New metastable form of ice and its role in the homogen

Nature Materials 13, 733-739 DOI: 10.1038/nmat3977

Citation Report

#	Article	IF	CITATIONS
1	Novel stable crystalline phase for the Stillinger-Weber potential. Physical Review B, 2014, 90, .	3.2	24
2	Homogeneous ice nucleation evaluated for several water models. Journal of Chemical Physics, 2014, 141, 18C529.	3.0	128
3	Electric Effect during the Fast Dendritic Freezing of Supercooled Water Droplets. Journal of Physical Chemistry B, 2014, 118, 13629-13635.	2.6	10
4	Communication: On the stability of ice 0, ice i, and Ih. Journal of Chemical Physics, 2014, 141, 161102.	3.0	25
5	1D water chain stabilized by meso-expanded calix[4]pyrrole. CrystEngComm, 2014, 16, 8669-8672.	2.6	11
6	Periodic MP2, RPA, and Boundary Condition Assessment of Hydrogen Ordering in Ice XV. Journal of Physical Chemistry Letters, 2014, 5, 4122-4128.	4.6	48
7	Continuous trends. Nature Materials, 2014, 13, 671-673.	27.5	23
8	Zeroing in on ice. Nature Materials, 2014, 13, 670-671.	27.5	13
9	Chiral Ordering in Supercooled Liquid Water and Amorphous Ice. Physical Review Letters, 2015, 115, 197801.	7.8	17
10	Fluctuations and local ice structure in model supercooled water. Journal of Chemical Physics, 2015, 143, 094504.	3.0	35
11	Competition between ices Ih and Ic in homogeneous water freezing. Journal of Chemical Physics, 2015, 143, 134504.	3.0	65
12	Crystallization of Lennard-Jones nanodroplets: From near melting to deeply supercooled. Journal of Chemical Physics, 2015, 142, 124506.	3.0	18
13	Thermodynamic derivation of the activation energy for ice nucleation. Atmospheric Chemistry and Physics, 2015, 15, 13819-13831.	4.9	16
14	Phase diagram of the ST2 model of water. Molecular Physics, 2015, 113, 2791-2798.	1.7	25
15	Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water. European Physical Journal E, 2015, 38, 124.	1.6	15
16	Homogeneous Nucleation of Predominantly Cubic Ice Confined in Nanoporous Alumina. Nano Letters, 2015, 15, 1987-1992.	9.1	60
17	Nucleation of metastable aragonite CaCO ₃ in seawater. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3199-3204.	7.1	187
18	Crystallization Kinetics of Concurrent Liquid–Metastable and Metastable–Stable Transitions, and Ostwald's Step Rule. Langmuir, 2015, 31, 7204-7209.	3.5	6

ATION RE

			1
#	Article	IF	CITATIONS
19	Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Physical Review B, 2015, 91, .	3.2	90
20	Ordering of water in opals with different microstructures. European Journal of Mineralogy, 2015, 27, 203-213.	1.3	22
21	Polymorphs in room-temperature ionic liquids: Hierarchical structure, confined water and pressure-induced frustration. Journal of Molecular Liquids, 2015, 210, 200-214.	4.9	23
22	Kinetics of Ice Nucleation Confined in Nanoporous Alumina. Journal of Physical Chemistry B, 2015, 119, 11960-11966.	2.6	22
23	Communication: Structural interconversions between principal clathrate hydrate structures. Journal of Chemical Physics, 2015, 143, 011102.	3.0	18
24	Stacking disorder in ice I. Physical Chemistry Chemical Physics, 2015, 17, 60-76.	2.8	215
25	Water: A Tale of Two Liquids. Chemical Reviews, 2016, 116, 7463-7500.	47.7	627
26	A variational approach to nucleation simulation. Faraday Discussions, 2016, 195, 557-568.	3.2	15
27	The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions. Scientific Reports, 2016, 6, 26831.	3.3	19
28	On the time required to freeze water. Journal of Chemical Physics, 2016, 145, 211922.	3.0	64
29	Overview: Nucleation of clathrate hydrates. Journal of Chemical Physics, 2016, 145, 211705.	3.0	99
30	Crystal nucleation as the ordering of multiple order parameters. Journal of Chemical Physics, 2016, 145, 211801.	3.0	91
31	Seeding approach to crystal nucleation. Journal of Chemical Physics, 2016, 144, 034501.	3.0	155
32	Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations. Chemical Reviews, 2016, 116, 7078-7116.	47.7	635
33	Ice–Water Interfacial Free Energy for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW Models As Obtained from the Mold Integration Technique. Journal of Physical Chemistry C, 2016, 120, 8068-8075.	3.1	79
34	Nonclassical pathways of crystallization in colloidal systems. MRS Bulletin, 2016, 41, 369-374.	3.5	39
35	Interfacial Free Energy as the Key to the Pressure-Induced Deceleration of Ice Nucleation. Physical Review Letters, 2016, 117, 135702.	7.8	65
36	Designing, Describing and Disseminating New Materials by using the Network Topology Approach. Chemistry - A European Journal, 2016, 22, 13758-13763.	3.3	16

