To add or not to add: The use of quenching agents for the by-products in water samples

Water Research 59, 90-98 DOI: 10.1016/j.watres.2014.04.006

Citation Report

#	Article	IF	CITATIONS
1	Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes. Water Research, 2014, 65, 271-281.	5.3	128
2	Analysis, Occurrence, and Toxicity of Haloacetaldehydes in Drinking Waters: Iodoacetaldehyde as an Emerging Disinfection By-Product. ACS Symposium Series, 2015, , 25-43.	0.5	6
3	Fate of toxic cyanobacterial genera from natural bloom events during ozonation. Water Research, 2015, 73, 204-215.	5.3	45
4	Identification and quantification of ineffective chlorine by NaAsO 2 selective quenching method during drinking water disinfection. Chemical Engineering Journal, 2015, 277, 295-302.	6.6	16
5	Improved (and Singular) Disinfectant Protocol for Indirectly Assessing Organic Precursor Concentrations of Trihalomethanes and Dihaloacetonitriles. Environmental Science & Technology, 2015, 49, 9858-9865.	4.6	7
6	Secondary formation of disinfection by-products by UV treatment of swimming pool water. Science of the Total Environment, 2015, 520, 96-105.	3.9	51
7	Disinfection Processes. Water Environment Research, 2015, 87, 1127-1146.	1.3	1
8	Disparity in disinfection byproducts concentration between hot and cold tap water. Water Research, 2015, 70, 196-204.	5.3	31
9	Effect of Metal Ions on the Formation of Trichloronitromethane during Chlorination of Catechol and Nitrite. Journal of Environmental Quality, 2016, 45, 1933-1940.	1.0	4
10	Sample Enrichment for Bioanalytical Assessment of Disinfected Drinking Water: Concentrating the Polar, the Volatiles, and the Unknowns. Environmental Science & Technology, 2016, 50, 6495-6505.	4.6	63
11	Current trends in the analysis and identification of emerging disinfection byproducts. Trends in Environmental Analytical Chemistry, 2016, 10, 24-34.	5.3	127
12	Selection and applicability of quenching agents for the analysis of polar iodinated disinfection byproducts. Chemosphere, 2016, 163, 359-365.	4.2	34
13	Formation and determination of organohalogen by-products in water – Part II. Sample preparation techniques for analytical approaches. TrAC - Trends in Analytical Chemistry, 2016, 85, 281-294.	5.8	16
14	Formation of organic chloramines during chlor(am)ination and UV/chlor(am)ination of algae organic matter in drinking water. Water Research, 2016, 103, 189-196.	5.3	64
15	Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems. Environmental Monitoring and Assessment, 2016, 188, 518.	1.3	38
16	Characterization of haloacetaldehyde and trihalomethane formation potentials during drinking water treatment. Chemosphere, 2016, 159, 378-384.	4.2	35
17	Effect of ozonation of swimming pool water on formation of volatile disinfection by-products – A laboratory study. Chemical Engineering Journal, 2016, 289, 277-285.	6.6	21
18	Cold on-column injection coupled with gas chromatography/mass spectrometry for determining halonitromethanes in drinking water. Analytical Methods, 2016, 8, 362-370.	1.3	15

