Ultralight, ultrastiff mechanical metamaterials

Science 344, 1373-1377

DOI: 10.1126/science.1252291

Citation Report

#	Article	IF	CITATIONS
1	This Week in Science, 1990, 249, 603-603.	6.0	1
2	Pentamode Metamaterials with Independently Tailored Bulk Modulus and Mass Density. Physical Review Applied, 2014, 2, .	1.5	108
3	Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, $2014, 105, .$	1.5	88
4	Mechanics of elastic networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140522.	1.0	40
5	Low cycle fatigue of an extruded Mg–3Nd–0.2Zn–0.5Zr magnesium alloy. Materials & Design, 2014, 64, 63-73.	5.1	32
6	Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 2014, 345, 1322-1326.	6.0	1,080
7	Soft Colloidal Scaffolds Capable of Elastic Recovery after Large Compressive Strains. Chemistry of Materials, 2014, 26, 5161-5168.	3.2	45
8	Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science, 2014, 345, 1326-1330.	6.0	559
9	Printing mesoscale architectures. MRS Bulletin, 2015, 40, 943-950.	1.7	99
10	Materials by design: Using architecture in material design to reach new property spaces. MRS Bulletin, 2015, 40, 1122-1129.	1.7	45
11	Point group symmetry and deformation-induced symmetry breaking of superlattice materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150125.	1.0	9
12	Longitudinal Multifoci Metalens for Circularly Polarized Light. Advanced Optical Materials, 2015, 3, 1201-1206.	3.6	203
13	Vibrant times for mechanical metamaterials. MRS Communications, 2015, 5, 453-462.	0.8	234
14	Investigating size effects of complex nanostructures through Young-Laplace equation and finite element analysis. Journal of Applied Physics, 2015, 118, 204301.	1.1	3
15	Understanding Mechanical Response of Elastomeric Graphene Networks. Scientific Reports, 2015, 5, 13712.	1.6	64
16	Lightweight Foams with Open-Cell Structure Prepared by Pickering High Internal Phase Emulsions. Advanced Materials Research, 2015, 1120-1121, 148-153.	0.3	1
17	A New Type of Low Density Material: Shellular. Advanced Materials, 2015, 27, 5506-5511.	11.1	226
18	Design of Hierarchically Cut Hinges for Highly Stretchable and Reconfigurable Metamaterials with Enhanced Strength. Advanced Materials, 2015, 27, 7181-7190.	11.1	151

#	Article	IF	CITATIONS
19	Complex Materials by Atomic Layer Deposition. Advanced Materials, 2015, 27, 5778-5784.	11.1	33
20	Ordered 3D Thinâ€Shell Nanolattice Materials with Nearâ€Unity Refractive Indices. Advanced Functional Materials, 2015, 25, 6644-6649.	7.8	40
21	Harnessing Hierarchical Nano―and Microâ€Fabrication Technologies for Musculoskeletal Tissue Engineering. Advanced Healthcare Materials, 2015, 4, 2488-2499.	3.9	59
22	A New Tubular Graphene Form of a Tetrahedrally Connected Cellular Structure. Advanced Materials, 2015, 27, 5943-5949.	11.1	193
23	A Unified Model for the Prediction of Yield Strength in Particulate-Reinforced Metal Matrix Nanocomposites. Materials, 2015, 8, 5138-5153.	1.3	85
24	A lightweight yet sound-proof honeycomb acoustic metamaterial. Applied Physics Letters, 2015, 106, .	1.5	187
25	Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance. RSC Advances, 2015, 5, 15977-15984.	1.7	31
26	Enhanced stiffness, strength and energy absorption for co-continuous composites with liquid filler. Composite Structures, 2015, 128, 274-283.	3.1	35
27	Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Materials Today, 2015, 18, 503-512.	8.3	244
28	Ultralight shape-recovering plate mechanical metamaterials. Nature Communications, 2015, 6, 10019.	5.8	66
29	Mechanical Response of Hollow Metallic Nanolattices: Combining Structural and Material Size Effects. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	70
30	Origami based Mechanical Metamaterials. Scientific Reports, 2014, 4, 5979.	1.6	257
31	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	6.0	745
32	Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347, 159-163.	6.0	845
33	Failure mechanisms in thin-walled nanocrystalline cylinders under uniaxial compression. Acta Materialia, 2015, 86, 157-168.	3.8	0
34	Continuous liquid interface production of 3D objects. Science, 2015, 347, 1349-1352.	6.0	1,617
35	Multifunctional nano-accordion structures for stretchable transparent conductors. Materials Horizons, 2015, 2, 486-494.	6.4	29
36	Enhanced acoustic transmission through a slanted grating. Comptes Rendus - Mecanique, 2015, 343, 622-634.	2.1	5

#	Article	IF	CITATIONS
37	Wave propagation in equivalent continuums representing truss lattice materials. International Journal of Solids and Structures, 2015, 73-74, 55-66.	1.3	38
38	Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing. Journal of the Mechanics and Physics of Solids, 2015, 83, 285-300.	2.3	106
39	Thermo-Electro-Mechanical Properties of Interpenetrating Phase Composites with Periodic Architectured Reinforcements. Advanced Structured Materials, 2015, , 1-18.	0.3	14
40	Mechanical response of Ti–6Al–4V octet-truss lattice structures. International Journal of Solids and Structures, 2015, 60-61, 107-124.	1.3	276
41	Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 2015, 6, 6962.	5.8	928
42	Broadband Lamb Wave Trapping in Cellular Metamaterial Plates with Multiple Local Resonances. Scientific Reports, 2015, 5, 9376.	1.6	23
43	Three-Dimensional Au Microlattices as Positive Electrodes for Li–O ₂ Batteries. ACS Nano, 2015, 9, 5876-5883.	7.3	80
44	Selfâ€Assembled Ultra High Strength, Ultra Stiff Mechanical Metamaterials Based on Inverse Opals. Advanced Engineering Materials, 2015, 17, 1420-1424.	1.6	48
45	Mechanical cloak design by direct lattice transformation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4930-4934.	3.3	120
46	Mechanical properties of carbon fiber composite octet-truss lattice structures. Composites Science and Technology, 2015, 119, 26-33.	3.8	72
47	Three-dimensional adaptive soft phononic crystals. Journal of Applied Physics, 2015, 117, .	1.1	49
48	Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing. Extreme Mechanics Letters, 2015, 3, 105-112.	2.0	69
49	A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11757-11764.	3.3	429
50	Pattern formation of elastic waves and energy localization due to elastic gratings. International Journal of Mechanical Sciences, 2015, 101-102, 137-144.	3.6	2
51	Resilient 3D hierarchical architected metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11502-11507.	3.3	496
52	Nanoporous Gold: Understanding the Origin of the Reactivity of a 21st Century Catalyst Made by Pre-Columbian Technology. ACS Catalysis, 2015, 5, 6263-6270.	5.5	140
53	Programming Reversibly Selfâ€Folding Origami with Micropatterned Photoâ€Crosslinkable Polymer Trilayers. Advanced Materials, 2015, 27, 79-85.	11.1	381
54	Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation. Materials, 2016, 9, 760.	1.3	82

#	Article	IF	CITATIONS
55	Additive Manufacturing for Aerospace Flight Applications. Journal of Spacecraft and Rockets, 2016, 53, 952-959.	1.3	105
56	Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals - Manufacturing Technology, 2016, 65, 737-760.	1.7	1,291
57	Ultralight Interconnected Metal Oxide Nanotube Networks. Small, 2016, 12, 2432-2438.	5.2	10
58	Mechanical Properties of Diamondâ€Structured Polymer Microlattices Coated with the Silicon Nitride Film. Advanced Engineering Materials, 2016, 18, 236-240.	1.6	14
59	Controlling Material Reactivity Using Architecture. Advanced Materials, 2016, 28, 1934-1939.	11.1	91
60	Graphene Oxideâ€Based Electrode Inks for 3Dâ€Printed Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 2587-2594.	11.1	590
61	Applications of Additive Manufacturing to Rock Analogue Fabrication. , 2016, , .		3
62	Mechanical Response of Different Lattice Structures Fabricated Using the CLIP Technology. , 2016, , .		0
63	A lightweight low-frequency sound insulation membrane-type acoustic metamaterial. AIP Advances, 2016, 6, .	0.6	53
64	Design and 3D Printing of Hierarchical Tissue Engineering Scaffolds Based on Mechanics and Biology Perspectives. , 2016, , .		5
65	Microlattice Metamaterials for Tailoring Ultrasonic Transmission with Elastoacoustic Hybridization. Physical Review Applied, 2016, 6, .	1.5	21
66	Energy Absorption of Thermoplastic Polyurethane Lattice Structures via 3D Printing: Modeling and Prediction. International Journal of Applied Mechanics, 2016, 08, 1640006.	1.3	60
67	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378.	13.7	1,134
68	Macroscopic shock plasticity of brittle material through designed void patterns. Journal of Applied Physics, 2016, 119, .	1.1	12
69	Harnessing viscoelasticity and instabilities for tuning wavy patterns in soft layered composites. Soft Matter, 2016, 12, 3677-3682.	1.2	48
70	Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties. Composite Structures, 2016, 152, 395-402.	3.1	131
71	A hybrid elastomeric foam-core/solid-shell spherical structure for enhanced energy absorption performance. International Journal of Solids and Structures, 2016, 92-93, 17-28.	1.3	17
72	Mechanical Behavior of Free-Standing Fuel Cell Electrodes on Water Surface. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15391-15398.	4.0	21

#	ARTICLE	IF	Citations
73	Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures. Extreme Mechanics Letters, 2016, 8, 283-291.	2.0	14
74	Micro architected porous material with high strength and controllable stiffness. , 2016, , .		0
75	Photomask design method for pattern-integrated interference lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2016, 15, 014502.	1.0	0
76	â€~Breathing-crystals' the origin of electrochemical activity of mesoporous Li–MnO ₂ . Journal of Materials Chemistry A, 2016, 4, 6456-6464.	5.2	5
77	Strong and Tough Layered Nanocomposites with Buried Interfaces. ACS Nano, 2016, 10, 4816-4827.	7.3	62
78	Non-spherical particle generation from 4D optofluidic fabrication. Lab on A Chip, 2016, 16, 2987-2995.	3.1	25
79	Virtual Special Issue on Catalysis at the U.S. Department of Energy's National Laboratories. ACS Catalysis, 2016, 6, 3227-3235.	5.5	2
80	3D manufacturing of micro and nano-architected materials. , 2016, , .		2
81	Mechanical meta-materials. Materials Horizons, 2016, 3, 371-381.	6.4	306
82	Architected Cellular Materials. Annual Review of Materials Research, 2016, 46, 187-210.	4.3	480
83	Ultralight Biomassâ€Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressureâ€Sensitivity. Advanced Materials, 2016, 28, 9512-9518.	11.1	405
84	Application of micro-robots for building carbon fiber trusses. , 2016, , .		14
85	Production of Materials with Spatially-Controlled Cross-Link Density via Vat Photopolymerization. ACS Applied Materials & Density Notes (2016, 8, 29037-29043.	4.0	114
86	Optimal lattice-structured materials. Journal of the Mechanics and Physics of Solids, 2016, 96, 162-183.	2.3	118
88	High-Pressure Compression-Molded Porous Resorbable Polymer/Hydroxyapatite Composite Scaffold for Cranial Bone Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 1471-1482.	2.6	60
89	Three-Dimensional Polymeric Mechanical Metamaterials Fabricated by Multibeam Interference Lithography with the Assistance of Plasma Etching. Langmuir, 2016, 32, 8436-8441.	1.6	13
90	Synthesis of Nanoporous Gold Tubes. Advanced Engineering Materials, 2016, 18, 65-69.	1.6	5
91	Material selection shape factors for compliant arrays in bending. Materials and Design, 2016, 110, 865-877.	3.3	7

#	ARTICLE	IF	Citations
92	Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nature Communications, 2016, 7, 13536.	5.8	96
93	Origami-inspired building block and parametric design for mechanical metamaterials. Journal Physics D: Applied Physics, 2016, 49, 315302.	1.3	13
94	Multiscale metallic metamaterials. Nature Materials, 2016, 15, 1100-1106.	13.3	584
95	Light and Strong SiC Networks. Advanced Functional Materials, 2016, 26, 1636-1645.	7.8	109
96	Origami mechanical metamaterials based on the Miura-derivative fold patterns. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160361.	1.0	38
97	The Impact of Size and Loading Direction on the Strength of Architected Lattice Materials. Advanced Engineering Materials, 2016, 18, 1537-1543.	1.6	30
98	A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nature Communications, 2016, 7, 13432.	5.8	68
99	Acoustic metamaterials: From local resonances to broad horizons. Science Advances, 2016, 2, e1501595.	4.7	986
101	3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response. Scientific Reports, 2016, 6, 24871.	1.6	58
102	Diamond-structured hollow-tube lattice Ni materials via 3D printing. Science China Chemistry, 2016, 59, 1632-1637.	4.2	12
103	Dynamic Behavior of Engineered Lattice Materials. Scientific Reports, 2016, 6, 28094.	1.6	61
104	Highly-stretchable 3D-architected Mechanical Metamaterials. Scientific Reports, 2016, 6, 34147.	1.6	116
105	Multimaterial 4D Printing with Tailorable Shape Memory Polymers. Scientific Reports, 2016, 6, 31110.	1.6	751
106	Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion. Physical Review Letters, 2016, 117, 175901.	2.9	337
107	Printable enzyme-embedded materials for methane to methanol conversion. Nature Communications, 2016, 7, 11900.	5.8	80
108	Controlled Unusual Stiffness of Mechanical Metamaterials. Scientific Reports, 2016, 6, 20312.	1.6	38
109	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science Advances, 2016, 2, e1601014.	4.7	200
110	3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials. Scientific Reports, 2016, 6, 24761.	1.6	253

#	Article	IF	CITATIONS
111	Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting. Journal of Visualized Experiments, 2016 , , .	0.2	3
112	Meso-Scale Digital Materials: Modular, Reconfigurable, Lattice-Based Structures. , 2016, , .		23
113	Corrosionâ€Induced Strengthening: Development of Highâ€Strength Nanoporous Metals. Advanced Engineering Materials, 2016, 18, 1050-1058.	1.6	22
114	Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance. Nano Research, 2016, 9, 2364-2371.	5.8	12
115	Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2410-2420.	1.1	6
116	Microstructural characterization of additively manufactured multi-directional preforms and composites via X-ray micro-computed tomography. Composites Science and Technology, 2016, 131, 48-60.	3.8	49
117	Geometry: The leading parameter for the Poisson's ratio of bending-dominated cellular solids. International Journal of Solids and Structures, 2016, 100-101, 1-10.	1.3	23
118	Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Materialia, 2016, 116, 14-28.	3.8	507
119	Scaling laws of nanoporous gold under uniaxial compression: Effects of structural disorder on the solid fraction, elastic Poisson's ratio, Young's modulus and yield strength. Journal of the Mechanics and Physics of Solids, 2016, 92, 55-71.	2.3	60
120	Hierarchical nanoparticle-induced superhydrophilic and under-water superoleophobic Cu foam with ultrahigh water permeability for effective oil/water separation. Journal of Materials Chemistry A, 2016, 4, 10566-10574.	5.2	65
121	Length scale control for structural optimization by level sets. Computer Methods in Applied Mechanics and Engineering, 2016, 305, 891-909.	3.4	38
122	Tailored Buckling Microlattices as Reusable Lightâ€Weight Shock Absorbers. Advanced Materials, 2016, 28, 5865-5870.	11.1	289
123	Mesoscale design of multifunctional 3D graphene networks. Materials Today, 2016, 19, 428-436.	8.3	60
124	Mechanical analyses of "Shellularâ€, an ultralow-density material. Acta Materialia, 2016, 103, 595-607.	3.8	68
125	Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells. International Journal of Mechanical Sciences, 2016, 106, 19-38.	3.6	77
126	Ultrafast Dynamic Piezoresistive Response of Grapheneâ€Based Cellular Elastomers. Advanced Materials, 2016, 28, 194-200.	11.1	171
127	Smaller and stronger. Nature Materials, 2016, 15, 373-374.	13.3	106
128	Echoes from diffusion. Nature Materials, 2016, 15, 374-376.	13.3	1

#	Article	IF	CITATIONS
129	Fabrication and design of metal nano-accordion structures using atomic layer deposition and interference lithography. Nanoscale, 2016, 8, 4984-4990.	2.8	4
130	Mimicking the Humidity Response of the Plant Cell Wall by Using Two-Dimensional Systems: The Critical Role of Amorphous and Crystalline Polysaccharides. Langmuir, 2016, 32, 2032-2040.	1.6	42
131	Transversely isotropic hyperelastic-viscoplastic model for glassy polymers with application to additive manufactured photopolymers. International Journal of Plasticity, 2016, 80, 56-74.	4.1	59
132	Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements. International Journal of Solids and Structures, 2016, 83, 169-182.	1.3	94
133	Approaching theoretical strength in glassy carbonÂnanolattices. Nature Materials, 2016, 15, 438-443.	13.3	488
134	Design of lattice structures with controlled anisotropy. Materials and Design, 2016, 93, 443-447.	3.3	212
135	Optimal design of "Shellularâ€, a micro-architectured material with ultralow density. Materials and Design, 2016, 95, 490-500.	3.3	33
136	3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	222
137	3D metallic glass cellular structures. Acta Materialia, 2016, 105, 35-43.	3.8	69
138	Microstructure interpolation for macroscopic design. Structural and Multidisciplinary Optimization, 2016, 53, 489-500.	1.7	49
139	Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models. Materials Science and Engineering C, 2016, 60, 163-183.	3.8	108
140	Self-assembly of 2D MnO ₂ nanosheets into high-purity aerogels with ultralow density. Chemical Science, 2016, 7, 1926-1932.	3.7	40
141	Ultralight, Strong, Three-Dimensional SiC Structures. ACS Nano, 2016, 10, 1871-1876.	7.3	93
142	Reversible dilatancy in entangled single-wire materials. Nature Materials, 2016, 15, 72-77.	13.3	87
143	Effect of mass multiple counting on the elastic properties of open-cell regular porous biomaterials. Materials and Design, 2016, 89, 9-20.	3.3	50
144	Fabrication of 3D Micro-Architected/Nano-Architected Materials., 2016,, 345-373.		8
145	Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 272-294.	1.5	81
146	Rational design of reconfigurable prismatic architected materials. Nature, 2017, 541, 347-352.	13.7	236

