Stabilizing hyperactivated lecitase structures through polymers

Process Biochemistry 49, 1511-1515 DOI: 10.1016/j.procbio.2014.05.009

Citation Report

#	Article	IF	CITATIONS
1	Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Advances, 2014, 4, 38350-38374.	1.7	117
2	Use of Lecitase-Ultra immobilized on styrene-divinylbenzene beads as catalyst of esterification reactions: Effects of ultrasounds. Catalysis Today, 2015, 255, 27-32.	2.2	18
3	Immobilization and stabilization of cephalosporin C acylase on aminated support by crosslinking with glutaraldehyde and further modifying with aminated macromolecules. Biotechnology Progress, 2015, 31, 387-395.	1.3	16
4	Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia : Application to the kinetic resolution of myo -inositol derivatives. Process Biochemistry, 2015, 50, 1557-1564.	1.8	81
5	Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. Process Biochemistry, 2015, 50, 918-927.	1.8	91
6	Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 2015, 33, 435-456.	6.0	568
7	Enzyme immobilization onto renewable polymeric matrixes: Past, present, and future trends. Journal of Applied Polymer Science, 2015, 132, .	1.3	87
8	Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. Molecules, 2016, 21, 646.	1.7	58
9	Stabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI). Molecules, 2016, 21, 751.	1.7	47
10	Evaluation of different commercial hydrophobic supports for the immobilization of lipases: tuning their stability, activity and specificity. RSC Advances, 2016, 6, 100281-100294.	1.7	73
11	Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chemical Record, 2016, 16, 1436-1455.	2.9	183
12	Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a l²-galactosidase. RSC Advances, 2016, 6, 61707-61715.	1.7	93
13	lmidazolium ionic liquid incorporation on sulfonated poly(styreneâ€isobutyleneâ€styrene) proton exchange membranes. Journal of Applied Polymer Science, 2017, 134, .	1.3	9
14	Coimmobilization of enzymes in bilayers using pei as a glue to reuse the most stable enzyme: Preventing pei release during inactivated enzyme desorption. Process Biochemistry, 2017, 61, 95-101.	1.8	47
15	Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. Fuel, 2017, 200, 1-10.	3.4	118
16	Physical crosslinking of lipase from Rhizomucor miehei immobilized on octyl agarose via coating with ionic polymers. Process Biochemistry, 2017, 54, 81-88.	1.8	63
17	Lipase immobilized in ordered mesoporous silica: A powerful biocatalyst for ultrafast kinetic resolution of racemic secondary alcohols. Process Biochemistry, 2017, 53, 102-108.	1.8	29
18	Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. Journal of Materials Chemistry B, 2017, 5, 7461-7490.	2.9	228

CITATION REPORT

#	Article	IF	CITATIONS
19	Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. Enzyme and Microbial Technology, 2017, 106, 67-74.	1.6	63
20	Preparation and Characterization of Cellulose Triacetate as Support for Lecitase Ultra Immobilization. Molecules, 2017, 22, 1930.	1.7	14
21	Effects of Triton X-100 and PEG on the Catalytic Properties and Thermal Stability of Lipase from Free and Immobilized on Glyoxyl-Agarose. The Open Biochemistry Journal, 2017, 11, 66-76.	0.3	18
22	Thermal Hyperactivation and Stabilization of β-Galactosidase from <i>Bacillus circulans</i> through a Silica Sol–Gel Process Mediated by Chitosan–Metal Chelates. ACS Applied Bio Materials, 2019, 2, 3380-3392.	2.3	8
23	Modulation of Lecitase properties via immobilization on differently activated Immobead-350: Stabilization and inversion of enantiospecificity. Process Biochemistry, 2019, 87, 128-137.	1.8	29
24	Lecitase ultra: A phospholipase with great potential in biocatalysis. Molecular Catalysis, 2019, 473, 110405.	1.0	43
25	Improvement of lipase activity by synergistic immobilization on polyurethane and its application for large-scale synthesizing vitamin A palmitate. Preparative Biochemistry and Biotechnology, 2019, 49, 485-492.	1.0	5
26	Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances, 2019, 37, 746-770.	6.0	409
27	Novozym 435: the "perfect―lipase immobilized biocatalyst?. Catalysis Science and Technology, 2019, 9, 2380-2420.	2.1	393
28	Efficient biotechnological synthesis of flavor esters using a low-cost biocatalyst with immobilized Rhizomucor miehei lipase. Molecular Biology Reports, 2019, 46, 597-608.	1.0	66
29	Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess and Biosystems Engineering, 2020, 43, 2253-2268.	1.7	54
30	Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts, 2020, 10, 1207.	1.6	28
31	Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents. Bioprocess and Biosystems Engineering, 2020, 43, 2107-2115.	1.7	6
32	Enzyme co-immobilization: Always the biocatalyst designers' choice…or not?. Biotechnology Advances, 2021, 51, 107584.	6.0	152
33	A new heterofunctional support for enzyme immobilization: PEI functionalized Fe3O4 MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus. Enzyme and Microbial Technology, 2020, 138, 109560.	1.6	76
34	Lipases Immobilized onto Nanomaterials as Biocatalysts in Biodiesel Production: Scientific Context, Challenges, and Opportunities. Revista Virtual De Quimica, 2021, 13, 875-891.	0.1	29
35	An overview on the conversion of glycerol to valueâ€added industrial products via chemical and biochemical routes. Biotechnology and Applied Biochemistry, 2022, 69, 2794-2818.	1.4	87
36	Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem, 2021, 2, 149-184.	1.7	48

