Blue intensity for dendroclimatology: Should we have t Scotland

Dendrochronologia 32, 191-204 DOI: 10.1016/j.dendro.2014.04.003

Citation Report

#	Article	IF	CITATIONS
1	Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada. Holocene, 2014, 24, 1428-1438.	0.9	67
3	Late Holocene pinewoods persistence in the Gredos Mountains (central Spain) inferred from extensive megafossil evidence. Quaternary Research, 2015, 84, 12-20.	1.0	19
4	Seasonal climate signals from multiple tree ring metrics: A case study of <i>Pinus ponderosa</i> in the upper Columbia River Basin. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1178-1189.	1.3	38
5	A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis. Annals of Botany, 2016, 117, 1187-1196.	1.4	33
6	June–September temperature reconstruction in the Northern Caucasus based on blue intensity data. Dendrochronologia, 2016, 39, 17-23.	1.0	44
7	February–May temperature reconstruction based on tree-ring widths of Abies fargesii from the Shennongjia area in central China. International Journal of Biometeorology, 2016, 60, 1175-1181.	1.3	16
8	Detection and removal of disturbance trends in tree-ring series for dendroclimatology. Canadian Journal of Forest Research, 2016, 46, 387-401.	0.8	29
9	Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 2016, 134, 1-18.	1.4	314
10	Facilitating tree-ring dating of historic conifer timbers using Blue Intensity. Journal of Archaeological Science, 2017, 78, 99-111.	1.2	43
11	X-ray microdensitometry of wood: A review of existing principles and devices. Dendrochronologia, 2017, 42, 42-50.	1.0	66
12	Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews, 2017, 163, 1-22.	1.4	165
13	Reconstructing 800Âyears of summer temperatures in Scotland from tree rings. Climate Dynamics, 2017, 49, 2951-2974.	1.7	53
14	Towards automatic tree rings detection in images of scanned wood samples. Computers and Electronics in Agriculture, 2017, 140, 279-289.	3.7	19
15	Spatial reconstruction of Scottish summer temperatures from tree rings. International Journal of Climatology, 2017, 37, 1540-1556.	1.5	26
16	Dendrochronologically Dated Pine Buildings from Scotland: The SCOT2K Native Pine Dendrochronology Project. Vernacular Architecture, 2017, 48, 23-43.	0.3	6
17	Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska. Climate of the Past, 2017, 13, 1007-1022.	1.3	34
18	â€~Civil skepticism' and the social construction of knowledge: A case in dendroclimatology. Social Studies of Science, 2018, 48, 821-845.	1.5	4
19	Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia, 2018, 49, 94-101.	1.0	36

CITATION REPORT

#	Article	IF	CITATIONS
20	A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. Holocene, 2018, 28, 254-266.	0.9	45
21	Blue intensity from a tropical conifer's annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 2018, 50, 10-22.	1.0	46
22	Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers. Holocene, 2018, 28, 1574-1587.	0.9	26
23	Climate Change-Induced Shift of Tree Growth Sensitivity at a Central Himalayan Treeline Ecotone. Forests, 2018, 9, 267.	0.9	43
24	Divergent growth of Norway spruce on Babia Góra Mountain in the western Carpathians. Dendrochronologia, 2018, 50, 33-43.	1.0	22
25	Tree-ring proxies of larch bud moth defoliation: latewood width and blue intensity are more precise than tree-ring width. Tree Physiology, 2018, 38, 1237-1245.	1.4	25
26	Improved dendroclimatic calibration using blue intensity in the southern Yukon. Holocene, 2019, 29, 1817-1830.	0.9	42
27	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	9.0	98
28	Yellow-cedar blue intensity tree-ring chronologies as records of climate in Juneau, Alaska, USA. Canadian Journal of Forest Research, 2019, 49, 1483-1492.	0.8	16
29	Effects of Memory Biases on Variability of Temperature Reconstructions. Journal of Climate, 2019, 32, 8713-8731.	1.2	28
30	Blue intensity as a temperature proxy in the eastern United States: A pilot study from a southern disjunct population of Picea rubens (Sarg.). Dendrochronologia, 2019, 55, 105-109.	1.0	14
31	Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania. Dendrochronologia, 2019, 54, 56-63.	1.0	25
32	Concord and discord among Northern Hemisphere paleotemperature reconstructions from tree rings. Quaternary Science Reviews, 2019, 203, 278-281.	1.4	26
33	Assessing non-linearity in European temperature-sensitive tree-ring data. Dendrochronologia, 2020, 59, 125652.	1.0	26
34	Distinct seasonal climate drivers revealed in a network of tree-ring records from Labrador, Canada. Climate Dynamics, 2020, 54, 1897-1911.	1.7	2
35	Temperature sensitivity of blue intensity, maximum latewood density, and ring width data of living black spruce trees in the eastern Canadian taiga. Dendrochronologia, 2020, 64, 125771.	1.0	12
36	Microdensitometric records from humid subtropical China show distinct climate signals in earlywood and latewood. Dendrochronologia, 2020, 64, 125764.	1.0	15
37	Testing different Earlywood/Latewood delimitations for the establishment of Blue Intensity data: A case study based on Alpine Picea abies samples. Dendrochronologia, 2020, 64, 125775.	1.0	3