#	Article	IF	CITATIONS
147	Mechanical modeling of innovative metamaterials alternating pentamode lattices and confinement plates. Journal of the Mechanics and Physics of Solids, 2017, 99, 259-271.	2.3	72
148	Physically Realizable Three-Dimensional Bone Prosthesis Design With Interpolated Microstructures. Journal of Biomechanical Engineering, 2017, 139, .	0.6	9
149	Integrated Computational Materials Engineering (ICME) Approaches to the Design and Fabrication of Architected Materials. , $2017, \dots$		2
150	Orthotropic Laminated Open-cell Frameworks Retaining Strong Auxeticity under Large Uniaxial Loading. Scientific Reports, 2017, 7, 39816.	1.6	14
151	Topology optimization of energy absorbing structures with maximum damage constraint. International Journal for Numerical Methods in Engineering, 2017, 112, 737-775.	1.5	55
152	Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity. Journal of Applied Physics, 2017, 121, .	1.1	39
153	Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Materials Science and Engineering C, 2017, 76, 1328-1343.	3.8	381
154	Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature, 2017, 543, 533-537.	13.7	498
155	Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials and Design, 2017, 122, 255-267.	3.3	268
156	Biocompatible, Ultralight, Strong Hydroxyapatite Networks Based on Hydroxyapatite Microtubes with Excellent Permeability and Ultralow Thermal Conductivity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7918-7928.	4.0	41
157	Impact response of additively manufactured metallic hybrid lattice materials. International Journal of Impact Engineering, 2017, 104, 177-191.	2.4	134
158	Mechanics of Crystalline Nanowires: An Experimental Perspective. Applied Mechanics Reviews, 2017, 69,	4.5	43
159	Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Advanced Materials, 2017, 29, 1606000.	11,1	480
160	Analytical relationships for the mechanical properties of additively manufactured porous biomaterials based on octahedral unit cells. Applied Mathematical Modelling, 2017, 46, 408-422.	2.2	72
161	Mechanical properties of copper octet-truss nanolattices. Journal of the Mechanics and Physics of Solids, 2017, 101, 133-149.	2.3	52
162	Architected cellular ceramics with tailored stiffness via direct foam writing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1832-1837.	3.3	187
163	On the role of micro-inertia in enriched continuum mechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160722.	1.0	22
164	Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Science Advances, 2017, 3, e1601986.	4.7	141

#	Article	IF	CITATIONS
165	Lightweight Open-Cell Scaffolds from Sea Urchin Spines with Superior Material Properties for Bone Defect Repair. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9862-9870.	4.0	15
166	Lattice Metamaterials with Mechanically Tunable Poisson's Ratio for Vibration Control. Physical Review Applied, 2017, 7, .	1.5	250
167	Tailoring a bidirectional negative stiffness (BNS) structure with mechanical diodes for mechanical metamaterial structures. Smart Materials and Structures, 2017, 26, 055002.	1.8	9
168	Mechanics of additively manufactured biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 70, 1-6.	1.5	64
169	Poly(HDDA)-Based Polymers for Microfabrication and Mechanobiology. MRS Advances, 2017, 2, 1315-1321.	0.5	6
170	Full deflection profile calculation and Young's modulus optimisation for engineered high performance materials. Scientific Reports, 2017, 7, 46190.	1.6	12
171	A geometric projection method for designing threeâ€dimensional open lattices with inverse homogenization. International Journal for Numerical Methods in Engineering, 2017, 112, 1564-1588.	1.5	55
172	Electromechanical macroscopic instabilities in soft dielectric elastomer composites with periodic microstructures. European Journal of Mechanics, A/Solids, 2017, 65, 243-256.	2.1	37
173	Intrinsic Notch Effect Leads to Breakdown of Griffith Criterion in Graphene. Small, 2017, 13, 1700028.	5.2	7
174	Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS. Journal of Micromechanics and Microengineering, 2017, 27, 075003.	1.5	7
175	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	1.9	23
176	Mechanicallyâ€Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses. Small, 2017, 13, 1700151.	5.2	32
177	Design of Hierarchical Three-Dimensional Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering. Journal of Mechanical Design, Transactions of the ASME, 2017, 139, .	1.7	38
178	3Dâ€Printed Transparent Glass. Advanced Materials, 2017, 29, 1701181.	11.1	177
179	Amphiphilic Nanofiberâ€Based Aerogels for Selective Liquid Absorption from Electrospun Biopolymers. Advanced Materials Interfaces, 2017, 4, 1700065.	1.9	60
180	Origami by frontal photopolymerization. Science Advances, 2017, 3, e1602326.	4.7	193
181	Digital cellular solid pressure vessels: A novel approach for human habitation in space. , 2017, , .		2
182	Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of nozzle speed and diameter. Journal of Applied Physics, 2017, 121, .	1.1	41

#	Article	IF	CITATIONS
183	On the mechanics of tetrakis-like lattices in the stretch-dominated regime. Extreme Mechanics Letters, 2017, 15, 57-62.	2.0	3
184	3D Printing Allâ€Aromatic Polyimides using Maskâ€Projection Stereolithography: Processing the Nonprocessable. Advanced Materials, 2017, 29, 1701240.	11.1	131
185	Modeling shocks in periodic lattice materials. AIP Conference Proceedings, 2017, , .	0.3	2
186	Topological design optimization of lattice structures to maximize shear stiffness. Advances in Engineering Software, 2017, 112, 211-221.	1.8	54
187	Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Science Advances, 2017, 3, e1603170.	4.7	207
188	Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	112
189	3D printing of open-porous cellular ceramics with high specific strength. Journal of the European Ceramic Society, 2017, 37, 4833-4842.	2.8	135
190	Strong and resilient alumina nanotube and CNT/alumina hybrid foams with tuneable elastic properties. RSC Advances, 2017, 7, 27923-27931.	1.7	10
191	Flyweight, Superelastic, Electrically Conductive, and Flameâ€Retardant 3D Multiâ€Nanolayer Graphene/Ceramic Metamaterial. Advanced Materials, 2017, 29, 1605506.	11.1	89
192	Stress relaxation in polymeric microlattice materials. Materials and Design, 2017, 130, 433-441.	3.3	19
193	Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization. Extreme Mechanics Letters, 2017, 15, 139-144.	2.0	39
194	Recyclable 3D printing of vitrimer epoxy. Materials Horizons, 2017, 4, 598-607.	6.4	339
195	Controlling shockwave dynamics using architecture in periodic porous materials. Journal of Applied Physics, 2017, 121, .	1.1	36
196	Computational material design for acoustic cloaking. International Journal for Numerical Methods in Engineering, 2017, 112, 1353-1380.	1.5	25
197	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials, 2017, 2, .	23.3	463
198	Direct metal writing: Controlling the rheology through microstructure. Applied Physics Letters, $2017,110,$.	1.5	40
199	Additive manufacturing: Toward holistic design. Scripta Materialia, 2017, 135, 141-147.	2.6	144
200	Harnessing Instabilities to Design Tunable Architected Cellular Materials. Annual Review of Materials Research, 2017, 47, 51-61.	4.3	110

#	Article	IF	CITATIONS
201	On acoustic wave beaming in two-dimensional structural lattices. International Journal of Solids and Structures, 2017, 115-116, 248-269.	1.3	35
202	Stochastic mechanics of metamaterials. Composite Structures, 2017, 162, 85-97.	3.1	76
203	Three-dimensionally printed cellular architecture materials: perspectives on fabrication, material advances, and applications. MRS Communications, 2017, 7, 8-19.	0.8	16
204	Structured transparent low emissivity coatings with high microwave transmission. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	19
205	Concurrent design with connectable graded microstructures. Computer Methods in Applied Mechanics and Engineering, 2017, 317, 84-101.	3.4	152
206	Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability. Small, 2017, 13, 1602514.	5.2	76
207	Multifunctional Superelastic Foam-Like Boron Nitride Nanotubular Cellular-Network Architectures. ACS Nano, 2017, 11, 558-568.	7.3	110
208	Progress in 3D Printing of Carbon Materials for Energyâ€Related Applications. Advanced Materials, 2017, 29, 1603486.	11.1	364
209	Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals. Nature Communications, 2017, 8, 1137.	5.8	11
210	Simple and efficient analyses of micro-architected cellular elastic-plastic materials with tubular members. International Journal of Plasticity, 2017, 99, 186-220.	4.1	6
211	Additive direct-write microfabrication for MEMS: A review. Frontiers of Mechanical Engineering, 2017, 12, 490-509.	2.5	36
212	Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments. Extreme Mechanics Letters, 2017, 17, 24-32.	2.0	77
213	Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews, 2017, 117, 12893-12941.	23.0	578
214	MECHANICAL PERFORMANCE OF POROUS IMPLANT WITH DIFFERENT UNIT CELLS. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750101.	0.3	2
215	Stretchable 3D lattice conductors. Soft Matter, 2017, 13, 7731-7739.	1.2	13
216	Direct Laser Writing of Lowâ€Density Interdigitated Foams for Plasma Drive Shaping. Advanced Functional Materials, 2017, 27, 1702425.	7.8	44
217	A fast, efficient direct slicing method for slender member structures. Additive Manufacturing, 2017, 18, 213-220.	1.7	6
218	Growth and nanomechanical characterization of nanoscale 3D architectures grown via focused electron beam induced deposition. Nanoscale, 2017, 9, 16349-16356.	2.8	26

#	Article	IF	CITATIONS
219	Large deformation of an arc-Miura structure under quasi-static load. Composite Structures, 2017, 182, 209-222.	3.1	38
220	Modular Elastomer Photoresins for Digital Light Processing Additive Manufacturing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39708-39716.	4.0	99
221	A Microscopic Shell Structure with Schwarz's D-Surface. Scientific Reports, 2017, 7, 13405.	1.6	32
222	3D printing technologies for electrochemical energy storage. Nano Energy, 2017, 40, 418-431.	8.2	351
223	Mesoscale evolution of non-graphitizing pyrolytic carbon in aligned carbon nanotube carbon matrix nanocomposites. Journal of Materials Science, 2017, 52, 13799-13811.	1.7	21
224	Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Materialia, 2017, 140, 424-432.	3.8	179
225	Review on 3D Prototyping of Damage Tolerant Interdigitating Brick Arrays of Nacre. Industrial & Engineering Chemistry Research, 2017, 56, 10516-10525.	1.8	42
226	Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures. Jom, 2017, 69, 2626-2634.	0.9	5
227	Ultra-light hierarchical meta-materials on a body-centred cubic lattice. Europhysics Letters, 2017, 119, 14001.	0.7	6
228	3D printed stretching-dominated micro-trusses. Materials and Design, 2017, 134, 272-280.	3.3	94
229	Evolution characteristics of microstructure and properties in AZ31 alloy during high cycle fatigue processes. Transactions of Nonferrous Metals Society of China, 2017, 27, 1530-1536.	1.7	1
230	Continuous lattice fabrication of ultra-lightweight composite structures. Additive Manufacturing, 2017, 18, 48-57.	1.7	52
231	Large-Area Nanolattice Film with Enhanced Modulus, Hardness, and Energy Dissipation. Scientific Reports, 2017, 7, 9145.	1.6	14
232	Nanolattices: An Emerging Class of Mechanical Metamaterials. Advanced Materials, 2017, 29, 1701850.	11.1	356
233	Ultralight Conductive Silver Nanowire Aerogels. Nano Letters, 2017, 17, 7171-7176.	4.5	163
234	Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology. Nanotechnology, 2017, 28, 455708.	1.3	7
235	Extremely Low Density and Superâ€Compressible Graphene Cellular Materials. Advanced Materials, 2017, 29, 1701553.	11.1	126
236	3D Printed Silicones with Shape Memory. Scientific Reports, 2017, 7, 4664.	1.6	47

#	ARTICLE	IF	CITATIONS
237	Topology optimization of multiphase architected materials for energy dissipation. Computer Methods in Applied Mechanics and Engineering, 2017, 325, 314-329.	3.4	37
239	Nanoporous Metals with Structural Hierarchy: A Review. Advanced Engineering Materials, 2017, 19, 1700389.	1.6	103
240	Automated 2D micro-assembly using diamagnetically levitated milli-robots. , 2017, , .		23
241	Reconfigurable Cellular Composite Structures for Lighter than Air Vehicles. , 2017, , .		O
242	Design of the P-surfaced shellular, an ultra-low density material with micro-architecture. Computational Materials Science, 2017, 139, 162-178.	1.4	34
243	An overview of molecular layer deposition for organic and organic–inorganic hybrid materials: mechanisms, growth characteristics, and promising applications. Journal of Materials Chemistry A, 2017, 5, 18326-18378.	5.2	187
245	Rational design of soft mechanical metamaterials: Independent tailoring of elastic properties with randomness. Applied Physics Letters, 2017, 111 , .	1.5	73
246	Designing two-dimensional metamaterials of controlled static and dynamic properties. Computational Materials Science, 2017, 138, 323-332.	1.4	53
247	One-step volumetric additive manufacturing of complex polymer structures. Science Advances, 2017, 3, eaao5496.	4.7	219
248	Origami lattices with free-form surface ornaments. Science Advances, 2017, 3, eaao1595.	4.7	53
249	Three-dimensional mechanical metamaterials with a twist. Science, 2017, 358, 1072-1074.	6.0	658
250	Design and Fabrication of 3D Printed Tissue Scaffolds Informed by Mechanics and Fluids Simulations. , 2017, , .		1
251	Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling. Rapid Prototyping Journal, 2017, 23, 943-953.	1.6	53
252	3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 2017, 15, 107-120.	6.2	302
253	Engineered Elastomer Substrates for Guided Assembly of Complex 3D Mesostructures by Spatially Nonuniform Compressive Buckling. Advanced Functional Materials, 2017, 27, 1604281.	7.8	50
254	The fracture toughness of octet-truss lattices. Journal of the Mechanics and Physics of Solids, 2017, 98, 271-289.	2.3	122
255	Morphological optimization of tensegrity-type metamaterials. Composites Part B: Engineering, 2017, 115, 182-187.	5.9	32
256	Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures. Soft Robotics, 2017, 4, 33-48.	4.6	164

#	Article	IF	Citations
257	The stiffness and strength of metamaterials based on the inverse opal architecture. Extreme Mechanics Letters, 2017, 12, 86-96.	2.0	41
258	The indentation response of Nickel nano double gyroid lattices. Extreme Mechanics Letters, 2017, 10, 15-23.	2.0	28
259	Local and nonlocal continuum modeling of inelastic periodic networks applied to stretching-dominated trusses. Computer Methods in Applied Mechanics and Engineering, 2017, 313, 85-105.	3.4	14
260	On the minimal mass design of composite membranes. Composites Part B: Engineering, 2017, 115, 244-256.	5.9	16
261	Gyroidal structures as approximants to nanoporous metal foams: clues from mechanical properties. Journal of Materials Science, 2017, 52, 1106-1122.	1.7	22
262	Mechanical Behavior of As-Fabricated and UV-Cured Lattice Structures Printed Using the CLIP Technology. , 2017, , .		0
263	Towards three-dimensional optical metamaterials. Nano Convergence, 2017, 4, 34.	6.3	25
264	Silica film deposited on diamond-structured polymer microlattices by dip coating. RSC Advances, 2017, 7, 54668-54673.	1.7	3
265	Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials. International Journal of Molecular Sciences, 2017, 18, 1607.	1.8	94
266	The Isotropic and Cubic Material Designs. Recovery of the Underlying Microstructures Appearing in the Least Compliant Continuum Bodies. Materials, 2017, 10, 1137.	1.3	16
267	The Emerging Frontiers and Applications of High-Resolution 3D Printing. Micromachines, 2017, 8, 113.	1.4	151
268	Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Optics Letters, 2017, 42, 743.	1.7	49
269	Computationally designed lattices with tuned properties for tissue engineering using 3D printing. PLoS ONE, 2017, 12, e0182902.	1.1	116
270	Impact behavior of negative stiffness honeycomb materials. Journal of Materials Research, 2018, 33, 290-299.	1.2	58
271	Irradiation Enhances Strength and Deformability of Nanoâ€Architected Metallic Glass. Advanced Engineering Materials, 2018, 20, 1701055.	1.6	13
272	Incremental auxetic response of composite lattices under isotropic prestress. Composite Structures, 2018, 191, 145-153.	3.1	24
273	Biotemplated Lightweight \hat{I}^3 -Alumina Aerogels. Chemistry of Materials, 2018, 30, 1602-1609.	3.2	37
274	Mechanics of Metamaterials: An Overview of Recent Developments. Advanced Structured Materials, 2018, , 273-296.	0.3	7