#	Article	IF	CITATIONS
19	Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. Environment International, 2016, 88, 94-102.	4.8	80
20	Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems. Science of the Total Environment, 2016, 541, 1572-1580.	3.9	35
21	Degradation of chlortoluron during UV irradiation and UV/chlorine processes and formation of disinfection by-products in sequential chlorination. Chemical Engineering Journal, 2016, 283, 412-419.	6.6	73
22	Monitoring trihalomethanes and nitrogenous disinfection by-products in blending desalinated waters using solid-phase microextraction and gas chromatography. Environmental Technology (United Kingdom), 2017, 38, 911-922.	1.2	11
23	Effect of UV Irradiation and UV/Chlorine Processes on Trichloronitromethane Formation During Chlorination of Ronidazole. Clean - Soil, Air, Water, 2017, 45, 1600163.	0.7	8
24	Recent advances in the analysis of nitrogenous disinfection by-products. Trends in Environmental Analytical Chemistry, 2017, 14, 19-27.	5.3	36
25	Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters. Science of the Total Environment, 2017, 599-600, 910-917.	3.9	21
26	Organic chloramines in chlorine-based disinfected water systems: A critical review. Journal of Environmental Sciences, 2017, 58, 2-18.	3.2	103
27	Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water. Water Research, 2017, 110, 141-149.	5.3	38
28	Degradation of acrylamide by the UV/chlorine advanced oxidation process. Chemosphere, 2017, 187, 268-276.	4.2	38
29	Membrane electro-oxidizer: A new hybrid membrane system with electrochemical oxidation for enhanced organics and fouling control. Water Research, 2017, 126, 40-49.	5.3	58
30	Predicting the Formation of Haloacetonitriles and Haloacetamides by Simulated Distribution System Tests. Procedia Engineering, 2017, 186, 186-192.	1.2	4
31	DBPs formation and genotoxicity during chlorination of pyrimidines and purines bases. Chemical Engineering Journal, 2017, 307, 884-890.	6.6	41
32	Catalytic metal oxide nanopowder composite Ti mesh for electrochemical oxidation of 1,4-dioxane and dyes. Chemical Engineering Journal, 2018, 345, 233-241.	6.6	23
33	Relationships between DBP concentrations and differential UV absorbance in full-scale conditions. Water Research, 2018, 131, 110-121.	5.3	28
34	Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine. Chemosphere, 2018, 195, 673-682.	4.2	18
35	Degradation of acrylamide during chlorination as a precursor of haloacetonitriles and haloacetamides. Science of the Total Environment, 2018, 615, 38-46.	3.9	9
36	Improved DBP elimination from swimming pool water by continuous combined UV and ozone treatment. Water Research, 2018, 147, 214-222.	5.3	9

#	ARTICLE	IF	CITATIONS
37	Development and validation of a multiclass method for the determination of organohalogen disinfectant by-products in water samples using solid phase extraction and gas chromatography-tandem mass spectrometry. Journal of Chromatography A, 2018, 1579, 89-98.	1.8	12
38	Formation of odorous and hazardous by-products from the chlorination of amino acids. Water Research, 2018, 146, 10-18.	5.3	29
39	1,3,5-Trimethoxybenzene (TMB) as a new quencher for preserving redox-labile disinfection byproducts and for quantifying free chlorine and free bromine. Environmental Science: Water Research and Technology, 2018, 4, 926-941.	1.2	19
40	Rapid degradation of brominated and iodinated haloacetamides with sulfite in drinking water: Degradation kinetics and mechanisms. Water Research, 2018, 143, 325-333.	5.3	27
41	Formation of iodinated trihalomethanes during breakpoint chlorination of iodide-containing water. Journal of Hazardous Materials, 2018, 353, 505-513.	6.5	30
42	Facile fabrication of MIL-96 as coating fiber for solid-phase microextraction of trihalomethanes and halonitromethanes in water samples. Chemical Engineering Journal, 2018, 350, 240-247.	6.6	61
43	The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water. Water Research, 2018, 142, 490-500.	5.3	67
44	Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: A review. Water Research, 2019, 162, 492-504.	5.3	144
45	Mechanism of ozonation enhanced formation of haloacetaldehydes during subsequent chlorination. Chemosphere, 2019, 236, 124361.	4.2	7
46	Effects of dechlorination conditions on the developmental toxicity of a chlorinated saline primary sewage effluent: Excessive dechlorination is better than not enough. Science of the Total Environment, 2019, 692, 117-126.	3.9	27
47	The fates of aromatic protein and soluble microbial product-like organics, as the precursors of dichloroacetamide, in drinking water advanced treatment processes. Environmental Science: Water Research and Technology, 2019, 5, 1478-1488.	1.2	1
48	Fast analysis of multiple haloacetic acids and nitrosamines in recycled and environmental waters using liquid chromatography-mass spectrometry with positive–negative switching and multiple reaction monitoring. Analytical Methods, 2019, 11, 3793-3799.	1.3	6
49	Effects of carbon materials on the formation of disinfection byproducts during chlorination: Pore structure and functional groups. Water Research, 2019, 162, 1-10.	5.3	20
50	A one-year long survey of temporal disinfection byproducts variations in a consumer's tap and their removals by a point-of-use facility. Water Research, 2019, 159, 203-213.	5.3	44
51	Oxidative debromination of 2,2-bis(bromomethyl)-1,3-propanediol by UV/persulfate process and corresponding formation of brominated by-products. Chemosphere, 2019, 228, 735-743.	4.2	19
52	Does Granular Activated Carbon with Chlorination Produce Safer Drinking Water? From Disinfection Byproducts and Total Organic Halogen to Calculated Toxicity. Environmental Science & Technology, 2019, 53, 5987-5999.	4.6	125
53	Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination. Water Research, 2019, 156, 110-124.	5.3	58
54	Analytical methods for conventional and emerging disinfection by-products in fresh-cut produce. Food Chemistry, 2019, 291, 30-37.	4.2	13