#	Article	IF	CITATIONS
38	Climate-growth relationships of Norway Spruce and silver fir in primary forests of the Croatian Dinaric mountains. Agricultural and Forest Meteorology, 2020, 288-289, 108000.	1.9	9
39	Using Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability. Climate Dynamics, 2020, 55, 579-594.	1.7	32
40	Late summer temperature variability for the Southern Rocky Mountains (USA) since 1735 CE: applying blue light intensity to low-latitude Picea engelmannii Parry ex Engelm. Climatic Change, 2020, 162, 965-988.	1.7	10
41	First measurements of Blue intensity from Pinus peuce and Pinus heldreichii tree rings and potential for climate reconstructions. Dendrochronologia, 2020, 60, 125681.	1.0	15
42	Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree rings using Blue-Intensity (BI). Dendrochronologia, 2020, 60, 125664.	1.0	21
43	Towards a new approach for dendroprovenancing pines in the Mediterranean Iberian Peninsula. Dendrochronologia, 2020, 60, 125688.	1.0	13
44	Cell wall dimensions reign supreme: cell wall composition is irrelevant for the temperature signal of latewood density/blue intensity in Scots pine. Dendrochronologia, 2021, 65, 125785.	1.0	23
45	Towards broadâ€scale temperature reconstructions for Eastern North America using blue light intensity from tree rings. International Journal of Climatology, 2021, 41, E3142.	1.5	11
46	Orbital Forcing Strongly Influences Seasonal Temperature Trends During the Last Millennium. Geophysical Research Letters, 2021, 48, e2020GL088776.	1.5	10
47	Summer Air Temperature for the Greater Yellowstone Ecoregion (770–2019 CE) Over 1,250ÂYears. Geophysical Research Letters, 2021, 48, e2020GL092269.	1.5	10
48	A data assimilation approach to last millennium temperature field reconstruction using a limited high-sensitivity proxy network. Journal of Climate, 2021, , 1-64.	1.2	7
49	Accelerated Recent Warming and Temperature Variability Over the Past Eight Centuries in the Central Asian Altai From Blue Intensity in Tree Rings. Geophysical Research Letters, 2021, 48, e2021GL092933.	1.5	15
50	I-BIND: International Blue intensity network development working group. Dendrochronologia, 2021, 68, 125859.	1.0	16
51	Summer temperature variability since 1730 CE across the low-to-mid latitudes of western North America from a tree ring blue intensity network. Quaternary Science Reviews, 2021, 267, 107064.	1.4	11
52	A lonely dot on the map: Exploring the climate signal in tree-ring density and stable isotopes of clanwilliam cedar, South Africa. Dendrochronologia, 2021, 69, 125879.	1.0	4
53	The utility of bulk wood density for tree-ring research. Dendrochronologia, 2021, 69, 125880.	1.0	7
54	Delta blue intensity vs. maximum density: A case study using Pinus uncinata in the Pyrenees. Dendrochronologia, 2020, 61, 125706.	1.0	16
55	Application of the Blue-Intensity Method for Dating Wooden Buildings in Siberia. Archaeology, Ethnology and Anthropology of Eurasia, 2018, 46, 109-113.	0.1	3