#	Article	IF	CITATIONS
275	Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography. ACS Applied Materials & Interfaces, 2018, 10, 1164-1172.	4.0	32
276	Optical 3D printing: bridging the gaps in the mesoscale. Journal of Optics (United Kingdom), 2018, 20, 053001.	1.0	75
277	Functional siloxanes with photo-activated, simultaneous chain extension and crosslinking for lithography-based 3D printing. Polymer, 2018, 152, 25-34.	1.8	64
279	A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. Sensors and Actuators A: Physical, 2018, 273, 285-292.	2.0	109
280	A continuous crystallographic approach to generate cubic lattices and its effect on relative stiffness of architectured materials. Additive Manufacturing, 2018, 21, 359-368.	1.7	15
281	Composite bending-dominated hollow nanolattices: A stiff, cyclable mechanical metamaterial. Materials Today, 2018, 21, 467-474.	8.3	26
282	Giant Thermal Expansion in 2D and 3D Cellular Materials. Advanced Materials, 2018, 30, e1705048.	11.1	30
283	The role of anisotropy on the static and wave propagation characteristics of two-dimensional architectured materials under finite strains. Materials and Design, 2018, 147, 134-145.	3.3	28
284	Mechanical Enhancement of Core-Shell Microlattices through High-Entropy Alloy Coating. Scientific Reports, 2018, 8, 5442.	1.6	30
285	Multifaceted polymeric materials in threeâ€dimensional processing (3DP) technologies: Current progress and prospects. Polymers for Advanced Technologies, 2018, 29, 1586-1602.	1.6	8
286	Polycrystalline micropillars by a novel 3-D printing method and their behavior under compressive loads. Scripta Materialia, 2018, 149, 144-149.	2.6	20
287	Additive Manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials. Journal of Materials Research, 2018, 33, 360-371.	1.2	67
288	Metallized compliant 3D microstructures for dry contact thermal conductance enhancement. Journal of Micromechanics and Microengineering, 2018, 28, 055005.	1.5	2
289	Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion. Composite Structures, 2018, 189, 586-597.	3.1	88
290	Design and fabrication of integrated micro/macrostructure for 3D functional gradient systems based on additive manufacturing. Optics Communications, 2018, 414, 195-201.	1.0	7
291	3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing. ACS Applied Materials & Interfaces, 2018, 10, 7381-7388.	4.0	382
292	Design and mechanical properties of elastically isotropic trusses. Journal of Materials Research, 2018, 33, 249-263.	1.2	46
293	The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. Journal of Materials Research, 2018, 33, 343-359.	1.2	94

#	Article	IF	CITATIONS
294	A mechanical reduced order model for elastomeric 3D printed architectures. Journal of Materials Research, 2018, 33, 309-316.	1.2	10
295	Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2018, 30, e1706589.	11.1	349
296	Highâ€Speed 3D Printing of Highâ€Performance Thermosetting Polymers via Twoâ€Stage Curing. Macromolecular Rapid Communications, 2018, 39, e1700809.	2.0	146
297	Deformation behavior and energy absorption capability of polymer and ceramic-polymer composite microlattices under cyclic loading. Journal of Materials Research, 2018, 33, 274-289.	1.2	32
298	3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores. Scientific Reports, 2018, 8, 2397.	1.6	95
299	New Acoustics Based on Metamaterials. Engineering Materials, 2018, , .	0.3	9
300	Computational discovery of extremal microstructure families. Science Advances, 2018, 4, eaao7005.	4.7	66
301	Architected Lattices with High Stiffness and Toughness via Multicore–Shell 3D Printing. Advanced Materials, 2018, 30, e1705001.	11.1	127
302	Wave dispersion analysis of multi-story frame building structures using the periodic structure theory. Soil Dynamics and Earthquake Engineering, 2018, 106, 215-230.	1.9	12
303	Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manufacturing, 2018, 19, 167-183.	1.7	345
304	Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science, 2018, 94, 114-173.	16.0	629
305	Pathway towards Programmable Wave Anisotropy in Cellular Metamaterials. Physical Review Applied, 2018, 9, .	1.5	10
306	The effect of manufacturing defects on compressive strength of ultralight hollow microlattices: A data-driven study. Additive Manufacturing, 2018, 19, 51-61.	1.7	17
307	Design, analysis and manufacturing of lattice structures: an overview. International Journal of Computer Integrated Manufacturing, 2018, 31, 243-261.	2.9	198
308	Solid State Porous Metal Production: A Review of the Capabilities, Characteristics, and Challenges. Advanced Engineering Materials, 2018, 20, 1700766.	1.6	68
309	Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 254-263.	1.5	88
310	Breaking the barriers: advances in acoustic functional materials. National Science Review, 2018, 5, 159-182.	4.6	153
311	Bioinspired Interfacial Chelating-like Reinforcement Strategy toward Mechanically Enhanced Lamellar Materials. ACS Nano, 2018, 12, 4269-4279.	7.3	40

#	Article	IF	CITATIONS
312	Effects of nodal fillets and external boundaries on compressive response of an octet truss. Acta Materialia, 2018, 149, 78-87.	3.8	56
313	Multi-stable mechanical metamaterials with shape-reconfiguration and zero Poisson's ratio. Materials and Design, 2018, 152, 181-190.	3.3	93
314	Parameterized level-set based topology optimization method considering symmetry and pattern repetition constraints. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 1079-1101.	3.4	35
315	Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Science Advances, 2018, 4, eaas8925.	4.7	414
316	Design of buckling-induced mechanical metamaterials for energy absorption using topology optimization. Structural and Multidisciplinary Optimization, 2018, 58, 1395-1410.	1.7	47
317	Surface Symmetry Effect on Self-Assembly of Three-Dimensional Single Crystal Piezoelectric Nanostructures. Chemistry of Materials, 2018, 30, 2183-2187.	3.2	0
318	Highâ€Speed 3D Printing of Millimeterâ€Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness. Advanced Materials, 2018, 30, e1705683.	11.1	98
319	An effective length model for octet lattice. International Journal of Mechanical Sciences, 2018, 140, 279-287.	3.6	39
320	Size effects in lattice structures and a comparison to micropolar elasticity. International Journal of Solids and Structures, 2018, 143, 245-261.	1.3	46
321	Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Materials and Design, 2018, 145, 205-217.	3.3	150
322	Single-Particle Tracking To Probe the Local Environment in Ice-Templated Crosslinked Colloidal Assemblies. Langmuir, 2018, 34, 4603-4613.	1.6	10
323	Carbon origami: A method to fabricate lightweight carbon cellular materials. Carbon, 2018, 133, 140-149.	5.4	25
324	Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Composite Structures, 2018, 183, 242-261.	3.1	298
325	Comparison of elastic properties of openâ€cell metallic biomaterials with different unit cell types. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 386-398.	1.6	33
326	3D printed continuous fibre reinforced composite corrugated structure. Composite Structures, 2018, 184, 1005-1010.	3.1	174
327	Ultralight and resilient Al ₂ O ₃ nanotube aerogels with low thermal conductivity. Journal of the American Ceramic Society, 2018, 101, 1677-1683.	1.9	61
328	Nanoindentation creep on Cu3Sn, Cu6Sn5 and (Cu, Ni)6Sn5 intermetallic compounds grown in electrodeposited multilayered thin film. Journal of Materials Science: Materials in Electronics, 2018, 29, 1258-1263.	1.1	4
329	Enhanced transmission loss in acoustic materials with micro-membranes. Applied Acoustics, 2018, 130, 92-98.	1.7	13

#	Article	IF	Citations
330	Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping. Computer Methods in Applied Mechanics and Engineering, 2018, 328, 477-497.	3.4	45
331	Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology – driven algorithm. Materials Science and Engineering C, 2018, 83, 51-66.	3.8	35
332	3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Materials and Design, 2018, 137, 226-234.	3.3	189
333	On hierarchical honeycombs under out-of-plane crushing. International Journal of Solids and Structures, 2018, 135, 1-13.	1.3	168
334	Mechanical Metamaterials and Metadevices. Springer Series in Materials Science, 2018, , 219-242.	0.4	3
335	Highâ€Entropy Alloy (HEA)â€Coated Nanolattice Structures and Their Mechanical Properties. Advanced Engineering Materials, 2018, 20, 1700625.	1.6	56
336	Evolution of material properties during free radical photopolymerization. Journal of the Mechanics and Physics of Solids, 2018, 112, 25-49.	2.3	124
337	Analytical models of the geometric properties of solid and hollow architected lattice cellular materials. Journal of Materials Research, 2018, 33, 264-273.	1.2	5
338	Custom 3D Printable Silicones with Tunable Stiffness. Macromolecular Rapid Communications, 2018, 39, 1700563.	2.0	55
339	A monolithic sandwich panel with microlattice core. Acta Materialia, 2018, 144, 822-834.	3.8	11
340	Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer, 2018, 152, 62-71.	1.8	371
341	Local Resonant Structures. Engineering Materials, 2018, , 187-241.	0.3	0
342	Towards mechanical characterization of soft digital materials for multimaterial 3D-printing. International Journal of Engineering Science, 2018, 123, 62-72.	2.7	66
343	A 3D Selfâ€Shaping Strategy for Nanoresolution Multicomponent Architectures. Advanced Materials, 2018, 30, 1703963.	11.1	39
344	Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering. Journal of the Mechanics and Physics of Solids, 2018, 112, 577-593.	2.3	118
345	Fatigue performance of additively manufactured meta-biomaterials: The effects of topology and material type. Acta Biomaterialia, 2018, 65, 292-304.	4.1	144
346	Multifunctional Cellular Materials Based on 2D Nanomaterials: Prospects and Challenges. Advanced Materials, 2018, 30, 1704850.	11.1	47
347	Additively-manufactured lightweight Metamaterials for energy absorption. Materials and Design, 2018, 139, 521-530.	3.3	209

#	Article	IF	Citations
348	Three-Dimensional Nanoprinting via Direct Delivery. Journal of Physical Chemistry B, 2018, 122, 956-962.	1.2	36
349	Multifunctional hyperuniform cellular networks: optimality, anisotropy and disorder. Multifunctional Materials, 2018, 1, 015001.	2.4	26
350	Rolledâ€up Nanotechnology: Materials Issue and Geometry Capability. Advanced Materials Technologies, 2019, 4, 1800486.	3.0	42
351	Mechanical Behavior of Octahedral and Octet Structures Produced From CLIP Technology. , 2018, , .		O
352	Potential application of functional micro-nano structures in petroleum. Petroleum Exploration and Development, 2018, 45, 745-753.	3.0	17
353	A Novel Approach to Optimize the Design of Parts for Additive Manufacturing. Procedia Manufacturing, 2018, 17, 53-61.	1.9	17
354	A Parametric Study of the Mechanical Properties of Open-Cell Kelvin Structures. IOP Conference Series: Materials Science and Engineering, 2018, 416, 012108.	0.3	2
355	Towards unusual mechanical properties of tensegrity lattice metamaterial. MATEC Web of Conferences, 2018, 196, 04093.	0.1	0
356	Connections Between Topology and Macroscopic Mechanical Properties of Three-Dimensional Open-Pore Materials. Frontiers in Materials, 2018, 5, .	1.2	38
357	On the Interrelationship Between Static and Vibration Mitigation Properties of Architected Metastructures. Frontiers in Materials, 2018, 5, .	1.2	19
358	Biomedical Applications of Graphene-Based Structures. Nanomaterials, 2018, 8, 944.	1.9	168
359	Integrative Design, Build, Test Approach for Biomedical Devices With Lattice Structures., 2018, , .		4
360	Design of Mechanical Metamaterials via Constrained Bayesian Optimization. , 2018, , .		9
361	Impact of the Lattice Angle on the Effective Properties of the Octet-Truss Lattice Structure. Journal of Engineering Materials and Technology, Transactions of the ASME, 2018, 140, .	0.8	16
362	Field responsive mechanical metamaterials. Science Advances, 2018, 4, eaau6419.	4.7	154
363	Mechanical behavior of Microlattice with or without in-plane elements added on the outer faces. International Journal of Mechanical Sciences, 2018, 149, 311-325.	3.6	3
364	Towards in-situ high precision local material velocity measurements in lattice materials under dynamic compression. AIP Conference Proceedings, 2018, , .	0.3	4
365	Design and strengthening mechanisms in hierarchical architected materials processed using additive manufacturing. International Journal of Mechanical Sciences, 2018, 149, 150-163.	3.6	91

#	Article	IF	CITATIONS
366	Green Synthesis of Lowâ€Dimensional Aluminum Oxide Hydroxide and Oxide Using Liquid Metal Reaction Media: Ultrahigh Flux Membranes. Advanced Functional Materials, 2018, 28, 1804057.	7.8	67
367	Lightweight Microlattice With Tunable Mechanical Properties Using 3D Printed Shape Memory Polymer., 2018,,.		0
368	A nanolattice-plate hybrid structure to achieve a nearly linear relation between stiffness/strength and density. Materials and Design, 2018, 160, 496-502.	3.3	7
369	Microstructural patterns with tunable mechanical anisotropy obtained by simulating anisotropic spinodal decomposition. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180535.	1.0	27
370	Building Block-Based Assembly of Scalable Metallic Lattices. , 2018, , .		2
371	Gasâ€Permeable, Multifunctional Onâ€Skin Electronics Based on Laserâ€Induced Porous Graphene and Sugarâ€Templated Elastomer Sponges. Advanced Materials, 2018, 30, e1804327.	11.1	269
372	The nonlinear elasticity of hyperelastic models for stretch-dominated cellular structures. International Journal of Non-Linear Mechanics, 2018, 106, 144-154.	1.4	8
373	Development and Characterization of 3D Printable Thermite Component Materials. Advanced Materials Technologies, 2018, 3, 1800120.	3.0	21
374	Fully Controllable Design and Fabrication of Three-Dimensional Lattice Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39839-39850.	4.0	50
375	Ultrasonic characterization of the complex Young's modulus of polymer parts fabricated with microstereolithography. Rapid Prototyping Journal, 2018, 24, 1193-1202.	1.6	1
376	Nanocardboard as a nanoscale analog of hollow sandwich plates. Nature Communications, 2018, 9, 4442.	5. 8	19
377	Strength and Performance Enhancement of Multilayers by Spatial Tailoring of Adherend Compliance and Morphology via Multimaterial Jetting Additive Manufacturing. Scientific Reports, 2018, 8, 13592.	1.6	37
378	Acoustic metasurfaces. Nature Reviews Materials, 2018, 3, 460-472.	23.3	539
379	Stiffnessâ€Independent Toughening of Beams through Coaxial Interfaces. Advanced Science, 2018, 5, 1800728.	5.6	13
380	Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. Additive Manufacturing, 2018, 24, 627-638.	1.7	64
381	Damping behavior of 316L lattice structures produced by Selective Laser Melting. Materials and Design, 2018, 160, 1010-1018.	3.3	50
382	Mechanical Properties of Architected Nanomaterials Made from Organic–Inorganic Nanocrystals. Jom, 2018, 70, 2205-2217.	0.9	20
383	Computing the effective bulk and normal to shear properties of common two-dimensional architectured materials. Computational Materials Science, 2018, 154, 284-294.	1.4	48

#	Article	IF	Citations
384	3D printing of complex origami assemblages for reconfigurable structures. Soft Matter, 2018, 14, 8051-8059.	1.2	58
385	A microfabrication approach for making metallic mechanical metamaterials. Materials and Design, 2018, 160, 147-168.	3.3	19
386	3D Plate‣attices: An Emerging Class of Lowâ€Density Metamaterial Exhibiting Optimal Isotropic Stiffness. Advanced Materials, 2018, 30, e1803334.	11.1	173
387	High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based Three-Dimensional Printing. 3D Printing and Additive Manufacturing, 2018, 5, 185-193.	1.4	106
388	Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications. Journal of Manufacturing Processes, 2018, 35, 479-491.	2.8	36
389	Self-Assembly of Metallacages into Multidimensional Suprastructures with Tunable Emissions. Journal of the American Chemical Society, 2018, 140, 12819-12828.	6.6	63
390	Frontiers of Additively Manufactured Metallic Materials. Materials, 2018, 11, 1566.	1.3	26
391	Hierarchically Designed Electron Paths in 3D Printed Energy Storage Devices. Langmuir, 2018, 34, 10897-10904.	1.6	53
392	A Plesiohedral Cellular Network of Graphene Bubbles for Ultralight, Strong, and Superelastic Materials. Advanced Materials, 2018, 30, e1802997.	11,1	27
393	3D biofabrication of vascular networks for tissue regeneration: A report on recent advances. Journal of Pharmaceutical Analysis, 2018, 8, 277-296.	2.4	128
394	Graphene aerogels that withstand extreme compressive stress and strain. Nanoscale, 2018, 10, 18291-18299.	2.8	43
395	Projection based light-directed electrophoretic deposition for additive manufacturing. Additive Manufacturing, 2018, 22, 330-333.	1.7	8
396	Lightweight and reliable metal–composite joints based on harmonization of strength properties of joined parts. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232, 2663-2672.	0.7	3
397	Towards deployable meta-implants. Journal of Materials Chemistry B, 2018, 6, 3449-3455.	2.9	49
398	Unfeelable Mechanical Cloak Based on Proportional Parameter Transform in Bimode Structures. Advanced Functional Materials, 2018, 28, 1801473.	7.8	11
399	Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Materials and Design, 2018, 155, 220-232.	3.3	241
400	In-situ mechanics of 3D graphene foam based ultra-stiff and flexible metallic metamaterial. Carbon, 2018, 137, 502-510.	5.4	25
401	Solutionâ€Based 3D Printing of Polymers of Intrinsic Microporosity. Macromolecular Rapid Communications, 2018, 39, e1800274.	2.0	40