#	Article	IF	CITATIONS
55	Halogenated acetaldehydes in water: A review of their occurrence, formation, precursors and control strategies. Critical Reviews in Environmental Science and Technology, 2019, 49, 1331-1385.	6.6	9
56	Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. Water Research, 2019, 154, 199-209.	5.3	115
57	Formation mechanisms of disinfection byproducts: Recent developments. Current Opinion in Environmental Science and Health, 2019, 7, 61-68.	2.1	16
58	Simultaneous analysis of haloacetonitriles, haloacetamides and halonitromethanes in chlorinated waters by gas chromatography-mass spectrometry. Chemosphere, 2019, 220, 314-323.	4.2	26
59	Evaluating iopamidol degradation performance and potential dual-wavelength synergy by UV-LED irradiation and UV-LED/chlorine treatment. Chemical Engineering Journal, 2019, 360, 806-816.	6.6	48
60	Effects of ion species on the disinfection byproduct formation in artificial and real water. Chemosphere, 2019, 217, 706-714.	4.2	19
61	Transformation of sulfamethazine during the chlorination disinfection process: Transformation, kinetics, and toxicology assessment. Journal of Environmental Sciences, 2019, 76, 48-56.	3.2	31
62	Effects of residual carbon materials on the disinfection byproduct formation in artificial and natural waters. Chemosphere, 2020, 238, 124695.	4.2	8
63	Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere, 2020, 242, 125227.	4.2	38
64	GAC to BAC: Does it make chloraminated drinking water safer?. Water Research, 2020, 172, 115432.	5.3	53
65	Formation of assimilable organic carbon (AOC) during drinking water disinfection: A microbiological prospect of disinfection byproducts. Environment International, 2020, 135, 105389.	4.8	33
66	Formation of DBPs during chlorination of antibiotics and control with permanganate/bisulfite pretreatment. Chemical Engineering Journal, 2020, 392, 123701.	6.6	22
67	Investigating unregulated disinfection byproduct reduction efficiencies in drinking waters using zirconium oxychloride, a novel coagulant. Journal of Water Process Engineering, 2020, 37, 101496.	2.6	2
68	The forest or the trees: a critical review on the analysis of total organic halogen (TOX) in drinking waters and its utility as a water quality parameter. Environmental Science: Water Research and Technology, 2020, 6, 2313-2330.	1.2	8
69	Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins. Water Research, 2020, 184, 116145.	5.3	33
70	Treating water containing elevated bromide and iodide levels with granular activated carbon and free chlorine: impacts on disinfection byproduct formation and calculated toxicity. Environmental Science: Water Research and Technology, 2020, 6, 3460-3475.	1.2	7
71	High-throughput and reliable determination of 13 haloacetic acids and dalapon in water and evaluation of control strategies. Environmental Science: Water Research and Technology, 2020, 6, 2499-2509.	1.2	7
72	Exotic Electrophiles in Chlorinated and Chloraminated Water: When Conventional Kinetic Models and Reaction Pathways Fall Short. Environmental Science and Technology Letters, 2020, 7, 360-370.	3.9	28