TION RE

#	Article	IF	CITATIONS
37	AB-stacked square-like bilayer ice in graphene nanocapillaries. Physical Chemistry Chemical Physics, 2016, 18, 22039-22046.	2.8	20
38	Lattice mold technique for the calculation of crystal nucleation rates. Faraday Discussions, 2016, 195, 569-582.	3.2	4
39	Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water. Scientific Reports, 2016, 6, 34574.	3.3	40
40	A possible four-phase coexistence in a single-component system. Nature Communications, 2016, 7, 12599.	12.8	16
41	A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III. Science Advances, 2016, 2, e1501010.	10.3	92
42	What did Erwin mean? The physics of information from the materials genomics of aperiodic crystals and water to molecular information catalysts and life. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150067.	3.4	15
43	Topology analysis reveals supramolecular organisation of 96 large complex ions into one geometrical object. CrystEngComm, 2016, 18, 1883-1886.	2.6	5
44	<i>Colloquium</i> : Water's controversial glass transitions. Reviews of Modern Physics, 2016, 88, .	45.6	146
45	Quenching of Charge and Spin Degrees of Freedom in Condensed Matter. Advanced Materials, 2017, 29, 1601979.	21.0	38
46	Surface-assisted single-crystal formation of charged colloids. Nature Physics, 2017, 13, 503-509.	16.7	53
47	Transient Phase of Ice Observed by Sum Frequency Generation at the Water/Mineral Interface During Freezing. Journal of Physical Chemistry Letters, 2017, 8, 871-875.	4.6	24
48	Solid–liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method. Journal of Chemical Physics, 2017, 146, 074701.	3.0	19
49	Superheating of monolayer ice in graphene nanocapillaries. Journal of Chemical Physics, 2017, 146, 134703.	3.0	19
50	Nucleation of urea from aqueous solution: Structure, critical size, and rate. Journal of Chemical Physics, 2017, 146, 134501.	3.0	18
51	From clusters to condensed phase – FT IR studies of water. Journal of Molecular Liquids, 2017, 235, 7-10.	4.9	20
52	Homogeneous Nucleation of Ice Confined in Hollow Silica Spheres. Journal of Physical Chemistry B, 2017, 121, 306-313.	2.6	16
53	Ice Nucleation in Periodic Arrays of Spherical Nanocages. Journal of Physical Chemistry C, 2017, 121, 23788-23792.	3.1	10
54	Role of Salt, Pressure, and Water Activity on Homogeneous Ice Nucleation. Journal of Physical Chemistry Letters, 2017, 8, 4486-4491.	4.6	33