#	Article	IF	CITATIONS
402	Ultra‣ight and Scalable Composite Lattice Materials. Advanced Engineering Materials, 2018, 20, 1800213.	1.6	34
403	Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling. Npj Flexible Electronics, 2018, 2, .	5.1	31
404	Numerical Evaluation and Prediction of Porous Implant Design and Flow Performance. BioMed Research International, 2018, 2018, 1-13.	0.9	5
405	Highly porous microlattices as ultrathin and efficient impact absorbers. International Journal of Impact Engineering, 2018, 120, 138-149.	2.4	39
406	Printable Materials for the Realization of High Performance RF Components: Challenges and Opportunities. International Journal of Antennas and Propagation, 2018, 2018, 1-19.	0.7	36
407	Additive Manufactured open cell polyhedral structures as substrates for automotive catalysts. International Journal of Heat and Mass Transfer, 2018, 126, 1035-1047.	2.5	52
408	Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures. Extreme Mechanics Letters, 2018, 22, 138-148.	2.0	69
409	Fully isogeometric modeling and analysis of nonlinear 3D beams with spatially varying geometric and material parameters. Computer Methods in Applied Mechanics and Engineering, 2018, 342, 95-115.	3.4	16
410	Natural Plant Materials as Dielectric Layer for Highly Sensitive Flexible Electronic Skin. Small, 2018, 14, e1801657.	5.2	153
411	3D printing of shape memory hydrogels with tunable mechanical properties. Soft Matter, 2018, 14, 7809-7817.	1.2	59
412	A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior. Journal of the Mechanics and Physics of Solids, 2018, 121, 23-46.	2.3	95
413	3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses. Materials Today, 2018, 21, 697-702.	8.3	119
414	On the Mechanical Modeling of Tensegrity Columns Subject to Impact Loading. Frontiers in Materials, 2018, 5, .	1.2	10
415	Structure-Dependent Analysis of Nanoporous Metals: Clues from Mechanical, Conduction, and Flow Properties. Journal of Physical Chemistry C, 2018, 122, 16803-16809.	1.5	11
416	Transition mechanism for a periodic bar-and-joint framework with limited degrees of freedom controlled by uniaxial load and internal stiffness. Royal Society Open Science, 2018, 5, 180139.	1.1	5
417	Smart Metamaterial Based on the Simplex Tensegrity Pattern. Materials, 2018, 11, 673.	1.3	22
418	Theoretical search for heterogeneously architected 2D structures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7245-E7254.	3.3	34
419	Scanning Nanowelding Lithography for Rewritable One‧tep Patterning of Subâ€50 nm Highâ€Aspectâ€Ratio Metal Nanostructures. Advanced Materials, 2018, 30, e1801772.	11.1	15

#	Article	IF	CITATIONS
420	A mechanism-based architected material: A hierarchical approach to design Poisson's ratio and stiffness. Mechanics of Materials, 2018, 125, 14-25.	1.7	22
421	Compressive properties of hollow lattice truss reinforced honeycombs (Honeytubes) by additive manufacturing: Patterning and tube alignment effects. Materials and Design, 2018, 156, 446-457.	3.3	7 5
422	3D Printing Methods. , 2018, , 11-32.		9
423	Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices. Nano Letters, 2018, 18, 4755-4761.	4.5	55
424	Metal-coated hybrid meso-lattice composites and their mechanical characterizations. Composite Structures, 2018, 203, 750-763.	3.1	40
425	Material symmetry phase transitions in three-dimensional tensegrity metamaterials. Journal of the Mechanics and Physics of Solids, 2018, 119, 382-399.	2.3	21
426	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. Advanced Materials Interfaces, 2018, 5, 1800284.	1.9	195
427	A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets. Frontiers of Materials Science, 2018, 12, 105-117.	1.1	4
428	Elastically-isotropic elementary cubic lattices composed of tailored hollow beams. Extreme Mechanics Letters, 2018, 22, 13-18.	2.0	83
429	Reprocessable thermosets for sustainable three-dimensional printing. Nature Communications, 2018, 9, 1831.	5.8	249
430	Compressive behavior and failure mechanisms of freestanding and composite 3D graphitic foams. Acta Materialia, 2018, 159, 187-196.	3.8	10
431	Buckling, build orientation, and scaling effects in 3D printed lattices. Materials Today Communications, 2018, 17, 69-75.	0.9	34
432	Deformation mechanism of innovative 3D chiral metamaterials. Scientific Reports, 2018, 8, 12575.	1.6	48
433	Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints. Journal of Mechanical Design, Transactions of the ASME, 2018, 140, .	1.7	84
434	Functionally graded materials from topology optimisation and stereolithography. European Polymer Journal, 2018, 108, 199-211.	2.6	34
435	Additive manufacturing of complex micro-architected graphene aerogels. Materials Horizons, 2018, 5, 1035-1041.	6.4	147
436	Reprogrammable 3D Mesostructures Through Compressive Buckling of Thin Films with Prestrained Shape Memory Polymer. Acta Mechanica Solida Sinica, 2018, 31, 589-598.	1.0	17
437	Geometric role in designing pneumatically actuated pattern-transforming metamaterials. Extreme Mechanics Letters, 2018, 23, 55-66.	2.0	21

#	Article	IF	CITATIONS
438	Coordination-dependent surface strain and rational construction of robust structures. Nanotechnology, 2018, 29, 465708.	1.3	1
439	Bioinspired polymeric woods. Science Advances, 2018, 4, eaat7223.	4.7	219
440	Artificial Soft Elastic Media with Periodic Hard Inclusions for Tailoring Strainâ€Sensitive Thinâ€Film Responses. Advanced Materials, 2018, 30, e1802190.	11.1	6
441	Approaching perfect energy absorption through structural hierarchy. International Journal of Engineering Science, 2018, 130, 12-32.	2.7	92
442	A jigsaw puzzle metamaterial concept. Composite Structures, 2018, 202, 1275-1279.	3.1	13
443	Three-Dimensional High-Entropy Alloy–Polymer Composite Nanolattices That Overcome the Strength–Recoverability Trade-off. Nano Letters, 2018, 18, 4247-4256.	4.5	108
444	Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson's Ratios. Scientific Reports, 2018, 8, 9139.	1.6	100
445	Buckling and pattern transformation of modified periodic lattice structures. Extreme Mechanics Letters, 2018, 22, 112-121.	2.0	36
446	Multimaterial Control of Instability in Soft Mechanical Metamaterials. Physical Review Applied, 2018, 9, .	1.5	35
447	Microarchitected Stretchingâ€Dominated Mechanical Metamaterials with Minimal Surface Topologies. Advanced Engineering Materials, 2018, 20, 1800029.	1.6	138
448	Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures. Nanotechnology, 2018, 29, 335302.	1.3	3
449	Improving the Mechanical Stability of Metal–Organic Frameworks Using Chemical Caryatids. ACS Central Science, 2018, 4, 832-839.	5.3	67
450	Waves in Structured Mediums or Metamaterials: A Review. Archives of Computational Methods in Engineering, 2019, 26, 1029-1058.	6.0	85
451	Energy Absorption Properties of Periodic and Stochastic 3D Lattice Materials. Advanced Theory and Simulations, 2019, 2, 1900081.	1.3	62
452	Magnetic and electric properties of partially reduced graphene oxide aerogels. Journal of Magnetism and Magnetic Materials, 2019, 492, 165656.	1.0	26
453	Emulsion Lyophilization as a Facile Pathway to Fabricate Stretchable Polymer Foams Enabling Multishape Memory Effect and Clip Application. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32423-32430.	4.0	15
454	SLM lattice structures: Properties, performance, applications and challenges. Materials and Design, 2019, 183, 108137.	3.3	689
455	Concurrent topology optimization of multiscale composite structures in Matlab. Structural and Multidisciplinary Optimization, 2019, 60, 2621-2651.	1.7	90

#	Article	IF	CITATIONS
456	Systematic exploration of the mechanical properties of 13 621 inorganic compounds. Chemical Science, 2019, 10, 8589-8599.	3.7	24
457	Scalingâ€Up of Nanoâ€Architected Microstructures: A Mechanical Assessment. Advanced Engineering Materials, 2019, 21, 1900687.	1.6	4
458	Theory and Realization of Nonresonant Anisotropic Singly Polarized Solids Carrying Only Shear Waves. Physical Review Applied, 2019, 12, .	1.5	23
459	Tunable auxeticity and elastomechanical symmetry in a class of very low density core-shell cubic crystals. Acta Materialia, 2019, 177, 280-292.	3.8	49
460	Intrinsic and Defect-Related Elastic Moduli of Boron Nitride Nanotubes As Revealed by <i>in Situ</i> Transmission Electron Microscopy. Nano Letters, 2019, 19, 4974-4980.	4.5	8
461	Cnoidal wave propagation in an elastic metamaterial. Physical Review E, 2019, 100, 013001.	0.8	23
462	A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. International Journal of Advanced Manufacturing Technology, 2019, 104, 3489-3510.	1.5	292
463	Novel microstructural features of selective laser melted lattice struts fabricated with single point exposure scanning. Additive Manufacturing, 2019, 29, 100785.	1.7	10
464	Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method. Materials and Design, 2019, 181, 108065.	3.3	37
465	<i>110th Anniversary</i> : Vat Photopolymerization-Based Additive Manufacturing: Current Trends and Future Directions in Materials Design. Industrial & Engineering Chemistry Research, 2019, 58, 15109-15118.	1.8	80
466	Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Materials and Design, 2019, 182, 108062.	3.3	70
467	Hybrid materials based on graphene derivatives and porphyrin metal-organic frameworks. Russian Chemical Reviews, 2019, 88, 775-799.	2.5	26
468	Cardiac tissue engineering: state-of-the-art methods and outlook. Journal of Biological Engineering, 2019, 13, 57.	2.0	89
469	Assembled, Modular Hardware Architectures - What Price Reconfigurability?. , 2019, , .		6
470	Geometry Systems for Lattice-Based Reconfigurable Space Structures. , 2019, , .		8
471	The extreme mechanics of micro- and nanoarchitected materials. MRS Bulletin, 2019, 44, 758-765.	1.7	48
472	Architected Polymer Foams via Direct Bubble Writing. Advanced Materials, 2019, 31, e1904668.	11.1	82
473	Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science, 2019, 366, 360-364.	6.0	275

#	Article	IF	CITATIONS
474	Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics. Matter, 2019, 1, 1547-1556.	5.0	58
475	Thermal transport in hollow metallic microlattices. APL Materials, 2019, 7, .	2.2	16
476	Tacticity in chiral phononic crystals. Nature Communications, 2019, 10, 4525.	5.8	49
477	Mechanical response of lightweight hollow truss metal oxide lattices. Materialia, 2019, 8, 100439.	1.3	14
478	A Neural Multi-Task Learning Framework to Jointly Model Medical Named Entity Recognition and Normalization. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 817-824.	3.6	67
479	3D Printed Polymer Composites for CO ₂ Capture. Industrial & Description of the Composite of the C	1.8	17
480	Role of the Crystal Lattice Structure in Predicting Fracture Toughness. Physical Review Letters, 2019, 123, 205503.	2.9	5
481	3D Printing of Compositional Gradients Using the Microfluidic Circuit Analogy. Advanced Materials Technologies, 2019, 4, 1900784.	3.0	20
482	Bloch wave based method for dynamic homogenization and vibration analysis of lattice truss core sandwich structures. Composite Structures, 2019, 229, 111437.	3.1	14
483	Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible. Advanced Materials, 2019, 31, e1904845.	11.1	154
484	Concurrent optimization of additive manufacturing fabricated lattice structures for natural frequencies. International Journal of Mechanical Sciences, 2019, 163, 105153.	3.6	9
485	Additive manufacturing and processing of architected materials. MRS Bulletin, 2019, 44, 782-788.	1.7	17
486	Brittle fracture of three-dimensional lattice structure. Engineering Fracture Mechanics, 2019, 219, 106598.	2.0	20
487	Systematic design of high-strength multicomponent metamaterials. Materials and Design, 2019, 183, 108124.	3.3	35
488	Instability-Triggered Triply Negative Mechanical Metamaterial. Physical Review Applied, 2019, 12, .	1.5	19
489	3D Mapping of the Structural Transitions in Wrinkled 2D Membranes: Implications for Reconfigurable Electronics, Memristors, and Bioelectronic Interfaces. ACS Applied Nano Materials, 2019, 2, 5779-5786.	2.4	7
490	Bio-inspired multistable metamaterials with reusable large deformation and ultra-high mechanical performance. Extreme Mechanics Letters, 2019, 32, 100548.	2.0	50
491	Novel multi-stable mechanical metamaterials for trapping energy through shear deformation. International Journal of Mechanical Sciences, 2019, 164, 105168.	3.6	52

#	Article	IF	CITATIONS
492	Chevron-beam metamaterial with active tunability in near-infrared wavelength range., 2019,,.		0
493	DEM analysis of compression breakage of 3D printed agglomerates with different structures. Powder Technology, 2019, 356, 1045-1058.	2.1	19
494	Stiff isotropic lattices beyond the Maxwell criterion. Science Advances, 2019, 5, eaaw1937.	4.7	49
495	New insights into nickel-free superelastic titanium alloys for biomedical applications. Current Opinion in Solid State and Materials Science, 2019, 23, 100783.	5.6	36
496	A nonlinear mechanics model of soft network metamaterials with unusual swelling behavior and tunable phononic band gaps. Composites Science and Technology, 2019, 183, 107822.	3.8	28
497	Architected lattices with adaptive energy absorption. Extreme Mechanics Letters, 2019, 33, 100557.	2.0	52
498	Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42549-42560.	4.0	60
499	Ultrafast Three-Dimensional Printing of Optically Smooth Microlens Arrays by Oscillation-Assisted Digital Light Processing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40662-40668.	4.0	62
500	Design for metal additive manufacturing. , 2019, , 193-244.		2
501	Proactively modulating mechanical behaviors of materials at multiscale for mechano-adaptable devices. Chemical Society Reviews, 2019, 48, 1434-1447.	18.7	32
502	Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials, 2019, 18, 234-241.	13.3	298
503	High strength metallic wood from nanostructured nickel inverse opal materials. Scientific Reports, 2019, 9, 719.	1.6	36
504	Discrete Lattice Material Vacuum Airship. , 2019, , .		1
505	3D metamaterials. Nature Reviews Physics, 2019, 1, 198-210.	11.9	598
506	Volumetric additive manufacturing via tomographic reconstruction. Science, 2019, 363, 1075-1079.	6.0	584
507	Density–stiffness scaling in minerals upon disordering: Irradiation vs. vitrification. Acta Materialia, 2019, 166, 611-617.	3.8	23
508	Metallization of 3D Printed Polymers and Their Application as a Fully Functional Waterâ€Splitting System. Advanced Science, 2019, 6, 1801670.	5.6	55
509	Additive manufacturing of self-healing elastomers. NPG Asia Materials, 2019, 11, .	3.8	111

#	Article	IF	CITATIONS
510	Intertwined microlattices greatly enhance the performance of mechanical metamaterials. Mathematics and Mechanics of Solids, 2019, 24, 2636-2648.	1.5	38
511	Simple, accurate surrogate models of the elastic response of three-dimensional open truss micro-architectures with applications to multiscale topology design. Structural and Multidisciplinary Optimization, 2019, 60, 1887-1920.	1.7	56
512	On the compact wave dynamics of tensegrity beams in multiple dimensions. Nonlinear Dynamics, 2019, 98, 2737-2753.	2.7	15
513	Another stretching-dominated micro-architectured material, shellular. Materials Today, 2019, 31, 31-38.	8.3	23
514	Random 3D-printed isotropic composites with high volume fraction of pore-like polydisperse inclusions and near-optimal elastic stiffness. Acta Materialia, 2019, 175, 331-340.	3.8	36
515	Buckling and twisting of advanced materials into morphable 3D mesostructures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13239-13248.	3.3	81
516	Periodic topological lattice with different indentation hardness on opposite surfaces. Materials and Design, 2019, 180, 107953.	3.3	10
517	Cubic negative stiffness lattice structure for energy absorption: Numerical and experimental studies. International Journal of Solids and Structures, 2019, 178-179, 127-135.	1.3	61
518	Mechanical response of Ti–6Al–4V hierarchical architected metamaterials. Acta Materialia, 2019, 175, 90-106.	3.8	31
519	Ultra-programmable buckling-driven soft cellular mechanisms. Materials Horizons, 2019, 6, 1138-1147.	6.4	77
520	Development of Intricate Aerogel Articles Using Fused Filament Fabrication. ACS Applied Polymer Materials, 2019, 1, 1749-1756.	2.0	14
521	Diagonal-symmetrical and Midline-symmetrical Unit Cells with Same Porosity for Bone Implant: Mechanical Properties Evaluation. Journal of Bionic Engineering, 2019, 16, 468-479.	2.7	11
522	Stereolithographic 3D Printing-Based Hierarchically Cellular Lattices for High-Performance Quasi-Solid Supercapacitor. Nano-Micro Letters, 2019, 11, 46.	14.4	62
523	Experimental investigation of heat transfer and fluid flow in octet-truss lattice geometry. International Journal of Thermal Sciences, 2019, 143, 64-75.	2.6	57
524	Twoâ€Photon Verticalâ€Flow Lithography for Microtube Synthesis. Small, 2019, 15, e1901356.	5.2	24
525	Topology optimization of functionally-graded lattice structures with buckling constraints. Computer Methods in Applied Mechanics and Engineering, 2019, 354, 593-619.	3.4	49
526	Heterogeneities dominate mechanical performance of additively manufactured metal lattice struts. Additive Manufacturing, 2019, 28, 692-703.	1.7	35
527	Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz. Applied Physics Letters, 2019, 114, .	1.5	26