#	Article	IF	CITATIONS
73	Has the formation of disinfection by-products been overestimated? Membrane leakage from syringe filter heads serves as unexpected precursors. Chemosphere, 2020, 258, 127278.	4.2	2
74	Simultaneous Determination of Chlorinated and Brominated Acetic Acids in Various Environmental Water Matrixes by High-Performance Liquid Chromatography–Inductively Coupled Plasma Tandem Mass Spectrometry without Sample Preparation. Analytical Chemistry, 2020, 92, 9156-9163.	3.2	14
75	Formation of algal-derived nitrogenous disinfection by-products during chlorination and chloramination. Water Research, 2020, 183, 116047.	5.3	34
76	Synergistic effects of quenching agents and pH on the stability of regulated and unregulated disinfection by-products for drinking water quality monitoring. Environmental Monitoring and Assessment, 2020, 192, 143.	1.3	10
77	Trace Analysis of 61 Emerging Br-, Cl-, and I-DBPs: New Methods to Achieve Part-Per-Trillion Quantification in Drinking Water. Analytical Chemistry, 2020, 92, 3058-3068.	3.2	53
78	Low chlorine impurity might be beneficial in chlorine dioxide disinfection. Water Research, 2021, 188, 116520.	5.3	38
79	Unraveling the chemodiversity of halogenated disinfection by-products formed during drinking water treatment using target and non-target screening tools. Journal of Hazardous Materials, 2021, 401, 123681.	6.5	40
80	Formation of disinfection by-products in a UV-activated mixed chlorine/chloramine system. Journal of Hazardous Materials, 2021, 407, 124373.	6.5	14
81	Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions. Nature Communications, 2021, 12, 493.	5.8	85
82	Emerging investigator series: emerging disinfection by-product quantification method for wastewater reuse: trace level assessment using tandem mass spectrometry. Environmental Science: Water Research and Technology, 2021, 7, 285-297.	1.2	3
83	Occurrence and Distribution of Disinfection Byproducts in Domestic Wastewater Effluent, Tap Water, and Surface Water during the SARS-CoV-2 Pandemic in China. Environmental Science & Technology, 2021, 55, 4103-4114.	4.6	75
84	A comparison of sodium sulfite, ammonium chloride, and ascorbic acid for quenching chlorine prior to disinfection byproduct analysis. Water Science and Technology: Water Supply, 2021, 21, 2313-2323.	1.0	20
85	Impact of UV irradiation on disinfection by-product formation and speciation from post-chlorination of dissolved organic matter. Journal of Water Supply: Research and Technology - AQUA, 2021, 70, 1181-1191.	0.6	2
86	A New Group of Heterocyclic Nitrogenous Disinfection Byproducts (DBPs) in Drinking Water: Role of Extraction pH in Unknown DBP Exploration. Environmental Science & Technology, 2021, 55, 6764-6772.	4.6	34
87	Effects of nitrate and glucose on the formation of chloronitromethane (CNM) under UV/chlorine treatment. Journal of Water Reuse and Desalination, 2021, 11, 475-489.	1.2	6
88	Formation mechanism of chloropicrin from amines and free amino acids during chlorination: A combined computational and experimental study. Journal of Hazardous Materials, 2021, 416, 125819.	6.5	13
89	Progress in green ammonia production as potential carbon-free fuel. Fuel, 2021, 299, 120845.	3.4	161
90	Impact of EfOM in the elimination of PPCPs by UV/chlorine: Radical chemistry and toxicity bioassays. Water Research, 2021, 204, 117634.	5.3	20