ARTICLE IF CITATIONS # Multi-step nucleation in Al â€" Si liquids catalyzed by a Ni â€" Si master alloy. Materials and Design, 2017, 55 7.0 6 132, 385-391. Structural and dynamic characteristics in monolayer square ice. Journal of Chemical Physics, 2017, 147, 044706. Navigating at Will on the Water Phase Diagram. Physical Review Letters, 2017, 119, 245701. 57 7.8 41 Signatures of the appearance of ice 0 in wetted nanoporous media at electromagnetic measurements. JETP Letters, 2017, 105, 492-496. Nucleation mechanism of clathrate hydrates of water-soluble guest molecules. Journal of Chemical 59 3.0 32 Physics, 2017, 147, 204503. Formation of Cellular Structure on Metastable Solidification of Undercooled Eutectic CoSi-62 at. %. 2.2 Crystals, 2017, 7, 295. Crystal nucleation in sedimenting colloidal suspensions. Journal of Chemical Physics, 2018, 148, 61 3.0 10 064901. Ice nucleation rates near â¹/₄225 K. Journal of Chemical Physics, 2018, 148, 084501. Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses. 63 7.9 49 Acta Materialia, 2018, 149, 108-118. Local-order metric for condensed-phase environments. Physical Review B, 2018, 97, . 3.2 Impact of local symmetry breaking on the physical properties of tetrahedral liquids. Proceedings of 65 7.1 33 the National Academy of Sciences of the United States of America, 2018, 115, 1980-1985. Shrinking of Rapidly Evaporating Water Microdroplets Reveals their Extreme Supercooling. Physical Review Letters, 2018, 120, 015501. Hypercooling Temperature of Water is about 100 K Higher than Calculated before. Journal of Physical 67 4.6 12 Chemistry Letters, 2018, 9, 471-475. Water-like anomalies as a function of tetrahedrality. Proceedings of the National Academy of Sciences 7.1 of the United States of America, 2018, 115, E3333-E3341. The barrier to ice nucleation in monatomic water. Journal of Chemical Physics, 2018, 148, 124505. 69 3.0 19 Nucleation of Aqueous Salt Solutions on Solid Surfaces. Journal of Physical Chemistry C, 2018, 122, 3.1 8277-8287. GenIce: Hydrogenâ€Disordered Ice Generator. Journal of Computational Chemistry, 2018, 39, 61-64. 71 3.3 117 "Freezing―of NaClO₃ Metastable Crystalline State by Optical Trapping in Unsaturated 19 Microdroplet. Crystal Growth and Design, 2018, 18, 734-741.

#	Article	IF	CITATIONS
73	High-density amorphous ice: nucleation of nanosized low-density amorphous ice. Journal of Physics Condensed Matter, 2018, 30, 034002.	1.8	16
74	Two-Stage Solid-Phase Transition of Cubic Ice to Hexagonal Ice: Structural Origin and Kinetics. Journal of Physical Chemistry C, 2018, 122, 29009-29016.	3.1	15
75	Experimental and Theoretical Justification of Designing a Cable Line Exposed to Cryogenic Cracking. Soil Mechanics and Foundation Engineering, 2018, 55, 284-290.	0.7	0
76	Polymorph selection during crystallization of a model colloidal fluid with a free energy landscape containing a metastable solid. Physical Review E, 2018, 98, .	2.1	10
77	Novel Enhanced Sampling Strategies for Transitions Between Ordered and Disordered Structures. , 2018, , 1-23.		0
78	Glass Forming Ability in Systems with Competing Orderings. Physical Review X, 2018, 8, .	8.9	35
79	Study of distance dependence of hydrophobic force between two graphene-like walls and a signature of pressure induced structure formation in the confined water. Journal of Chemical Physics, 2018, 149, 044502.	3.0	11
80	Automated crystal characterization with a fast neighborhood graph analysis method. Soft Matter, 2018, 14, 6083-6089.	2.7	30
81	How to simulate patchy particles. European Physical Journal E, 2018, 41, 59.	1.6	30
82	Mapping uncharted territory in iceÂfrom zeolite networks to ice structures. Nature Communications, 2018, 9, 2173.	12.8	57
83	Crystallization of hard spheres revisited. II. Thermodynamic modeling, nucleation work, and the surface of tension. Journal of Chemical Physics, 2018, 148, 224102.	3.0	27
84	Configurational-Bias Monte Carlo Back-Mapping Algorithm for Efficient and Rapid Conversion of Coarse-Grained Water Structures into Atomistic Models. Journal of Physical Chemistry B, 2018, 122, 7102-7110.	2.6	3
85	Homogeneous nucleation of ferroelectric ice crystal driven by spontaneous dipolar ordering in supercooled TIP5P water. Journal of Chemical Physics, 2019, 151, 024501.	3.0	5
86	Crystalline clusters in mW water: Stability, growth, and grain boundaries. Journal of Chemical Physics, 2019, 151, 044505.	3.0	17
87	Facilitation of Nucleation of Polymorphic Solids due to the Presence of Multiple Metastable Phases: Effects of Nonclassical Surface Tension. Journal of Physical Chemistry C, 2019, 123, 21207-21212.	3.1	2
88	Glass polymorphism in TIP4P/2005 water: A description based on the potential energy landscape formalism. Journal of Chemical Physics, 2019, 150, 244506.	3.0	20
89	Interfacial free energy of a liquid-solid interface: Its change with curvature. Journal of Chemical Physics, 2019, 151, 144501.	3.0	28
90	Analysis of Loss Factor of Supercooled Pore Water at Frequencies of 60–140 GHz. Journal of Communications Technology and Electronics, 2019, 64, 375-380.	0.5	2