#	Article	IF	CITATIONS
528	A novel subdomain level set method for structural topology optimization and its application in graded cellular structure design. Structural and Multidisciplinary Optimization, 2019, 60, 2221-2247.	1.7	37
529	Design oriented constitutive modeling of amorphous shape memory polymers and Its application to multiple length scale lattice structures. Smart Materials and Structures, 2019, 28, 095030.	1.8	12
530	An optimised family of anisotropic microstructures with application to functionally graded materials. International Journal of Solids and Structures, 2019, 171, 17-29.	1.3	9
531	Design of periodic foam structures for acoustic applications: Concept, parametric study and experimental validation. Materials and Design, 2019, 175, 107830.	3.3	48
532	Active Mixing of Reactive Materials for 3D Printing. Advanced Engineering Materials, 2019, 21, 1900147.	1.6	36
533	Recent progress in near-field nanolithography using light interactions with colloidal particles: from nanospheres to three-dimensional nanostructures. Nanotechnology, 2019, 30, 352002.	1.3	50
534	Grayscale digital light processing 3D printing for highly functionally graded materials. Science Advances, 2019, 5, eaav5790.	4.7	298
535	Unraveling tensegrity tessellations for metamaterials with tunable stiffness and bandgaps. Journal of the Mechanics and Physics of Solids, 2019, 131, 147-166.	2.3	40
536	Additively manufactured porous metallic biomaterials. Journal of Materials Chemistry B, 2019, 7, 4088-4117.	2.9	137
537	Experimental Demonstration of a 3Dâ€Printed Arched Metasurface Carpet Cloak. Advanced Optical Materials, 2019, 7, 1900475.	3.6	40
538	Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nature Communications, 2019, 10, 2179.	5.8	222
539	Programmable, active lattice structures: Unifying stretch-dominated and bending-dominated topologies. Extreme Mechanics Letters, 2019, 29, 100461.	2.0	50
540	Spatial Uncertainty Modeling for Surface Roughness of Additively Manufactured Microstructures via Image Segmentation. Applied Sciences (Switzerland), 2019, 9, 1093.	1.3	4
541	Continuum models for stretching- and bending-dominated periodic trusses undergoing finite deformations. International Journal of Solids and Structures, 2019, 171, 117-134.	1.3	27
542	Chemistry from 3D printed objects. Nature Reviews Chemistry, 2019, 3, 305-314.	13.8	93
543	4D printing reconfigurable, deployable and mechanically tunable metamaterials. Materials Horizons, 2019, 6, 1244-1250.	6.4	182
544	Semianalytical Geometry-Property Relationships for Some Generalized Classes of Pentamodelike Additively Manufactured Mechanical Metamaterials. Physical Review Applied, 2019, 11, .	1.5	28
545	Self-aligned and hierarchically porous graphene-polyurethane foams for acoustic wave absorption. Carbon, 2019, 147, 510-518.	5.4	45

#	Article	IF	CITATIONS
546	Simple optimal lattice structures for arbitrary loadings. Extreme Mechanics Letters, 2019, 29, 100447.	2.0	25
547	Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6665-6672.	3.3	158
548	Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: Analytical and numerical models. International Journal of Mechanical Sciences, 2019, 155, 248-266.	3.6	80
549	Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization. Journal of the Acoustical Society of America, 2019, 145, 1259-1269.	0.5	20
550	Preparation and stereolithography 3D printing of ultralight and ultrastrong ZrOC porous ceramics. Journal of Alloys and Compounds, 2019, 789, 867-873.	2.8	63
551	Willis Metamaterial on a Structured Beam. Physical Review X, 2019, 9, .	2.8	41
552	Density scaling in the mechanics of a disordered mechanical meta-material. Applied Physics Letters, $2019, 114, \ldots$	1.5	15
553	Extremely Sharp Bending and Recoverability of Nanoscale Plates with Honeycomb Corrugation. Physical Review Applied, 2019, 11, .	1.5	13
554	Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy, 2019, 60, 841-849.	8.2	262
555	Bimodal hybrid lightweight sound-absorbing material with high stiffness. Applied Physics Express, 2019, 12, 035002.	1.1	6
556	Programmable super elastic kirigami metallic glasses. Materials and Design, 2019, 169, 107687.	3.3	21
557	Study of Strategies for Forming Stainless Steel Objects with Cellular Structures by Selective Laser Melting. Metallurgist, 2019, 62, 1158-1166.	0.2	2
558	3Dâ€Architected Soft Machines with Topologically Encoded Motion. Advanced Functional Materials, 2019, 29, 1808713.	7.8	42
559	Three dimensional printing of metamaterial embedded geometrical optics (MEGO). Microsystems and Nanoengineering, 2019, 5, 16.	3.4	46
560	Active Mixing of Disparate Inks for Multimaterial 3D Printing. Advanced Materials Technologies, 2019, 4, 1800717.	3.0	30
561	Process parameter effects on cellular structured materials using hollow glass spheres. Materials and Manufacturing Processes, 2019, 34, 1026-1034.	2.7	5
562	Fabrication of chiral channel in three-dimensional photonic crystal using projection microstereolithography. Optik, 2019, 185, 1045-1050.	1.4	1
563	Design, microstructure and mechanical characterization of Ti6Al4V reinforcing elements for cement composites with fractal architecture. Materials and Design, 2019, 172, 107758.	3.3	32

#	Article	IF	CITATIONS
564	Colloidal Materials for 3D Printing. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 17-42.	3.3	47
565	Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Additive Manufacturing, 2019, 27, 606-615.	1.7	106
566	Toughening stretchable fibers via serial fracturing of a metallic core. Science Advances, 2019, 5, eaat4600.	4.7	52
567	Non-Auxetic Mechanical Metamaterials. Materials, 2019, 12, 635.	1.3	43
568	Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Additive Manufacturing, 2019, 27, 80-90.	1.7	98
569	Mechanical Metamaterials and Their Engineering Applications. Advanced Engineering Materials, 2019, 21, 1800864.	1.6	493
570	Concurrent optimization of structural topology and infill properties with a CBF-based level set method. Frontiers of Mechanical Engineering, 2019, 14, 171-189.	2.5	22
571	Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 2019, 5, eaat6951.	4.7	78
572	Locally addressable material properties in 3D micro-architectures. Extreme Mechanics Letters, 2019, 28, 31-36.	2.0	17
573	Design of metallic bone by additive manufacturing. Scripta Materialia, 2019, 164, 110-114.	2.6	119
574	Cellular level set in B-splines (CLIBS): A method for modeling and topology optimization of cellular structures. Computer Methods in Applied Mechanics and Engineering, 2019, 349, 378-404.	3.4	29
575	The mechanical strength of Ti-6Al-4V columns with regular octet microstructure manufactured by electron beam melting. Materialia, 2019, 5, 100232.	1.3	15
576	3D printing of biomimetic vasculature for tissue regeneration. Materials Horizons, 2019, 6, 1197-1206.	6.4	88
577	Failure of P-surfaced Shellular subjected to internal pressure. AIP Advances, 2019, 9, .	0.6	2
578	Self-stresses control stiffness and stability in overconstrained disordered networks. Physical Review E, 2019, 99, 023001.	0.8	2
579	Chemomechanics of dual-stage reprocessable thermosets. Journal of the Mechanics and Physics of Solids, 2019, 126, 168-186.	2.3	19
580	Multimaterial actinic spatial control 3D and 4D printing. Nature Communications, 2019, 10, 791.	5.8	208
581	Research on an automatic leveling method with a feedback mode for a parallel 3D printer. Rapid Prototyping Journal, 2019, 25, 1250-1265.	1.6	2

#	Article	IF	CITATIONS
582	3D printing: a critical review of current development and future prospects. Rapid Prototyping Journal, 2019, 25, 1108-1126.	1.6	65
583	Bone-inspired microarchitectures achieve enhanced fatigue life. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24457-24462.	3.3	51
584	Terahertz resonant transmission through metallic mesh truss structures. AIP Advances, 2019, 9, 125320.	0.6	0
585	A novel 3D-printable hydrogel with high mechanical strength and shape memory properties. Journal of Materials Chemistry C, 2019, 7, 14913-14922.	2.7	25
586	Mechanical performance of additively manufactured meta-biomaterials. Acta Biomaterialia, 2019, 85, 41-59.	4.1	230
587	Mechanical and inÂvitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting. Journal of Alloys and Compounds, 2019, 782, 209-223.	2.8	112
588	Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model. Computer Methods in Applied Mechanics and Engineering, 2019, 347, 340-364.	3.4	48
589	Biomimetic architected materials with improved dynamic performance. Journal of the Mechanics and Physics of Solids, 2019, 125, 178-197.	2.3	108
590	Synthesis of photocurable cellulose acetate butyrate resin for continuous liquid interface production of three-dimensional objects with excellent mechanical and chemical-resistant properties. Carbohydrate Polymers, 2019, 207, 609-618.	5.1	16
591	Hydrogel Microelectromechanical System (MEMS) Resonators: Beyond Costâ€Effective Sensing Platform. Advanced Materials Technologies, 2019, 4, 1800597.	3.0	12
592	Block Copolymer Self-Assembly Directed Hierarchically Structured Materials from Nonequilibrium Transient Laser Heating. Macromolecules, 2019, 52, 395-409.	2.2	45
593	A comparison of shockwave dynamics in stochastic and periodic porous polymer architectures. Polymer, 2019, 160, 325-337.	1.8	24
594	Polymeric composites for powder-based additive manufacturing: Materials and applications. Progress in Polymer Science, 2019, 91, 141-168.	11.8	328
595	In situ dynamic compression wave behavior in additively manufactured lattice materials. Journal of Materials Research, 2019, 34, 2-19.	1.2	17
596	A quasicontinuum theory for the nonlinear mechanical response of general periodic truss lattices. Journal of the Mechanics and Physics of Solids, 2019, 124, 758-780.	2.3	28
597	Isogeometric shape optimization of nonlinear, curved 3D beams and beam structures. Computer Methods in Applied Mechanics and Engineering, 2019, 345, 26-51.	3.4	46
598	Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Advanced Optical Materials, 2019, 7, 1800419.	3.6	132
599	Structurally Controlled Cellular Architectures for Highâ€Performance Ultraâ€Lightweight Materials. Advanced Materials, 2019, 31, e1803670.	11.1	79

#	Article	IF	Citations
600	Visible light 3D printing with epoxidized vegetable oils. Additive Manufacturing, 2019, 25, 317-324.	1.7	33
601	Ultrafast Fabrication of Thermoelectric Films by Pulsed Light Sintering of Colloidal Nanoparticles on Flexible and Rigid Substrates. Advanced Engineering Materials, 2019, 21, 1800800.	1.6	26
602	A novel asymptotic-analysis-based homogenisation approach towards fast design of infill graded microstructures. Journal of the Mechanics and Physics of Solids, 2019, 124, 612-633.	2.3	46
603	The mechanical response of cellular materials with spinodal topologies. Journal of the Mechanics and Physics of Solids, 2019, 125, 401-419.	2.3	86
604	Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	1.7	33
605	Creating hollow microlattice materials reinforced by carbon nanotubes for improved mechanical properties. Materials Letters, 2019, 240, 205-208.	1.3	10
606	Designing nonwoven auxetic metamaterials with spatially textured functionalities. Materials Letters, 2019, 241, 214-218.	1.3	8
607	Structural Development and Multiscale Design Optimization of Additively Manufactured UAV with Blended Wing Body Configuration Employing Lattice Materials. , 2019, , .		1
608	Multi-Material Additive Manufacturing of Sustainable Innovative Materials and Structures. Polymers, 2019, 11, 62.	2.0	118
609	Large deformation shape optimization of cut-mediated soft mechanical metamaterials. Materials Research Express, 2019, 6, 055802.	0.8	7
610	Origamiâ€Inspired Cellular Metamaterial With Anisotropic Multiâ€Stability. Advanced Engineering Materials, 2019, 21, 1800895.	1.6	30
611	Ultrastrong, flexible and lightweight anisotropic polypropylene foams with superior flame retardancy. Composites Part A: Applied Science and Manufacturing, 2019, 116, 180-186.	3.8	47
612	From microstructural design to surface engineering: A tailored approach for improving fatigue life of additively manufactured meta-biomaterials. Acta Biomaterialia, 2019, 83, 153-166.	4.1	79
613	Multi-stable mechanical metamaterials by elastic buckling instability. Journal of Materials Science, 2019, 54, 3509-3526.	1.7	85
614	Freestanding 3D Mesostructures, Functional Devices, and Shapeâ€Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Advanced Materials, 2019, 31, e1805615.	11.1	105
615	Mechanics of curved-ligament hexachiral metastructures under planar deformations. Journal of the Mechanics and Physics of Solids, 2019, 125, 145-163.	2.3	18
616	Discreteâ€Continuum Duality of Architected Materials: Failure, Flaws, and Fracture. Advanced Functional Materials, 2019, 29, 1806772.	7.8	26
617	Bottom-Up Synthesis and Mechanical Behavior of Refractory Coatings Made of Carbon Nanotube-Hafnium Diboride Composites. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1487-1495.	4.0	12

#	Article	IF	CITATIONS
618	Dynamic energy absorption characteristics of additively-manufactured shape-recovering lattice structures. Materials Research Express, 2019, 6, 045302.	0.8	35
619	Probing the frequency-dependent elastic moduli of lattice materials. Acta Materialia, 2019, 165, 654-665.	3.8	36
620	Surface nano-engineered wheat straw for portable and adjustable water purification. Science of the Total Environment, 2019, 655, 1028-1036.	3.9	9
621	Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials. Mathematics and Mechanics of Solids, 2019, 24, 511-524.	1.5	35
622	Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 2019, 29, 1805290.	7.8	633
623	3Dâ€Printed Mechanical Metamaterials with High Energy Absorption. Advanced Materials Technologies, 2019, 4, 1800419.	3.0	188
624	An Octet-Truss Engineered Concrete (OTEC) for lightweight structures. Composite Structures, 2019, 207, 373-384.	3.1	13
625	Thermally tunable band gaps in architected metamaterial structures. Journal of Sound and Vibration, 2019, 439, 29-42.	2.1	57
626	Effects of polydispersity and disorder on the mechanical properties of hydrated silicate gels. Journal of the Mechanics and Physics of Solids, 2019, 122, 555-565.	2.3	35
627	Mechanical metamaterials: a state of the art. Mathematics and Mechanics of Solids, 2019, 24, 212-234.	1.5	261
628	Controlled Microstructural Architectures Based on Smart Fabrication Strategies. Advanced Functional Materials, 2020, 30, 1901760.	7.8	36
629	Thermal Transport in 3D Nanostructures. Advanced Functional Materials, 2020, 30, 1903841.	7.8	83
630	A guide to solutionâ€based additive manufacturing of polymeric structures: lnk design, porosity manipulation, and printing strategy. Journal of Advanced Manufacturing and Processing, 2020, 2, .	1.4	12
631	Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 2020, 32, e1901924.	11.1	575
632	Kirigami-enabled self-folding origami. Materials Today, 2020, 32, 59-67.	8.3	63
633	Light-weight shell-lattice metamaterials for mechanical shock absorption. International Journal of Mechanical Sciences, 2020, 169, 105288.	3.6	109
634	Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103517.	1.5	106
635	Design, Fabrication, and Mechanics of 3D Microâ€/Nanolattices. Small, 2020, 16, e1902842.	5.2	62

#	Article	IF	CITATIONS
636	Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting. International Journal of Mechanical Sciences, 2020, 167, 105242.	3.6	81
637	Design and characterization of multi-stable mechanical metastructures with level and tilted stable configurations. Extreme Mechanics Letters, 2020, 34, 100593.	2.0	35
638	Topologically reconfigurable mechanical metamaterials with motion structures. Mechanics of Materials, 2020, 143, 103317.	1.7	7
639	Multiscale Topology Optimization of Thermoelastic Structures Using the Level Set Method., 2020,,.		3
640	Tunable chevron-shaped infrared metamaterial. Materials Letters, 2020, 263, 127291.	1.3	39
641	Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature. Applied Materials Today, 2020, 19, 100537.	2.3	48
642	Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chemical Engineering Journal, 2020, 385, 123963.	6.6	192
643	Nanofabrication approaches for functional three-dimensional architectures. Nano Today, 2020, 30, 100825.	6.2	37
644	Nonlinear compressive stability of hyperelastic 2D lattices at finite volume fractions. Journal of the Mechanics and Physics of Solids, 2020, 137, 103851.	2.3	19
645	Fragility and an extremely low shear modulus of high porosity silicic magma. Journal of Volcanology and Geothermal Research, 2020, 392, 106760.	0.8	4
646	Mechanical responses of Ti-6Al-4V cuboctahedral truss lattice structures. Composite Structures, 2020, 235, 111815.	3.1	21
647	1D to 3D multi-stable architected materials with zero Poisson's ratio and controllable thermal expansion. Materials and Design, 2020, 188, 108430.	3.3	77
648	3D Printing Customized Optical Lens in Minutes. Advanced Optical Materials, 2020, 8, 1901646.	3.6	41
649	Fabrication of 3D micro-/nanoarchitected materials. , 2020, , 541-576.		2
650	On the size and orientation effect in additive manufactured Ti-6Al-4V. Materials and Design, 2020, 186, 108235.	3.3	95
651	Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications. Composites Part B: Engineering, 2020, 184, 107715.	5.9	51
652	Enhanced mechanical properties of 3D printed graphene-polymer composite lattices at very low graphene concentrations. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105726.	3.8	76
653	Numerical investigation on hydraulic and thermal characteristics of micro latticed pin fin in the heat sink. International Journal of Heat and Mass Transfer, 2020, 149, 119157.	2.5	33