#	Article	IF	CITATIONS
91	Kinetics and mechanism of haloacetaldehyde formation from the reaction of acetaldehyde and chlorine. Chemosphere, 2021, 283, 131253.	4.2	3
92	Analysis of Halogenated Disinfection Byproducts in Water. , 2018, , 373-373.		Ο
93	Formation of halonitromethanes from methylamine in the presence of bromide during UV/Cl2 disinfection. Journal of Environmental Sciences, 2022, 117, 28-36.	3.2	7
94	Acute toxicity of disinfection by-products from chlorination of algal organic matter to the cladocerans Ceriodaphnia silvestrii and Daphnia similis: influence of bromide and quenching agent. Environmental Science and Pollution Research, 2022, 29, 35800-35810.	2.7	4
95	Evaluation of N-acetylcysteine and glutathione as quenching agents for the analysis of halogenated disinfection by-products. Journal of Environmental Sciences, 2022, 117, 71-79.	3.2	4
96	Simultaneous prediction of trihalomethanes, haloacetic acids, haloacetonitriles and haloacetamides using simulated distribution system tests. Environmental Science: Water Research and Technology, 2022, 8, 742-756.	1.2	5
97	Effect of UV/Chlorine Oxidation on Disinfection Byproduct Formation from Diverse Model Compounds. ACS ES&T Water, 2022, 2, 573-582.	2.3	9
98	Effects of microplastics on DBPs formation under the chlorination of natural organic matters. Chemosphere, 2022, 296, 134067.	4.2	13
101	Formation potential and analysis of 32 regulated and unregulated disinfection by-products: Two new simplified methods. Journal of Environmental Sciences, 2022, 117, 209-221.	3.2	6
102	Halohydroxybenzonitriles as a new group of halogenated aromatic DBPs in drinking water: Are they of comparable risk to halonitrophenols?. Water Research, 2022, 219, 118547.	5.3	23
103	Occurrence and transformation of newly discovered 2-bromo-6-chloro-1,4-benzoquinone in chlorinated drinking water. Journal of Hazardous Materials, 2022, 436, 129189.	6.5	8
104	A Comprehensive Study of the Electrochemical Oxidation of Diclofenac Sodium in Reverse-Osmosis Concentrate: Analysis, Reaction Kinetics, and the Effect of Electrolyte Composition. Journal of Environmental Engineering, ASCE, 2022, 148, .	0.7	Ο
105	Exploring Pathways and Mechanisms for Dichloroacetonitrile Formation from Typical Amino Compounds during UV/Chlorine Treatment. Environmental Science & Technology, 2022, 56, 9712-9721.	4.6	18
106	Enhanced 2-Mib Degradation by Uv-Led/Chlorine Process: Reaction Kinetics, Wavelength Dependence, Influencing Factors and Degradation Pathways. SSRN Electronic Journal, 0, , .	0.4	Ο
107	Discrepancies and artifacts during preservation and analysis of the disinfection byâ€product 2,6â€dichloroâ€1,4â€benzoquinone. AWWA Water Science, 2022, 4, .	1.0	0
108	Ammonia Production Plants—A Review. Fuels, 2022, 3, 408-435.	1.3	16
109	Occurrence and Cytotoxicity of Aliphatic and Aromatic Halogenated Disinfection Byproducts in Indoor Swimming Pool Water and Their Incoming Tap Water. Environmental Science & Technology, 2022, 56, 17763-17775.	4.6	12
110	Decomposition of Total Organic Halogen Formed during Chlorination: The Iceberg of Halogenated Disinfection Byproducts Was Previously Underestimated. Environmental Science & Technology, 2023, 57, 1433-1442.	4.6	10

		CITATION REPORT		
#	Article		IF	CITATIONS
111	Enhanced 2-MIB degradation by UV-LED/chlorine process: reaction kinetics, wavelength influencing factors and degradation pathways. Environmental Technology (United King 2132-2143.	n dependence, dom), 2024, 45,	1.2	1
112	Impact of prevalent chlorine quenchers on phenolic disinfection byproducts in drinking potential reaction mechanisms. Science of the Total Environment, 2023, 871, 161971.	water and	3.9	7
113	Chlorinated nucleotides and analogs as potential disinfection byproducts in drinking was of Hazardous Materials, 2023, 452, 131242.	ater. Journal	6.5	7
127	Availability and Minimization of Nitrogenous Disinfectant By-Products in Drinking Wate 239-262.	er. , 2024, ,		0