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
91	Temperature Dependence of Homogeneous Nucleation in Ice. Physical Review Letters, 2019, 122, 245501.	7.8	56
92	Glassy Nuclei in Amorphous Ice. BesMasters, 2019, , .	0.0	2
93	Synergy of orientational relaxation between bound water and confined water in ice cold-crystallization. Physical Chemistry Chemical Physics, 2019, 21, 10293-10299.	2.8	5
94	Antifreezing Heat-Resistant Hollow Hydrogel Tubes. ACS Applied Materials & Interfaces, 2019, 11, 18746-18754.	8.0	32
95	Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nature Communications, 2019, 10, 1925.	12.8	20
96	Slow dynamics on the self-organization of intermediate-range orders in a supercooled liquid and their stability in a glass. Japanese Journal of Applied Physics, 2019, 58, 035502.	1.5	1
97	Ice Ih vs. ice III along the homogeneous nucleation line. Physical Chemistry Chemical Physics, 2019, 21, 5655-5660.	2.8	10
98	Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability. Journal of Chemical Physics, 2019, 150, 041102.	3.0	17
99	Influence of Hydrodynamic Interactions on Colloidal Crystallization. Physical Review Letters, 2019, 123, 258002.	7.8	12
100	Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature, 2019, 576, 437-441.	27.8	268
101	Hydrogen polarity of interfacial water regulates heterogeneous ice nucleation. Physical Chemistry Chemical Physics, 2020, 22, 258-264.	2.8	10
102	Phase Behavior of Two-Dimensional Water Confined in Graphene Nanocapillaries. Springer Theses, 2020, , .	0.1	0
103	Liquid–liquid transition and polyamorphism. Journal of Chemical Physics, 2020, 153, 130901.	3.0	87
104	Second critical point in two realistic models of water. Science, 2020, 369, 289-292.	12.6	176
105	Computational Prediction of Novel Ice Phases: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 7449-7461.	4.6	17
106	Transmittance of Electromagnetic Radiation of the Visible Range by a Thin Film of Ice 0 Condensed on a Dielectric Substrate. JETP Letters, 2020, 111, 278-281.	1.4	6
107	The Ice-Water Interface and Protein Stability: A Review. Journal of Pharmaceutical Sciences, 2020, 109, 2116-2130.	3.3	54
108	Fcc <i>vs.</i> hcp competition in colloidal hard-sphere nucleation: on their relative stability, interfacial free energy and nucleation rate. Physical Chemistry Chemical Physics, 2021, 23, 19611-19626.	2.8	18