#	Article	IF	CITATIONS
654	Mechanical and failure behaviors of lattice-plate hybrid structures. MRS Communications, 2020, 10, 42-54.	0.8	2
655	Design, optimization, and validation of mechanical properties of different cellular structures for biomedical application. International Journal of Advanced Manufacturing Technology, 2020, 106, 1253-1265.	1.5	42
656	Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Additive Manufacturing, 2020, 32, 100991.	1.7	36
657	Flexible 2.5D Metamaterial with High Mechanical Bearing Capacity for Electromagnetic Interference Filters at Microwave Frequency. Advanced Engineering Materials, 2020, 22, 1901126.	1.6	7
658	Quasiperiodic mechanical metamaterials with extreme isotropic stiffness. Extreme Mechanics Letters, 2020, 34, 100596.	2.0	56
659	Multiscale eigenfrequency optimization of multimaterial lattice structures based on the asymptotic homogenization method. Structural and Multidisciplinary Optimization, 2020, 61, 983-998.	1.7	21
660	A Selective Reduction Approach to Construct Robust Cu1.81S Truss Structures for High-Performance Sodium Storage. Matter, 2020, 2, 428-439.	5.0	35
661	Designing with Light: Advanced 2D, 3D, and 4D Materials. Advanced Materials, 2020, 32, e1903850.	11.1	125
662	Future perspectives on materials for two-photon polymerization. , 2020, , 671-681.		2
663	A monolithic sandwich panel for insect-mimicking micro drones. Materials and Design, 2020, 187, 108376.	3.3	5
664	Van der Waals Integrated Hybrid POMâ€Zirconia Flexible Beltâ€Like Superstructures. Advanced Materials, 2020, 32, e1906794.	11.1	37
665	A Multi-Cell Hybrid Approach to Elevate the Energy Absorption of Micro-Lattice Materials. Materials, 2020, 13, 4083.	1.3	27
666	The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering. Additive Manufacturing, 2020, 36, 101548.	1.7	21
667	A Newton solver for micromorphic computational homogenization enabling multiscale buckling analysis of pattern-transforming metamaterials. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113333.	3.4	11
668	3D printing of chiral carbon fiber reinforced polylactic acid composites with negative Poisson's ratios. Composites Part B: Engineering, 2020, 201, 108400.	5.9	65
669	Real-time tunable negative stiffness mechanical metamaterial. Extreme Mechanics Letters, 2020, 41, 100990.	2.0	73
670	Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites. Scientific Reports, 2020, 10, 16507.	1.6	39
671	Design for Additive Manufacturing: A Systematic Review. Sustainability, 2020, 12, 7936.	1.6	78

#	Article	IF	CITATIONS
672	Recent advances in additive manufacturing of active mechanical metamaterials. Current Opinion in Solid State and Materials Science, 2020, 24, 100869.	5.6	65
673	Effective phononic crystals for non-Cartesian elastic wave propagation. Physical Review B, 2020, 102, .	1.1	13
674	The effect of fillets and crossbars on mechanical properties of lattice structures fabricated using additive manufacturing. International Journal of Advanced Manufacturing Technology, 2020, 111, 931-943.	1.5	28
675	Machine learning generative models for automatic design of multi-material 3D printed composite solids. Extreme Mechanics Letters, 2020, 41, 100992.	2.0	43
676	Mechanical characterization and constitutive modeling of visco-hyperelasticity of photocured polymers. Additive Manufacturing, 2020, 36, 101511.	1.7	8
677	Multi-step deformation mechanical metamaterials. Journal of the Mechanics and Physics of Solids, 2020, 144, 104095.	2.3	60
678	Insight into the coordinated jetting behavior in periodic lattice structures under dynamic compression. Journal of Applied Physics, 2020, 128, .	1.1	6
680	Two-dimensional mechanical metamaterials with bending-induced expansion behavior. Applied Physics Letters, 2020, 117, 011904.	1.5	4
681	Reliability analysis of a 3D Printing process. Procedia Computer Science, 2020, 173, 191-200.	1.2	9
682	Innovative 3D chiral metamaterials under large deformation: Theoretical and experimental analysis. International Journal of Solids and Structures, 2020, 202, 787-797.	1.3	32
683	Design and Mechanical Testing of 3D Printed Hierarchical Lattices Using Biocompatible Stereolithography. Designs, 2020, 4, 22.	1.3	12
684	Inverse-designed spinodoid metamaterials. Npj Computational Materials, 2020, 6, .	3.5	151
685	Discretely assembled mechanical metamaterials. Science Advances, 2020, 6, .	4.7	88
686	Introduction - Porous Metals: From Nano to Macro. Journal of Materials Research, 2020, 35, 2529-2534.	1.2	4
687	3D printing of metal-based materials for renewable energy applications. Nano Research, 2021, 14, 2105-2132.	5.8	31
688	3D-printed cellular tips for tuning fork atomic force microscopy in shear mode. Nature Communications, 2020, 11, 5732.	5.8	8
689	In-situ synchrotron X-ray tomography investigation of micro lattice manufactured with the projection micro-stereolithography (PνSL) 3D printing technique: Defects characterization and in-situ shear test. Composite Structures, 2020, 252, 112710.	3.1	19
690	Self-Healing Mechanisms for 3D-Printed Polymeric Structures: From Lab to Reality. Polymers, 2020, 12, 1534.	2.0	36

#	Article	IF	CITATIONS
691	Materials research & measurement needs for ceramics additive manufacturing. Journal of the American Ceramic Society, 2020, 103, 6055-6069.	1.9	23
692	Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices. Additive Manufacturing, 2020, 32, 101106.	1.7	29
693	3D Printing metamaterials towards tissue engineering. Applied Materials Today, 2020, 20, 100752.	2.3	62
694	Design and analysis of lattice metamaterials composed of circular-arc curved beam elements. Materials Letters, 2020, 277, 128376.	1.3	5
695	Nanofiber-based hydrogels and aerogels. , 2020, , 259-276.		0
696	3Dâ€Printed Woodâ€Fiber Reinforced Architected Cellular Composites. Advanced Engineering Materials, 2020, 22, 2000565.	1.6	22
697	Additive manufacturing of a topology-optimised multi-tube energy storage device: Experimental tests and numerical analysis. Applied Thermal Engineering, 2020, 180, 115878.	3.0	35
698	Regulating the mechanical behavior of metamaterial microlattices by tactical structure modification. Journal of the Mechanics and Physics of Solids, 2020, 144, 104112.	2.3	39
699	Mechanical properties of the hollow-wall graphene gyroid lattice. Acta Materialia, 2020, 201, 254-265.	3.8	10
700	Elastic response of hollow truss lattice micro-architectures. International Journal of Solids and Structures, 2020, 206, 472-564.	1.3	15
701	Force-sensitive metamaterials for vibration mitigation and mechanical protection. Extreme Mechanics Letters, 2020, 40, 100932.	2.0	21
702	Nanographitic coating enables hydrophobicity in lightweight and strong microarchitected carbon. Communications Materials, 2020, 1 , .	2.9	10
703	Optimal isotropic, reusable truss lattice material with near-zero Poisson's ratio. Extreme Mechanics Letters, 2020, 41, 101048.	2.0	30
704	Conductive and Elastic TiO ₂ Nanofibrous Aerogels: A New Concept toward Selfâ€Supported Electrocatalysts with Superior Activity and Durability. Angewandte Chemie, 2020, 132, 23452-23460.	1.6	3
705	Conductive and Elastic TiO ₂ Nanofibrous Aerogels: A New Concept toward Selfâ€Supported Electrocatalysts with Superior Activity and Durability. Angewandte Chemie - International Edition, 2020, 59, 23252-23260.	7.2	87
706	Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. PLoS ONE, 2020, 15, e0238471.	1.1	30
707	Additive manufacturing of metamaterials: A review. Additive Manufacturing, 2020, 36, 101562.	1.7	125
708	3D face-centered-cubic cement-based hybrid composites reinforced by tension-resistant polymeric truss network. Automation in Construction, 2020, 120, 103380.	4.8	8

#	ARTICLE	IF	CITATIONS
709	Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Composites Part B: Engineering, 2020, 201, 108340.	5.9	282
710	Pushing and Pulling on Ropes: Hierarchical Woven Materials. Advanced Science, 2020, 7, 2001271.	5.6	20
711	Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 7136-7143.	4.5	79
712	Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23450-23459.	3.3	65
713	Automatic design of mechanical metamaterial actuators. Nature Communications, 2020, 11, 4162.	5.8	44
714	Mechanical Metamaterials on the Way from Laboratory Scale to Industrial Applications: Challenges for Characterization and Scalability. Materials, 2020, 13, 3605.	1.3	39
715	Preparation and Tribological Properties of bionic materials with nacre shell structure. Journal of Physics: Conference Series, 2020, 1676, 012095.	0.3	0
716	Exploring Registration of Optical, CMM and XCT for Verification of Supplemental Surfaces to Define AM Lattices: Application to Cylindrical and Spherical Surfaces. Procedia CIRP, 2020, 92, 181-186.	1.0	5
717	Lightweight architected lattice phononic crystals with broadband and multiband vibration mitigation characteristics. Extreme Mechanics Letters, 2020, 41, 100994.	2.0	53
718	Minisurf – A minimal surface generator for finite element modeling and additive manufacturing. Software Impacts, 2020, 6, 100026.	0.8	19
719	A Transitional Connection Method for the Design of Functionally Graded Cellular Materials. Applied Sciences (Switzerland), 2020, 10, 7449.	1.3	4
720	Evolutionary computation for design and characterization of nanoscale metastructures. Applied Materials Today, 2020, 21, 100816.	2.3	7
721	Extensible beam-like metastructures at the microscale: Theoretical and modified Hencky bar-chain modeling. International Journal of Mechanical Sciences, 2020, 180, 105636.	3.6	4
722	Numerical and analytical simulation of multilayer cellular scaffolds. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	3
723	Perspective on 3D-designed micro-supercapacitors. Materials and Design, 2020, 193, 108797.	3.3	37
724	Progress in Auxetic Mechanical Metamaterials: Structures, Characteristics, Manufacturing Methods, and Applications. Advanced Engineering Materials, 2020, 22, 2000312.	1.6	93
725	Effect of graphene sheet incorporation on the physicochemical properties of nano-alumina. New Journal of Chemistry, 2020, 44, 9046-9052.	1.4	4
726	The Multidirectional Auxeticity and Negative Linear Compressibility of a 3D Mechanical Metamaterial. Materials, 2020, 13, 2193.	1.3	24

#	ARTICLE	IF	Citations
727	Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: Opportunities and challenges. Energy Storage Materials, 2020, 30, 296-328.	9.5	49
728	Synchrotron CT imaging of lattice structures with engineered defects. Journal of Materials Science, 2020, 55, 11353-11366.	1.7	11
729	A combined compression and indentation study of mechanical metamaterials based on inverse opal coatings. Acta Materialia, 2020, 195, 98-108.	3.8	9
730	Modulation of multi-directional auxeticity in hybrid origami metamaterials. Applied Materials Today, 2020, 20, 100715.	2.3	29
731	Recent Progress in 3D Printing of 2D Materialâ€Based Macrostructures. Advanced Materials Technologies, 2020, 5, 1901066.	3.0	27
732	Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting. Additive Manufacturing, 2020, 34, 101378.	1.7	35
733	Shaping elastic wave mode conversion with a piezoelectric-based programmable meta-boundary. Extreme Mechanics Letters, 2020, 39, 100837.	2.0	29
734	Bone-inspired healing of 3D-printed porous ceramics. Materials Horizons, 2020, 7, 2130-2140.	6.4	4
735	Design and Characterization of a Novel Series of Geometrically Complex Intravaginal Rings with Digital Light Synthesis. Advanced Materials Technologies, 2020, 5, 2000261.	3.0	31
736	Design and characterization of axisymmetric auxetic metamaterials. Composite Structures, 2020, 249, 112560.	3.1	42
737	4D printed auxetic structures with tunable mechanical properties. Additive Manufacturing, 2020, 35, 101364.	1.7	20
738	Laserâ€made 3D Auxetic Metamaterial Scaffolds for Tissue Engineering Applications. Macromolecular Materials and Engineering, 2020, 305, 2000238.	1.7	33
739	Strain rate–dependent mechanical metamaterials. Science Advances, 2020, 6, eaba0616.	4.7	75
740	Fish Cells, a new zero Poisson's ratio metamaterialâ€"Part I: Design and experiment. Journal of Intelligent Material Systems and Structures, 2020, 31, 1617-1637.	1.4	25
741	A priori determination of the elastic and acoustic responses of periodic poroelastic materials. Applied Acoustics, 2020, 169, 107455.	1.7	6
742	Hierarchical cellular ferroelectric metamaterials: A design motif to enhance multifunctional figures of merit. Composite Structures, 2020, 250, 112395.	3.1	8
743	Planar Mechanical Metamaterials with Embedded Permanent Magnets. Materials, 2020, 13, 1313.	1.3	20
744	Measurement of the optical dielectric properties of thin-film materials by ultrafast time-resolved interferometry. Results in Physics, 2020, 16, 102958.	2.0	1

#	Article	IF	CITATIONS
745	3D printing of cellular materials for advanced electrochemical energy storage and conversion. Nanoscale, 2020, 12, 7416-7432.	2.8	56
746	Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review. Processes, 2020, 8, 355.	1.3	41
747	Healable, memorizable, and transformable lattice structures made of stiff polymers. NPG Asia Materials, 2020, 12 , .	3.8	18
748	Plate-nanolattices at the theoretical limit of stiffness and strength. Nature Communications, 2020, 11, 1579.	5.8	85
749	Nanomaterial Patterning in 3D Printing. Advanced Materials, 2020, 32, e1907142.	11.1	144
750	Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5686-5693.	3.3	87
751	3D printed tubular lattice metamaterials with engineered mechanical performance. Applied Physics Letters, 2020, 117, .	1.5	17
752	Mechanics of sandwich panels with a buckling-dominated lattice core: The effects of the initial rod curvatures. Composite Structures, 2020, 251, 112669.	3.1	7
753	Surface effects on the elastic modulus of regular polygonal prism nanoporous materials. Acta Mechanica, 2020, 231, 3451-3460.	1.1	3
7 54	Indentation experiments and simulations of nonuniformly photocrosslinked polymers in 3D printed structures. Additive Manufacturing, 2020, 35, 101420.	1.7	8
755	Two-scale concurrent topology optimization of lattice structures with connectable microstructures. Additive Manufacturing, 2020, 36, 101427.	1.7	34
756	Multi-layer perforated panel absorbers with oblique perforations. Applied Acoustics, 2020, 169, 107496.	1.7	13
757	Inverse Design of Mechanical Metamaterials That Undergo Buckling. Advanced Functional Materials, 2020, 30, 1909033.	7.8	34
758	The compressive response of octet lattice structures with carbon fiber composite hollow struts. Composite Structures, 2020, 239, 111999.	3.1	18
759	Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals. Nature Communications, 2020, 11, 762.	5.8	135
760	Sound absorption of acoustic resonators with oblique perforations. Applied Physics Letters, 2020, 116,	1.5	27
761	In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperatureâ€Invariant Superelasticity over One Million Compressions. Angewandte Chemie - International Edition, 2020, 59, 8285-8292.	7.2	106
762	3D Hierarchical lattice ferroelectric metamaterials. International Journal of Engineering Science, 2020, 149, 103247.	2.7	45

#	Article	IF	Citations
763	Apparent negative values of Young's moduli of lattice materials under dynamic conditions. International Journal of Engineering Science, 2020, 150, 103231.	2.7	27
764	Adaptive optical beam steering and tuning system based on electrowetting driven fluidic rotor. Communications Physics, 2020, 3, .	2.0	6
765	Manufacturing and mechanical characterisation of polyurethane resin based sandwich composites for three-dimensional fabric reinforcement. Materials Today Communications, 2020, 24, 101046.	0.9	12
766	Multifunctional liquid metal lattice materials through hybrid design and manufacturing. Additive Manufacturing, 2020, 33, 101117.	1.7	39
767	Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method. Jom, 2020, 72, 1734-1744.	0.9	8
768	Angleâ€Dependent Transitions Between Structural Bistability and Multistability. Advanced Engineering Materials, 2020, 22, 1900871.	1.6	13
769	3D printing geopolymer nanocomposites: Graphene oxide size effects on a reactive matrix. Carbon, 2020, 164, 215-223.	5.4	35
770	In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperatureâ€Invariant Superelasticity over One Million Compressions. Angewandte Chemie, 2020, 132, 8362-8369.	1.6	21
771	Extending the elastic and plastic design space of metamaterials through load-specific, multiscale inner material architectures. International Journal of Mechanical Sciences, 2020, 175, 105523.	3.6	4
772	Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nature Communications, 2020, 11, 299.	5.8	55
773	Highâ€Aspectâ€Ratio Nanostructured Surfaces as Biological Metamaterials. Advanced Materials, 2020, 32, e1903862.	11,1	161
774	Rapid Assembly of Small Materials Building Blocks (Voxels) into Large Functional 3D Metamaterials. Advanced Functional Materials, 2020, 30, 1907795.	7.8	156
775	Mechanics of beams made from chiral metamaterials: Tuning deflections through normal-shear strain couplings. Materials and Design, 2020, 189, 108520.	3.3	32
776	Multiscale characterization and constitutive parameters identification of polyamide (PA12) processed via selective laser sintering. Polymer Testing, 2020, 86, 106357.	2.3	40
777	Design of minimal mass load-bearing tensegrity lattices. Mechanics Research Communications, 2020, 103, 103477.	1.0	15
778	Bioinspired Biomaterials with a Brickâ€andâ€Mortar Microstructure Combining Mechanical and Biological Performance. Advanced Healthcare Materials, 2020, 9, e1901211.	3.9	26
779	Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices. Composite Structures, 2020, 238, 111952.	3.1	61
780	Properties of multifunctional composite materials based on nanomaterials: a review. RSC Advances, 2020, 10, 16390-16403.	1.7	60