CITATION REPORT

#	Article	IF	CITATIONS
56	Higher Winter-Spring Temperature and Winter-Spring/Summer Moisture Availability Increase Scots Pine Growth on Coastal Dune Microsites Around the South Baltic Sea. Frontiers in Forests and Global Change, 2020, 3, .	1.0	11
57	Chemical destaining and the delta correction for blue intensity measurements of stained lake subfossil trees. Biogeosciences, 2020, 17, 4559-4570.	1.3	10
58	Interrogating glacier mass balance response to climatic change since the Little Ice Age: reconstructions for the Jotunheimen region, southern Norway. Boreas, 2022, 51, 350-363.	1.2	2
59	Anatomical and blue intensity methods to determine wood density converge in contributing to explain different distributions of three palaeotropical pine species. IAWA Journal, 2021, -1, 1-16.	0.5	0
60	Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand. Biogeosciences, 2021, 18, 6393-6421.	1.3	13
61	Improved spring temperature reconstruction using earlywood blue intensity in southeastern China. International Journal of Climatology, 2022, 42, 6204-6220.	1.5	8
62	Short-Term Effects of Droughts and Cold Winters on the Growth of Scots Pine at Coastal Sand Dunes around the South Baltic Sea. Forests, 2022, 13, 477.	0.9	1
63	From lakes to ratios: 14C measurement process of the Finnish tree-ring research consortium. Nuclear Instruments & Methods in Physics Research B, 2022, 519, 37-45.	0.6	2
65	Regional Features of the Radial Growth of Scots Pine under Climatic Conditions of the Forest-Steppe and Steppe Zones of Eastern Transbaikalia According to Multiparameter Tree-Ring Chronologies. Contemporary Problems of Ecology, 2022, 15, 118-128.	0.3	1
66	Progress and uncertainties in global and hemispheric temperature reconstructions of the Common Era. Quaternary Science Reviews, 2022, 286, 107537.	1.4	23
67	Prospects for dendroanatomy in paleoclimatology – a case study on <i>Picea engelmannii</i> from the Canadian Rockies. Climate of the Past, 2022, 18, 1151-1168.	1.3	7
68	Dendrochronology: Fundamentals and Innovations. Tree Physiology, 2022, , 21-59.	0.9	5
69	Disentangling the Evidence of Milankovitch Forcing From Tree-Ring and Sedimentary Records. Frontiers in Earth Science, 0, 10, .	0.8	1
70	Is the Pinus massoniana Lamb. Tree-Ring Latewood Formation Influenced by the Diurnal Temperature Range in Humid Subtropical China?. Forests, 2022, 13, 1439.	0.9	3
71	Do Different Tree-Ring Proxies Contain Different Temperature Signals? A Case Study of Norway Spruce (Picea abies (L.) Karst) in the Eastern Carpathians. Plants, 2022, 11, 2428.	1.6	4
72	Video tutorial: Measuring blue intensity with the CooRecorder software application. Dendrochronologia, 2022, 76, 125999.	1.0	3
73	Blue is the fashion in Mediterranean pines: New drought signals from tree-ring density in southern Europe. Science of the Total Environment, 2023, 856, 159291.	3.9	7
75	Dendroclimatic signals in the pine and spruce chronologies in the Solovetsky Archipelago. Dendrochronologia, 2022, , 126029.	1.0	0

		CITATION	CITATION REPORT	
#	Article		IF	Citations
76	Impact of disturbance signatures on tree-ring width and blue intensity chronology stru climatic signals in Carpathian Norway spruce. Agricultural and Forest Meteorology, 202	cture and 22, 327, 109236.	1.9	0
77	Remarkably high blue ring occurrence in Estonian Scots pines in 1976 reveals wood an evidence of extreme autumnal cooling. Trees - Structure and Function, 2023, 37, 511-	atomical 522.	0.9	3
78	Ring-width and blue-light chronologies of <i>Podocarpus lawrencei</i> from southeast Australia reveal a regional climate signal. Climate of the Past, 2022, 18, 2567-2581.	ern mainland	1.3	2
79	European Dendroecological Fieldweek (EDF) 2021 in Val Müstair, Switzerland: Interr and research during the pandemic. Dendrochronologia, 2022, , 126047.	national education	1.0	0
80	Treeline Dynamics in Nepal Himalaya in a Response to Complexity of Factors. , 2023, ,	519-563.		0
82	Long-Term Climate Sensitivity of Resin-Tapped and Non-Resin-Tapped Scots Pine Trees Width and Blue Intensity. Forests, 2023, 14, 593.	Based on Tree Ring	0.9	0
83	Blue intensity of Swiss stone pine as a high-frequency temperature proxy in the Alps. E of Forest Research, 2023, 142, 933-948.	uropean Journal	1.1	1