eosino Compartment. SSRN Electronic Journal, 0, , .	bhil	0.4	0
636	Targeting parvalbumin promotes M2 macrophage polarization and energy expenditure Communications, 2022, 13, .	in mice. Nature	5.8	10
637	Local and systemic features of ILC immunometabolism. Current Opinion in Hematology 209-217.	, 2022, 29,	1.2	2
638	Adiponectin: friend or foe in obesity and inflammation. Medical Review, 2022, 2, 349-3	52.	0.3	5
639	Meteorin-like protein (Metrnl): A metabolic syndrome biomarker and an exercise media 2022, 157, 155952.	tor. Cytokine,	1.4	11
640	Atractylenolide III from Atractylodes macrocephala Koidz promotes the activation of brown white adipose tissue through SIRT1/PGC-11 \pm signaling pathway. Phytomedicine, 2022, 2000 and 2000 an	own and 104, 154289.	2.3	5
641	Reducing White Adipose Tissue Browning Using p38α MAPK Inhibitors Ameliorates Car Cachexia as Assessed by Magnetic Resonance Imaging. Nutrients, 2022, 14, 3013.	ncer-Associated	1.7	3

#	ARTICLE	IF	CITATIONS
642	Metabolic impact of adipose tissue macrophages in the early postnatal life. Journal of Leukocyte Biology, 2022, 112, 1515-1524.	1.5	4
643	Living without eosinophils: evidence from mouse and man. European Respiratory Journal, 2023, 61, 2201217.	3.1	8
645	Tâ€cell immunoglobulin―and mucinâ€domainâ€containing moleculeâ€4 maintains adipose tissue homeostasis l orchestrating M2 macrophage polarization via nuclear factor kappa B pathway. Immunology, 2023, 168, 49-62.	ру 2.0	2
647	The Yin-Yang functions of macrophages in metabolic disorders. , 2022, 1, 319-332.		1
648	Adipose tissue macrophage in obesity-associated metabolic diseases. Frontiers in Immunology, 0, 13, .	2.2	28
649	Chronic docosahexaenoic acid supplementation improves metabolic plasticity in subcutaneous adipose tissue of aged obese female mice. Journal of Nutritional Biochemistry, 2023, 111, 109153.	1.9	3
650	Remodeling of Adipose Tissues by Fatty Acids: Mechanistic Update on Browning and Thermogenesis by n-3 Polyunsaturated Fatty Acids. Pharmaceutical Research, 2023, 40, 467-480.	1.7	2
651	Immune cell involvement in brown adipose tissue functions. , 2022, 1, .		2
652	Exercise-Induced Adipose Tissue Thermogenesis and Browning: How to Explain the Conflicting Findings?. International Journal of Molecular Sciences, 2022, 23, 13142.	1.8	5
653	Innate lymphoid cells: More than just immune cells. Frontiers in Immunology, 0, 13, .	2.2	13
654	Brown adipose tissue and alzheimerâ \in $^{\mathrm{Ms}}$ s disease. Metabolic Brain Disease, 0, , .	1.4	1
655	Metabolic control of innate lymphoid cells in health and disease. Nature Metabolism, 2022, 4, 1650-1659.	5.1	11
656	A Higher Healthy Eating Index Is Associated with Decreased Markers of Inflammation and Lower Odds for Being Overweight/Obese Based on a Case-Control Study. Nutrients, 2022, 14, 5127.	1.7	8
657	Differential IL18 signaling via IL18 receptor and Na-Cl co-transporter discriminating thermogenesis and glucose metabolism regulation. Nature Communications, 2022, 13, .	5.8	7
658	Quality over quantity; eosinophil activation status will deepen the insight into eosinophilic diseases. Respiratory Medicine, 2023, 207, 107094.	1.3	6
659	Mitochondrial Energy Metabolism in the Regulation of Thermogenic Brown Fats and Human Metabolic Diseases. International Journal of Molecular Sciences, 2023, 24, 1352.	1.8	9
660	The role of innate lymphoid cells in the heart and cardiac inflammation. Journal of Immunology, 2018, 200, 42.22-42.22.	0.4	1
662	Multiple Roles of Sirtuin 6 in Adipose Tissue Inflammation. Diabetes and Metabolism Journal, 2023, 47, 164-172.	1.8	2

#	Article	IF	CITATIONS
663	Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Bioscience Reports, 2023, 43, .	1.1	13
664	Blood and adipose-resident eosinophils are defined by distinct transcriptional profiles. Journal of Leukocyte Biology, 2023, 113, 191-202.	1.5	2
665	Metabolism in type 2 immune responses. Immunity, 2023, 56, 723-741.	6.6	7
666	Obesity control by SHIP inhibition requires pan-paralog inhibition and an intact eosinophil compartment. IScience, 2023, 26, 106071.	1.9	2
667	Towards using 3D cellular cultures to model the activation and diverse functions of macrophages. Biochemical Society Transactions, 2023, 51, 387-401.	1.6	1
668	Adipose tissue aging is regulated by an altered immune system. Frontiers in Immunology, 0, 14, .	2.2	8
669	Smad4-mediated angiogenesis facilitates the beiging of white adipose tissue in mice. IScience, 2023, 26, 106272.	1.9	3
670	Fibroblastic reticular cells in lymph node potentiate white adipose tissue beiging through neuro-immune crosstalk in male mice. Nature Communications, 2023, 14, .	5.8	2
671	NF-κB–Inducing Kinase Governs the Mitochondrial Respiratory Capacity, Differentiation, and Inflammatory Status of Innate Immune Cells. Journal of Immunology, 2023, 210, 1123-1133.	0.4	2
672	Sex differences in neuroimmunoendocrine communication. Involvement on longevity. Mechanisms of Ageing and Development, 2023, 211, 111798.	2.2	5
673	Subsets of Eosinophils in Asthma, a Challenge for Precise Treatment. International Journal of Molecular Sciences, 2023, 24, 5716.	1.8	4
674	Molecular Markers of Blood Cell Populations Can Help Estimate Aging of the Immune System. International Journal of Molecular Sciences, 2023, 24, 5708.	1.8	3
675	Transcriptional programing of T cell metabolism by STAT family transcription factors. European Journal of Immunology, 2023, 53, .	1.6	0
676	Heterogeneity of adipose tissue-resident macrophages-beyond M1/M2 paradigm. Diabetology International, 2023, 14, 125-133.	0.7	1
677	Age-dependent Pdgfrβ signaling drives adipocyte progenitor dysfunction to alter the beige adipogenic niche in male mice. Nature Communications, 2023, 14, .	5.8	5
679	Type 2 neuroimmune circuits in the shaping of physiology. Immunity, 2023, 56, 695-703.	6.6	0
680	Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Frontiers in Immunology, 0, 14, .	2.2	9
696	Adipose Structure (White, Brown, Beige). , 2023, , 1-32.		0

#	Article	IF	CITATIONS
697	Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine, 0, , .	1.1	0
708	Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Frontiers of Medicine, 0, , .	1.5	1
709	Adipose-derived extracellular vesicles – a novel cross-talk mechanism in insulin resistance, non-alcoholic fatty liver disease, and polycystic ovary syndrome. Endocrine, 0, , .	1.1	0
710	Adipose Structure (White, Brown, Beige). , 2023, , 303-334.		0