#	Article	IF	CITATIONS
109	Identification of synthesisable crystalline phases of water – a prototype for the challenges of computational materials design. CrystEngComm, 2021, 23, 252-263.	2.6	1
110	Homogeneous nucleation of sheared liquids: advances and insights from simulations and theory. Physical Chemistry Chemical Physics, 2021, 23, 15402-15419.	2.8	9
111	Anomalous Behavior in the Nucleation of Ice at Negative Pressures. Physical Review Letters, 2021, 126, 015704.	7.8	24
112	A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). II. Temperature transferability and structural properties at low temperature. Journal of Chemical Physics, 2021, 154, 044105.	3.0	17
113	A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). I. General theory and model. Journal of Chemical Physics, 2021, 154, 044104.	3.0	21
114	Routes to cubic ice through heterogeneous nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
115	Hydrogen bonds and dynamics of liquid water and alcohols. Journal of Molecular Liquids, 2021, 325, 115237.	4.9	6
116	Structures, stabilities and phase diagram assessments of clathrate ices at negative pressures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 401, 127330.	2.1	3
117	Nonclassical Nucleation Pathways in Stacking-Disordered Crystals. Physical Review X, 2021, 11, .	8.9	15
119	Spontaneous Freezing of Water between 233 and 235 K Is Not Due to Homogeneous Nucleation. Journal of the American Chemical Society, 2021, 143, 13548-13556.	13.7	5
120	High homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures. Atmospheric Chemistry and Physics, 2021, 21, 14403-14425.	4.9	16
121	Observing the spontaneous formation of a sub-critical nucleus in a phase-change amorphous material from ab initio molecular dynamics. Materials Science in Semiconductor Processing, 2021, 136, 106102.	4.0	5
122	Ice and Its Formation. , 2020, , 13-51.		3
123	Novel Enhanced Sampling Strategies for Transitions Between Ordered and Disordered Structures. , 2020, , 597-619.		7
124	Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation. Chinese Physics B, 2020, 29, 080505.	1.4	3
125	Supercooled and Supercritical Water and Ice. Soft and Biological Matter, 2021, , 183-231.	0.3	0
127	Definition and quantification of hydration water in aqueous solutions. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 015101.	0.5	2
128	Comparison of Various Models of Supercooled Water-Loss Factor with Experimental Data in the Microwave Range. Izvestiya - Atmospheric and Oceanic Physics, 2019, 55, 1005-1011.	0.9	1

#	Article	IF	Citations
129	Flash Brillouin Scattering: A Confocal Technique for Measuring Glass Transitions at High Scan Rates. ACS Photonics, 2021, 8, 531-539.	6.6	4
130	AB-Stacked and AA-Stacked Bilayer Ices in Graphene Nanocapillaries. Springer Theses, 2020, , 67-87.	0.1	0
131	Methods of microwave radiometric studies of mesospheric clouds. , 2020, , .		0
132	Measurements of IR radiation of cold aerosol in the atmosphere above the city of Chita. , 2020, , .		0
133	Ice 0: the experimental proof of its existence – the result of combining approaches used in radiophysics, geology and geography. IOP Conference Series: Earth and Environmental Science, 2022, 962, 012009.	0.3	0
134	Discovering formation of ice 0 by low-frequency measurement data. IOP Conference Series: Earth and Environmental Science, 2022, 962, 012028.	0.3	0
135	A method of measuring transmittance of radiation from the film of ice 0 in the IR wave band deposited on a dielectric plate. IOP Conference Series: Earth and Environmental Science, 2022, 962, 012027.	0.3	0
136	Roles of liquid structural ordering in glass transition, crystallization, and water's anomalies. Journal of Non-Crystalline Solids: X, 2022, 13, 100076.	1.2	5
137	On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system. Journal of Chemical Physics, 2022, 156, 014505.	3.0	4
138	Scratch-Healing Behavior of Ice by Local Sublimation and Condensation. Journal of Physical Chemistry C, 2022, 126, 2179-2183.	3.1	6
139	On the devitrification of Cu–Zr–Al alloys: Solving the apparent contradiction between polymorphic liquid-liquid transition and phase separation. Acta Materialia, 2022, 226, 117668.	7.9	11
140	Unsupervised topological learning approach of crystal nucleation. Scientific Reports, 2022, 12, 3195.	3.3	7
141	Signatures of sluggish dynamics and local structural ordering during ice nucleation. Journal of Chemical Physics, 2022, 156, 114502.	3.0	7
142	A study of nanoconfined water in halloysite. Applied Clay Science, 2022, 221, 106467.	5.2	10
143	Pressure induced phase diagram of double-layer ice under confinement: A first-principles study. Physical Chemistry Chemical Physics, 0, , .	2.8	2
144	Structural Diversity in Dimension-Controlled Assemblies of Tetrahedral Gold Nanocrystals. Journal of the American Chemical Society, 2022, 144, 13538-13546.	13.7	18
145	Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations. Journal of Chemical Physics, 2022, 157, .	3.0	6
146	Manipulating Reaction Intermediates to Aqueousâ€Phase ZnSe Magic‧ize Clusters and Quantum Dots at Room Temperature. Angewandte Chemie, 0, , .	2.0	1