#	Article	IF	CITATIONS
37	Evaluating enzyme stabilizations in calcium carbonate: Comparing in situ and crosslinking mediated immobilization. International Journal of Biological Macromolecules, 2021, 175, 341-350.	3.6	25
38	Different strategies for the lipase immobilization on the chitosan based supports and their applications. International Journal of Biological Macromolecules, 2021, 179, 170-195.	3.6	76
39	One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase. Renewable Energy, 2021, 171, 11-21.	4.3	34
40	Sulfhydryl-maleimide crosslinking for enhancing catalytic activity and duration of biocatalyst. Materials Chemistry and Physics, 2021, 267, 124615.	2.0	6
41	Current Status and Future Perspectives of Supports and Protocols for Enzyme Immobilization. Catalysts, 2021, 11, 1222.	1.6	81
42	ESTABILIZAÇÃO DA FORMA ABERTA DE LECITASE ATRAVÉS DA MODIFICAÇÃO FÃ S ICA COM POLÃMEROS IÔNICOS. , 0, , .		0
43	Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chemical Engineering Research and Design, 2022, 177, 223-244.	2.7	72
44	Encapsulation of lipases by nucleotide/metal ion coordination polymers: enzymatic properties and their applications in glycerolysis and esterification studies. Journal of the Science of Food and Agriculture, 2022, 102, 4012-4024.	1.7	8
45	Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Research, 2022, 62, 102616.	2.4	77
46	Biomolecular Chemical Simulations on Enantioselectivity and Reactivity of Lipase Enzymes to Azulene Derivatives. Natural Product Communications, 2022, 17, 1934578X2211085.	0.2	Ο
47	Use of phosphorylated chitosan/alumina nanoadditives for polymer performance improvement. Cellulose, 2022, 29, 6677-6696.	2.4	6
48	Comparative study on the effects of water pressure on water absorption of ultraâ€high molecular weight polyethylene and polyformaldehyde. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
49	Tuning Immobilized Commercial Lipase Preparations Features by Simple Treatment with Metallic Phosphate Salts. Molecules, 2022, 27, 4486.	1.7	8
50	The Chemistry and Applications of Metal–Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Molecules, 2022, 27, 4529.	1.7	57
51	Improvement of enzymatic activity and stability of lipase A from Candida antartica onto halloysite nanotubes with Taguchi method for optimized immobilization. Applied Clay Science, 2022, 228, 106634.	2.6	26
52	An improved process for the preparation of ethyl-(R)-2-hydroxy-4-phenylbutyrate, (R)-HPB ester by lipase from Thermomyces lanuginosus. Bioresource Technology Reports, 2022, 19, 101163.	1.5	Ο
53	A stepwise docking and molecular dynamics approach for enzymatic biolubricant production using Lipase Eversa® Transform as a biocatalyst. Industrial Crops and Products, 2022, 187, 115450.	2.5	30
54	Engineering balanced anions coupling with tailored functional groups of poly(ionic liquid)s immobilized lipase enables effective biodiesel production. Molecular Catalysis, 2022, 531, 112673.	1.0	Ο

CITATION REPORT

#ARTICLEIFCITATIONS55Directed Immobilization of PETase on Mesoporous Silica Enables Sustained Depolymerase Activity in
Synthetic Wastewater Conditions. ACS Applied Bio Materials, 2022, 5, 4981-4992.2.32.3256Postimmobilization treatments before applications., 2023, 55-85.033358Editorial: Chemical reactions and catalysis for a sustainable future. Frontiers in Chemistry, 0, 11,1.84465A review of lipase immobilization on hydrophobic supports incorporating systematic mapping
principles. Reaction Chemistry and Engineering, 2023, 8, 2689-2702.1.91

CITATION REPORT