#	Article	IF	Citations
781	Projection micro stereolithography based 3D printing and its applications. International Journal of Extreme Manufacturing, 2020, 2, 022004.	6.3	213
782	3D Freestanding DNA Nanostructure Hybrid as a Low-Density High-Strength Material. ACS Nano, 2020, 14, 6582-6588.	7.3	12
783	Strong, Ultralight Nanofoams with Extreme Recovery and Dissipation by Manipulation of Internal Adhesive Contacts. ACS Nano, 2020, 14, 8383-8391.	7.3	16
784	Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (II): Large-volume structural analysis. Acta Biomaterialia, 2020, 107, 218-231.	4.1	10
785	Compression and buckling of microarchitectured Neovius-lattice. Extreme Mechanics Letters, 2020, 37, 100688.	2.0	27
786	Acoustic-Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS Applied Materials & Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS Applied Materials & Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS Applied Materials & Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS Applied Materials & Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS Applied Materials & Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS Applied Materials & Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials.	4.0	20
787	Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomaterials Science, 2020, 8, 2714-2733.	2.6	111
788	Supportless Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling. 3D Printing and Additive Manufacturing, 2020, 7, 85-96.	1.4	47
789	Design and Testing of Bistable Lattices with Tensegrity Architecture and Nanoscale Features Fabricated by Multiphoton Lithography. Nanomaterials, 2020, 10, 652.	1.9	22
790	Design of 3D Printed Programmable Horseshoe Lattice Structures Based on a Phase-Evolution Model. ACS Applied Materials & Design (1998) ACS APPLIED & Desig	4.0	27
791	Designing complex architectured materials with generative adversarial networks. Science Advances, 2020, 6, eaaz4169.	4.7	144
792	Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. Journal of Applied Physics, 2020, 127, .	1.1	77
793	Compressive behaviours of octet-truss lattices. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 3257-3269.	1.1	15
794	Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing. Journal of Food Engineering, 2021, 290, 110212.	2.7	35
795	Fabrication, properties, and applications of open-cell aluminum foams: A review. Journal of Materials Science and Technology, 2021, 62, 11-24.	5.6	106
796	Analysis of tensile behaviour of hyperelastic auxetic cellular materials with re-entrant hexagonal cells. Journal of the Textile Institute, 2021, 112, 173-186.	1.0	6
797	A fully parameterized methodology for lattice materials with octahedron-based structures. Mechanics of Advanced Materials and Structures, 2021, 28, 1035-1048.	1.5	13
798	Energy absorption characteristics of additively manufactured plate-lattices under low-velocity impact loading. International Journal of Impact Engineering, 2021, 149, 103768.	2.4	82

#	Article	IF	CITATIONS
799	Compression performance and mechanism of superimposed sine-wave structures fabricated by selective laser melting. Materials and Design, 2021, 198, 109291.	3.3	11
800	Tomography of 3D-Printed Lattice Structured Aluminum-Silicon Alloy and Its Deformation. 3D Printing and Additive Manufacturing, 2021, 8, 42-50.	1.4	8
801	Microalloyed medium-entropy alloy (MEA) composite nanolattices with ultrahigh toughness and cyclability. Materials Today, 2021, 42, 10-16.	8.3	32
802	Impact of damage on the effective properties of network materials and on bulk and surface wave propagation characteristics. Continuum Mechanics and Thermodynamics, 2021, 33, 369-401.	1.4	2
803	Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability. International Journal of Mechanical Sciences, 2021, 189, 105981.	3.6	26
804	Additive manufacturing of three-dimensional (3D)-architected CoCrFeNiMn high- entropy alloy with great energy absorption. Scripta Materialia, 2021, 190, 46-51.	2.6	47
805	Numerical evaluation of additively manufactured lattice architectures for heat sink applications. International Journal of Thermal Sciences, 2021, 159, 106607.	2.6	30
806	Recyclable thermosetting polymers for digital light processing 3D printing. Materials and Design, 2021, 197, 109189.	3.3	74
807	Thermal performance of a 3D printed lattice-structure heat sink packaging phase change material. Chinese Journal of Aeronautics, 2021, 34, 373-385.	2.8	28
808	Self-adaptive mechanical metamaterials (SMM) using shape memory polymers for programmable postbuckling under thermal excitations. Composite Structures, 2021, 256, 113053.	3.1	8
809	Maneuverable postbuckling of extensible mechanical metamaterials using functionally graded materials and carbon nanotubes. Thin-Walled Structures, 2021, 159, 107264.	2.7	9
810	Hydrogelâ€Based Diffractive Optical Elements (hDOEs) Using Rapid Digital Photopatterning. Advanced Optical Materials, 2021, 9, 2001217.	3.6	34
811	3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chemical Engineering Journal, 2021, 416, 127885.	6.6	32
812	Direct ink writing of energy materials. Materials Advances, 2021, 2, 540-563.	2.6	120
813	Energy Absorption and Deformation Behavior of 3D Printed Triply Periodic Minimal Surface Stainless Steel Cellular Structures under Compression. Steel Research International, 2021, 92, 2000411.	1.0	25
814	Plastic deformation and energy absorption of polycrystalline-like lattice structures. Materials and Design, 2021, 198, 109321.	3.3	33
815	Thermo-expandable microspheres strengthened polydimethylsiloxane foam with unique softening behavior and high-efficient energy absorption. Applied Surface Science, 2021, 540, 148364.	3.1	29
816	3D-printed nanoporous ceramics: Tunable feedstock for direct ink write and projection microstereolithography. Materials and Design, 2021, 198, 109337.	3.3	20

#	Article	IF	CITATIONS
817	A reprogrammable mechanical metamaterial with stable memory. Nature, 2021, 589, 386-390.	13.7	242
818	Rotational snap-through behavior of multi-stable beam-type metastructures. International Journal of Mechanical Sciences, 2021, 193, 106172.	3.6	24
819	Design of mechanical metamaterial with controllable stiffness using curved beam unit cells. Composite Structures, 2021, 258, 113195.	3.1	10
820	Elastic and elasto-plastic analysis of Ti6Al4V micro-lattice structures under compressive loads. Mathematics and Mechanics of Solids, 2021, 26, 591-615.	1.5	6
821	Free and forced wave propagation in beam lattice metamaterials with viscoelastic resonators. International Journal of Mechanical Sciences, 2021, 193, 106129.	3.6	22
822	Artificial intelligence-enabled smart mechanical metamaterials: advent and future trends. International Materials Reviews, 2021, 66, 365-393.	9.4	63
823	Numerical and experimental investigations on the mechanical properties of cellular structures with open Kelvin cells. Mechanics of Advanced Materials and Structures, 2021, 28, 1367-1376.	1.5	7
824	Metamaterial-like aerogels for broadband vibration mitigation. Soft Matter, 2021, 17, 4496-4503.	1.2	6
825	A new model and direct slicer for lattice structures. Structural and Multidisciplinary Optimization, 2021, 63, 2211-2230.	1.7	5
826	Introduction to 4D printing. , 2021, , 303-342.		6
827	Effect of Thiocarbonylthio Compounds on Visible-Light-Mediated 3D Printing. Macromolecules, 2021, 54, 1170-1182.	2.2	29
828	Shape transformers for band gaps customization of Bloch-periodic triangular lattice structures. , 2021, , .		1
829	3D metal lattice structure manufacturing with continuous rods. Scientific Reports, 2021, 11, 434.	1.6	18
830	Paper-based flexible metamaterial for microwave applications. EPJ Applied Metamaterials, 2021, 8, 6.	0.8	3
831	Deep learning-assisted elastic isotropy identification for architected materials. Extreme Mechanics Letters, 2021, 43, 101173.	2.0	14
832	Scalable Fabrication of High-Performance Thin-Shell Oxide Nanoarchitected Materials <i>via</i> Proximity-Field Nanopatterning. ACS Nano, 2021, 15, 3960-3970.	7.3	11
833	Exploring the property space of periodic cellular structures based on crystal networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
834	A novel magneto-mechanical metamaterial cell structure with large, reversible and rapid two-way shape alteration. Smart Materials and Structures, 2021, 30, 035018.	1.8	7

#	Article	IF	CITATIONS
836	Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8976-8984.	4.0	34
837	Topological design of microstructures using periodic material-field series-expansion and gradient-free optimization algorithm. Materials and Design, 2021, 199, 109437.	3.3	26
838	Digital strategies for structured and architected materials design. APL Materials, 2021, 9, .	2.2	15
840	An experimental investigation of analytical vs. numerical lattice structure design tools. Mechanics of Advanced Materials and Structures, 2022, 29, 3614-3622.	1.5	3
841	Fabrication and Compressive Behavior of a Micro-Lattice Composite by High Resolution DLP Stereolithography. Polymers, 2021, 13, 785.	2.0	6
842	Prediction of effective thermal conductivity of porous lattice structures and validation with additively manufactured metal foams. Applied Thermal Engineering, 2021, 187, 116558.	3.0	26
843	Mechanically strong polyimide aerogels cross-linked with dopamine-functionalized carbon nanotubes for oil absorption. Applied Surface Science, 2021, 543, 148833.	3.1	24
844	3D printed three-dimensional metallic microlattices with controlled and tunable mechanical properties. Additive Manufacturing, 2021, 39, 101856.	1.7	9
845	The Effect of Void Arrangement on the Pattern Transformation of Porous Soft Solids under Biaxial Loading. Materials, 2021, 14, 1205.	1.3	2
846	Current challenges and potential directions towards precision microscale additive manufacturing – Part II: Laser-based curing, heating, and trapping processes. Precision Engineering, 2021, 68, 301-318.	1.8	21
847	Lattice Structure Optimization With Orientation-Dependent Material Properties. Journal of Mechanical Design, Transactions of the ASME, 2021, 143 , .	1.7	8
848	Mechanically Efficient Cellular Materials Inspired by Cuttlebone. Advanced Materials, 2021, 33, e2007348.	11.1	91
849	Adaptable Metamaterials Based on Biodegradable Composites for Bone Tissue Regeneration. Inorganic Materials: Applied Research, 2021, 12, 404-415.	0.1	4
850	Mathematical modeling of auxetic systems: bridging the gap between analytical models and observation. International Journal of Mechanical and Materials Engineering, 2021, 16, .	1.1	7
851	Functionally Graded Materials Beams Subjected to Bilateral Constraints: Structural Instability and Material Topology. International Journal of Mechanical Sciences, 2021, 194, 106218.	3.6	11
852	Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science, 2021, 371, 1026-1033.	6.0	88
853	Scalable fiber composite lattice structures via continuous spatial weaving. Composite Structures, 2021, 262, 113651.	3.1	5
854	A Novel Rapid Manufacturing Process for Metal Lattice Structure. 3D Printing and Additive Manufacturing, 2021, 8, 111-125.	1.4	10

#	Article	IF	CITATIONS
855	Mechanical properties and failure behaviour of architected alumina microlattices fabricated by stereolithography 3D printing. International Journal of Mechanical Sciences, 2021, 196, 106285.	3.6	27
856	Hollow medium-entropy alloy nanolattices with ultrahigh energy absorption and resilience. NPG Asia Materials, 2021, 13, .	3.8	34
857	Additive manufacturing of structural materials. Materials Science and Engineering Reports, 2021, 145, 100596.	14.8	254
858	3D Printing of True Pore-Scale Berea Sandstone and Digital Rock Verification. SPE Journal, 2021, 26, 3719-3724.	1.7	6
859	High-resolution stereolithography using a static liquid constrained interface. Communications Materials, $2021, 2, \ldots$	2.9	21
860	Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function. Advanced Materials Technologies, 2021, 6, 2001218.	3.0	57
861	Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Additive Manufacturing, 2021, 40, 101911.	1.7	73
862	Optimization of 3D network topology for bioinspired design of stiff and lightweight bone-like structures. Materials Science and Engineering C, 2021, 123, 112010.	3.8	8
863	Extending the reach of single-chamber inflatable soft robots using Magnetorheological Fluids. , 2021, , .		5
864	Mechanics and dynamics of two-dimensional quasicrystalline composites. Extreme Mechanics Letters, 2021, 44, 101220.	2.0	9
865	Self-Triggered Thermomechanical Metamaterials with Asymmetric Structures for Programmable Response under Thermal Excitations. Materials, 2021, 14, 2177.	1.3	7
866	Broad Tunability in mechanical properties of closed cellular foams using micro-bubble assembly of Graphene/silica Nanocomposites. Materials and Design, 2021, 202, 109558.	3.3	6
867	A review of coated nano- and micro-lattice materials. Journal of Materials Research, 2021, 36, 3607-3627.	1.2	10
868	Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers. ACS Applied Materials & Shape Memory Polymers.	4.0	39
869	The Emergence of Sequential Buckling in Reconfigurable Hexagonal Networks Embedded into Soft Matrix. Materials, 2021, 14, 2038.	1.3	5
870	Distinct Buckling Modes In Mechanical Metamaterials With Stiff Square Networks And Periodically Arranged Voids. SSRG International Journal of Engineering Trends and Technology, 2021, 69, 177-182.	0.3	0
871	Modeling meso- and microstructure in materials patterned with acoustic focusing. Materials and Design, 2021, 202, 109512.	3.3	8
872	Negative Poisson's ratio in graphene Miura origami. Mechanics of Materials, 2021, 155, 103774.	1.7	13

#	ARTICLE	IF	CITATIONS
873	Topological design of pentamode metamaterials with additive manufacturing. Computer Methods in Applied Mechanics and Engineering, 2021, 377, 113708.	3.4	24
874	Optimal and continuous multilattice embedding. Science Advances, 2021, 7, .	4.7	49
875	A review of regenerative cooling technologies for scramjets. Applied Thermal Engineering, 2021, 190, 116754.	3.0	71
876	Additive manufacturing of embedded carbon nanocomposite structures with multi-material digital light processing (MMDLP). Journal of Materials Research, 0, , $1.$	1.2	3
877	Mechanical Metamaterials Gyro-Structure Piezoelectric Nanogenerators for Energy Harvesting under Quasi-Static Excitations in Ocean Engineering. ACS Omega, 2021, 6, 15348-15360.	1.6	21
878	Decoupling Minimal Surface Metamaterial Properties Through Multiâ€Material Hyperbolic Tilings. Advanced Functional Materials, 2021, 31, 2101373.	7.8	27
879	Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption. Small, 2021, 17, e2100336.	5.2	72
880	Intelligent Soft Surgical Robots for Nextâ€Generation Minimally Invasive Surgery. Advanced Intelligent Systems, 2021, 3, 2100011.	3.3	55
881	Pragmatic generative optimization of novel structural lattice metamaterials with machine learning. Materials and Design, 2021, 203, 109632.	3.3	53
882	Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization. Nature Communications, 2021, 12, 2873.	5.8	41
883	Strength and energy absorption characteristics of Ti6Al4V auxetic 3D anti-tetrachiral metamaterials. Mechanics of Materials, 2021, 156, 103811.	1.7	22
884	Negative compressibility property in hinging open-cell Kelvin structure*. Chinese Physics B, 2021, 30, 056201.	0.7	0
885	The Twisting of Domeâ€Like Metamaterial from Brittle to Ductile. Advanced Science, 2021, 8, 2002701.	5.6	17
886	Influence of microstructure topology on the mechanical properties of powder compacted materials. International Journal of Mechanical Sciences, 2021, 198, 106353.	3.6	3
887	The Saint-Venant problem for general anisotropic piezoelectric cylinders with applications to smart metamaterials design. Applied Mathematical Modelling, 2021, 93, 831-851.	2.2	5
888	Lightweight and low thermal conducted face-centered-cubic cementitious lattice materials (FCLMs). Composite Structures, 2021, 263, 113536.	3.1	6
889	Intelligent Shape-Morphing Micromachines. Research, 2021, 2021, 9806463.	2.8	6
890	Printing between the Lines: Intricate Biomaterial Structures Fabricated via Negative Embodied Sacrificial Template 3D (NEST3D) Printing. Advanced Materials Technologies, 2021, 6, 2100189.	3.0	14

#	Article	IF	CITATIONS
891	Mechanical Properties of a Chiral Cellular Structure with Semicircular Beams. Materials, 2021, 14, 2887.	1.3	6
892	Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing. Polymers, 2021, 13, 1500.	2.0	0
893	Investigation of Compression and Buckling Properties of a Novel Surface-Based Lattice Structure Manufactured Using Multi Jet Fusion Technology. Materials, 2021, 14, 2599.	1.3	8
894	Recent Progress in Development of Wearable Pressure Sensors Derived from Biological Materials. Advanced Healthcare Materials, 2021, 10, e2100460.	3.9	30
895	Multiscale optimization of specific elastic properties and microscopic frequency band-gaps of architectured microtruss lattice materials. International Journal of Mechanical Sciences, 2021, 197, 106320.	3.6	23
896	Concurrent material and structure optimization of multiphase hierarchical systems within a continuum micromechanics framework. Structural and Multidisciplinary Optimization, 2021, 64, 1175-1197.	1.7	6
897	Synergistic effects of crystalline microstructure, architected mesostructure, and processing defects on the mechanical behaviour of Ti6Al4V meta-crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 818, 141436.	2.6	11
898	Hollow-grained "Voronoi foam―ceramics with high strength and thermal superinsulation up to 1400†°C. Materials Today, 2021, 46, 35-43.	8.3	14
899	Cellular fluidics. Nature, 2021, 595, 58-65.	13.7	106
900	Influence of defects on the effective properties of selectively laser melted cellular structures. International Journal of Advanced Manufacturing Technology, 2021, 116, 1259-1270.	1.5	1
901	A review of additive manufacturing of metamaterials and developing trends. Materials Today, 2021, 50, 303-328.	8.3	152
902	Microstructural design of tunable elastoplastic two-phase random heterogeneous materials. Materials Today Communications, 2021, 27, 102300.	0.9	0
903	From Photonic Crystals to Seismic Metamaterials: A Review via Phononic Crystals and Acoustic Metamaterials. Archives of Computational Methods in Engineering, 2022, 29, 1137-1198.	6.0	67
904	Broadband dynamic elastic moduli of honeycomb lattice materials: A generalized analytical approach. Mechanics of Materials, 2021, 157, 103796.	1.7	40
905	Roll-to-plate additive manufacturing. Optics Express, 2021, 29, 21833.	1.7	2
906	Supersonic impact resilience of nanoarchitected carbon. Nature Materials, 2021, 20, 1491-1497.	13.3	73
907	Directional instability-driven strain-dependent 3D auxetic metamaterials. International Journal of Mechanical Sciences, 2021, 199, 106408.	3.6	8
908	Liquid gating technology. Pure and Applied Chemistry, 2021, 93, 1353-1370.	0.9	17