#	Article	IF	CITATIONS
147	Homogeneous ice nucleation in an ab initio machine-learning model of water. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	35
148	Manipulating Reaction Intermediates to Aqueousâ€Phase ZnSe Magicâ€Size Clusters and Quantum Dots at Room Temperature. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
149	Bottom-up Coarse-Graining: Principles and Perspectives. Journal of Chemical Theory and Computation, 2022, 18, 5759-5791.	5.3	86
150	Nonclassical Nucleation of Zinc Oxide from a Physically Motivated Machine-Learning Approach. Journal of Physical Chemistry C, 0, , .	3.1	5
151	Neutrons meet ice polymorphs. Crystallography Reviews, 2022, 28, 224-297.	1.5	4
152	Continuous and First-Order Liquid–Solid Phase Transitions in Two-Dimensional Water. Journal of Physical Chemistry B, 2022, 126, 8892-8899.	2.6	2
153	Molecular Dynamics Study of Thermophysical and Mechanical Properties in Hydrated Lignin with Compositions Close to Softwood. ACS Sustainable Chemistry and Engineering, 2023, 11, 238-255.	6.7	3
154	Phase diagrams-why they matter and how to predict them. Journal of Chemical Physics, 0, , .	3.0	7
155	Molecular rotations trigger a glass-to-plastic fcc heterogeneous crystallization in high-pressure water. Journal of Chemical Physics, 2023, 158, .	3.0	5
156	Engineering the Thermodynamic Stability and Metastability of Mesophases of Colloidal Bipyramids through Shape Entropy. ACS Nano, 2023, 17, 4287-4295.	14.6	2
157	Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations. Journal of Chemical Physics, 2023, 158, .	3.0	8
158	Are Neural Network Potentials Trained on Liquid States Transferable to Crystal Nucleation? A Test on Ice Nucleation in the mW Water Model. Journal of Physical Chemistry B, 0, , .	2.6	1
159	Stabilizing High-Temperature α-Li ₃ PS ₄ by Rapidly Heating the Glass. Journal of the American Chemical Society, 2023, 145, 14466-14474.	13.7	6
160	The limit of macroscopic homogeneous ice nucleation at the nanoscale. Faraday Discussions, 0, 249, 210-228.	3.2	0
161	The Crystallization of Disordered Materials under Shock Is Governed by Their Network Topology. Advanced Science, 2023, 10, .	11.2	0
162	MXene-based electrode materials for supercapacitors: Synthesis, properties, and optimization strategies. Materials Today Sustainability, 2023, 24, 100551.	4.1	2
163	An Overview of Thermodynamics and Growth Kinetics of Gas Hydrate Systems. Transactions of the Indian Institute of Metals, 0, , .	1.5	0
164	Orientation-Dependent Thermal and Mechanical Properties of 2D Boron Nitride Nanoplatelet Foams via Freeze-Drying. ACS Applied Nano Materials, 0, , .	5.0	ο

#	Article	IF	CITATIONS
165	Electromagnetic features of structures made of Ih ice covered with ice 0. , 2023, , .		0
166	Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon. Nature Communications, 2024, 15, .	12.8	0
167	Regulation of the Ice â to Ice III high pressure phase transition meta-stability in milk and its bactericidal effects. Food Research International, 2024, 178, 113962.	6.2	0
168	Tuning the Crystallization Mechanism by Composition Vacancy in Phase Change Materials. ACS Applied Materials & Interfaces, 2024, 16, 15023-15031.	8.0	0