#	Article	IF	CITATIONS
909	Microwave foaming of polymers. Journal of Materials Science, 2021, 56, 15491-15498.	1.7	5
910	Multiscale Modelling and Mechanical Anisotropy of Periodic Cellular Solids with Rigid-Jointed Truss-Like Microscopic Architecture. Applied Mechanics, 2021, 2, 331-355.	0.7	3
911	3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption. IScience, 2021, 24, 102789.	1.9	3
912	Fabrication of Nonâ€Uniform Nanolattices with Spatially Varying Geometry and Material Composition. Advanced Materials Interfaces, 2021, 8, 2100690.	1.9	7
913	Multi-scale topology optimization for minimizing structural compliance of cellular composites with connectable graded microstructures. Structural and Multidisciplinary Optimization, 2021, 64, 2609-2625.	1.7	4
914	Stiffness characteristics for a series of lightweight mechanical metamaterials with programmable thermal expansion. International Journal of Mechanical Sciences, 2021, 202-203, 106527.	3.6	22
915	Bending behavior of octet-truss lattice structures: Modelling options, numerical characterization and experimental validation. Materials and Design, 2021, 205, 109693.	3.3	44
916	Achieving adjustable elasticity with non-affine to affine transition. Nature Materials, 2021, 20, 1635-1642.	13.3	9
917	Influence of pore shape on impact dynamics characteristics of functionally graded brittle materials. Journal of Strain Analysis for Engineering Design, 0, , 030932472110297.	1.0	2
918	3D Transformable Modular Kirigami Based Programmable Metamaterials. Advanced Functional Materials, 2021, 31, 2105641.	7.8	30
919	Extrinsically Conductive Nanomaterials for Cardiac Tissue Engineering Applications. Micromachines, 2021, 12, 914.	1.4	8
920	Thermocapillary dewetting-based dynamic spatial light modulator. Optics Letters, 2021, 46, 3721.	1.7	2
921	4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nature Communications, 2021, 12, 3771.	5.8	59
922	Vat-Photopolymerization-Based Ceramic Manufacturing. Journal of Materials Engineering and Performance, 2021, 30, 4819-4836.	1.2	12
923	A novel origami mechanical metamaterial based on Miura-variant designs: exceptional multistability and shape reconfigurability. Smart Materials and Structures, 2021, 30, 085029.	1.8	17
924	Topologically engineered 3D printed architectures with superior mechanical strength. Materials Today, 2021, 48, 72-94.	8.3	37
925	Nonlinear multiscale simulation of elastic beam lattices with anisotropic homogenized constitutive models based on artificial neural networks. Computational Mechanics, 2021, 68, 1111-1130.	2,2	12
926	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	11.1	34

#	Article	IF	CITATIONS
927	In-situ synchrotron X-ray tomography investigation of the imperfect smooth-shell cylinder structure. Composite Structures, 2021, 267, 113926.	3.1	39
928	Aerogel Springâ€Back Correlates with Strain Recovery: Effect of Silica Concentration and Aging. Advanced Engineering Materials, 2021, 23, 2100376.	1.6	13
929	Spatiotemporal Projectionâ€Based Additive Manufacturing: A Dataâ€Driven Image Planning Method for Subpixel Shifting in a Split Second. Advanced Intelligent Systems, 2021, 3, 2100079.	3.3	7
930	Multifunctional porous SiC nanowire scaffolds. Journal of the European Ceramic Society, 2021, 41, 3970-3979.	2.8	7
931	Review: 3D woven honeycomb composites. Journal of Materials Science, 2021, 56, 15609-15652.	1.7	27
932	The eigenbuckling analysis of hexagonal lattices: closed-form solutions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	1.0	1
933	Carbon fiber/microlattice 3D hybrid architecture as multi-scale scaffold for tissue engineering. Materials Science and Engineering C, 2021, 126, 112140.	3.8	17
934	A computational framework for homogenization and multiscale stability analyses of nonlinear periodic materials. International Journal for Numerical Methods in Engineering, 2021, 122, 6527-6575.	1.5	5
935	石墨烯增å⅓°ç©°å¿ƒå¾®ç,¹é~µææ−™çš"å^¶å‡ä¸Žè¡¨å¾•Journal of Shanghai Jiaotong University (Science),	202035,28,	19 2 -196.
936	Shape transformers for phononic band gaps tuning in two-dimensional Bloch-periodic lattice structures. European Journal of Mechanics, A/Solids, 2021, 89, 104278.	2.1	15
937	Plate microstructures with extreme stiffness for arbitrary multi-loadings. Computer Methods in Applied Mechanics and Engineering, 2021, 381, 113778.	3.4	8
938	Multiscale analysis for <scp>3D</scp> lattice structures based on parallel computing. International Journal for Numerical Methods in Engineering, 2021, 122, 6756-6776.	1.5	2
939	Comparison of mechanical and geometrical properties of octet lattice structures using the electron beam melting. Ömer Halisdemir Üniversitesi Mýhendislik Bilimleri Dergisi, 0, , .	0.2	0
940	3D printing of carbon-based materials for supercapacitors. Journal of Materials Research, 2021, 36, 4508-4526.	1.2	7
941	A Fabrication Strategy for Reconfigurable Millimeterâ€6cale Metamaterials. Advanced Functional Materials, 2021, 31, 2103428.	7.8	12
942	Three-Dimensional Trampolinelike Behavior in an Ultralight Elastic Metamaterial. Physical Review Applied, 2021, 16, .	1.5	12
943	Bulk Ferroelectric Metamaterial with Enhanced Piezoelectric and Biomimetic Mechanical Properties from Additive Manufacturing. ACS Nano, 2021, 15, 14903-14914.	7.3	21
944	Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing. Nano Energy, 2021, 86, 106074.	8.2	43

#	Article	IF	CITATIONS
945	A morphing wing with cellular structure of non-uniform density. Smart Materials and Structures, 2021, 30, 105005.	1.8	7
946	Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: Performance, challenges, and application. Mechanics of Advanced Materials and Structures, 2022, 29, 5077-5107.	1.5	27
947	Error Analysis of Vertical Beam Inclination of Delta-Robot Three-Dimensional Printers., 2021,,.		0
948	Controlled snapping sequence and energy absorption in multistable mechanical metamaterial cylinders. International Journal of Mechanical Sciences, 2021, 204, 106541.	3.6	32
949	3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39915-39924.	4.0	17
950	Additive manufacturing of polymeric composites from material processing to structural design. Composites Part B: Engineering, 2021, 219, 108903.	5.9	122
951	Unconventional Additive Manufacturing for Multiscale Ceramic Structures. Journal of the Korean Society for Precision Engineering, 2021, 38, 639-650.	0.1	1
952	Interpenetrating Lattices with Tailorable Energy Absorption in Tension. Acta Materialia, 2021, 216, 117115.	3.8	8
953	Scalable 3D printing of aperiodic cellular structures by rotational stacking of integral image formation. Science Advances, 2021, 7, eabh1200.	4.7	17
954	Microadditive Manufacturing Technologies of 3D Microelectromechanical Systems. Advanced Engineering Materials, 2021, 23, 2100422.	1.6	10
955	3D direct printing of mechanical and biocompatible hydrogel meta-structures. Bioactive Materials, 2022, 10, 48-55.	8.6	13
956	Architected Multimaterial Lattices with Thermally Programmable Mechanical Response. Advanced Functional Materials, 2022, 32, 2105128.	7.8	44
957	Functional mechanical metamaterial with independently tunable stiffness in the three spatial directions. Materials Today Advances, 2021, 11, 100155.	2.5	12
958	Compression Experiment and Failure Analysis of Additive Manufactured Multi-Layer Lattice Sandwich Structure. International Journal of Applied Mechanics, 2021, 13, .	1.3	4
959	Three-Dimensional Photochemical Printing of Thermally Activated Polymer Foams. ACS Applied Polymer Materials, 2021, 3, 4984-4991.	2.0	9
960	Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Computer Methods in Applied Mechanics and Engineering, 2021, 383, 113894.	3.4	77
961	Ultralight and superelastic polyvinyl alcohol/SiC nanofiber/reduced graphene oxide hybrid foams with excellent thermal insulation and microwave absorption properties. Ceramics International, 2021, 47, 25986-25996.	2.3	11
962	Dual plateau stress of C15-type topologically close-packed lattice structures additive-manufactured by laser powder bed fusion. Scripta Materialia, 2021, 202, 114003.	2.6	14

#	Article	IF	CITATIONS
963	Thiol–acrylate based vitrimers: From their structure–property relationship to the additive manufacturing of self-healable soft active devices. Polymer, 2021, 231, 124110.	1.8	25
964	Tailoring Nanonetsâ€Engineered Superflexible Nanofibrous Aerogels with Hierarchical Cageâ€Like Architecture Enables Renewable Antimicrobial Air Filtration. Advanced Functional Materials, 2021, 31, 2107223.	7.8	50
965	Geometrically polarized architected dielectrics with apparent piezoelectricity. Journal of the Mechanics and Physics of Solids, 2021, 157, 104643.	2.3	14
966	Research on the printing error of tilted vertical beams in delta-robot 3D printers. Rapid Prototyping Journal, 2021, ahead-of-print, .	1.6	1
967	Mechanical responses of Ti-6Al-4V truss lattices having a combined simple-cubic and body-centered-cubic (SC-BCC) topology. Aerospace Science and Technology, 2021, 116, 106852.	2.5	21
968	Mechanical performance and defect analysis of the imperfect micro smooth gyroid cylinder shell structure. Composite Structures, 2021, 273, 114320.	3.1	23
969	An experimental investigation into the quasi-static compression behavior of open-cell aluminum foams focusing on controlling the space holder particle size. Journal of Manufacturing Processes, 2021, 70, 193-204.	2.8	17
970	Compressive responses of snap-fit Ti-6Al-4V octet-truss lattices in structure's stiffest direction. Materials and Design, 2021, 208, 109923.	3.3	7
971	Hollow-walled lattice materials by additive manufacturing: Design, manufacture, properties, applications and challenges. Current Opinion in Solid State and Materials Science, 2021, 25, 100940.	5.6	31
972	Double-wall ceramic nanolattices: Increased stiffness and recoverability by design. Materials and Design, 2021, 208, 109928.	3.3	6
973	Can confined mechanical metamaterials replace adhesives?. Extreme Mechanics Letters, 2021, 48, 101411.	2.0	13
974	Tunable band gap in distorted square lattice's phonon spectrum. Results in Physics, 2021, 29, 104697.	2.0	4
975	Radially graded porous structure design for laser powder bed fusion additive manufacturing of Ti-6Al-4V alloy. Journal of Materials Processing Technology, 2021, 296, 117186.	3.1	17
976	Multiscale investigation of the influence of geometrical imperfections, porosity, and size-dependent features on mechanical behavior of additively manufactured Ti-6Al-4V lattice struts. Materials and Design, 2021, 209, 109985.	3.3	39
977	Computer modeling of systematic processing defects on the thermal and elastic properties of open Kelvin-cell metamaterials. Journal of the European Ceramic Society, 2021, 41, 7130-7140.	2.8	4
978	Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing. Additive Manufacturing, 2021, 47, 102108.	1.7	8
979	3D printed polymeric formwork for lattice cementitious composites. Journal of Building Engineering, 2021, 43, 103074.	1.6	6
980	Single-parameter mechanical design of a 3D-printed octet truss topological scaffold to match natural cancellous bones. Materials and Design, 2021, 209, 109986.	3.3	12

#	Article	IF	Citations
981	Out-of-plane deflection of plate-like metastructures in tension due to corrugation asymmetry. International Journal of Solids and Structures, 2021, 230-231, 111154.	1.3	1
982	Vat photopolymerization of fly-like, complex micro-architectures with dissolvable supports. Additive Manufacturing, 2021, 47, 102321.	1.7	7
983	Computational homogenization of locally resonant acoustic metamaterial panels towards enriched continuum beam/shell structures. Computer Methods in Applied Mechanics and Engineering, 2021, 387, 114161.	3.4	14
984	Impact resistance of additively manufactured 3D double-U auxetic structures. Thin-Walled Structures, 2021, 169, 108373.	2.7	21
985	Guiding cellular channels of artificial nanohybrid woods for anisotropic properties and solar-thermal evaporation. Chemical Engineering Journal, 2022, 428, 132060.	6.6	13
986	Micro-fabrication of ceramics: Additive manufacturing and conventional technologies. Journal of Advanced Ceramics, 2021, 10, 1-27.	8.9	44
987	Metamaterials: Classifications and Characteristics. , 2021, , 46-46.		1
988	Design of optimized architected structures with exact size and connectivity via an enhanced multidomain topology optimization strategy. Computational Mechanics, 2021, 67, 743-762.	2.2	7
989	Optimizing film thickness to delay strut fracture in high-entropy alloy composite microlattices. International Journal of Extreme Manufacturing, 2021, 3, 025101.	6.3	12
990	Projection Microstereolithographic Microbial Bioprinting for Engineered Biofilms. Nano Letters, 2021, 21, 1352-1359.	4.5	33
992	Digital Technologies in Wholesaling and Retailing. Advances in Logistics, Operations, and Management Science Book Series, 2021, , 1297-1312.	0.3	0
993	Soap film inspired mechanical metamaterials approaching theoretical bound of stiffness across full density range. Materials Horizons, 2021, 8, 987-996.	6.4	18
994	Electronicâ€ECM: A Permeable Microporous Elastomer for an Advanced Bioâ€Integrated Continuous Sensing Platform. Advanced Materials Technologies, 2020, 5, 2000242.	3.0	14
995	The Methods of Cardiovascular 3D Printing. , 2021, , 3-14.		3
996	Mechanical responses of snap-fit Ti-6Al-4V warren-truss lattice structures. International Journal of Mechanical Sciences, 2020, 173, 105460.	3.6	20
997	Introducing Bioinspired Initiator into Resins for In Situ Repairing of 3D-Printed Metallic Structures. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49073-49079.	4.0	5
998	3D Printing of Liquid Crystal Elastomer Foams for Enhanced Energy Dissipation Under Mechanical Insult. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12698-12708.	4.0	52
999	Mechanically Robust and Reprocessable Acrylate Vitrimers with Hydrogen-Bond-Integrated Networks for Photo-3D Printing. ACS Applied Materials & Interfaces, 2021, 13, 1581-1591.	4.0	40

#	Article	IF	CITATIONS
1001	Tuning the wavelength of spoof plasmons by adjusting the impedance contrast in an array of penetrable inclusions. Applied Physics Letters, 2015, 107, 084104.	1.5	2
1002	Mimicking high strength lightweight novel structures inspired from the trabecular bone microarchitecture. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190448.	1.6	8
1003	Origami lattices and folding-induced lattice transformations. Physical Review Research, 2019, 1, .	1.3	11
1004	Improvement of Stiffness and Energy Absorption by Harnessing Hierarchical Interlocking in Brittle Polymer Blocks. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	4
1005	Cosserat Effects in Achiral and Chiral Cubic Lattices. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	12
1006	An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3D Structures. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	13
1007	Mechanics of Regular-Shape Nanomeshes for Transparent and Stretchable Devices. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	4
1008	Additive Manufacturing Review: Early Past to Current Practice. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2020, 142, .	1.3	85
1009	Thermal and Mechanical Analyses of Compliant Thermoelectric Coils for Flexible and Bio-Integrated Devices. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	13
1010	Relative Robots: Scaling Automated Assembly of Discrete Cellular Lattices. , 2016, , .		8
1011	In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials. Mathematics and Mechanics of Solids, 2021, 26, 1074-1103.	1.5	77
1012	Emerging micro-additive manufacturing technologies enabled by novel optical methods. Photonics Research, 2020, 8, 1827.	3.4	19
1013	A micromechanical approach to numerical modeling of yielding of open-cell porous structures under compressive loads. Journal of Theoretical and Applied Mechanics, 0, , 769.	0.2	10
1014	Old materials - new capabilities: lattice materials in structural mechanics. Journal of Theoretical and Applied Mechanics, 0, , 213.	0.2	4
1015	Low-velocity impact behaviour of open-cell foams. Journal of Theoretical and Applied Mechanics, 0, , 939.	0.2	3
1016	Compression testing of additively manufactured continuous carbon fiber-reinforced sandwich structures. Materialpruefung/Materials Testing, 2018, 60, 801-808.	0.8	5
1017	4D Printing of Origami Structures for Minimally Invasive Surgeries Using Functional Scaffold. Applied Sciences (Switzerland), 2021, 11, 332.	1.3	55
1018	Folding of Tubular Waterbomb. Research, 2020, 2020, 1735081.	2.8	26

#	Article	IF	CITATIONS
1019	Structure-Enhanced Mechanically Robust Graphite Foam with Ultrahigh MnO ₂ Loading for Supercapacitors. Research, 2020, 2020, 7304767.	2.8	24
1020	Shock plasticity design of brittle material. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 188301.	0.2	2
1021	Mechanical Behavior of 3D-Printed Banana Pseudostem-Like Structure. IOP Conference Series: Earth and Environmental Science, 2021, 830, 012072.	0.2	0
1022	Multi-Material Integrated Three-Dimensional Printing of Cylindrical Li-Ion Battery. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	1.3	0
1023	Built from connected nested tubes. Nature Materials, 2021, 20, 1453-1454.	13.3	2
1024	Spatially Controlled 3D Printing of Dualâ€Curing Urethane Elastomers. Advanced Materials Technologies, 2022, 7, 2100700.	3.0	3
1025	Support vector machines for predicting the compressive response of defected 3D printed polymeric sandwich structures. Journal of Engineering, Design and Technology, 2021, ahead-of-print, .	1.1	0
1026	Double-Level Energy Absorption of 3D Printed TPMS Cellular Structures via Wall Thickness Gradient Design. Materials, 2021, 14, 6262.	1.3	13
1027	Emerging Technologies in Multiâ€Material Bioprinting. Advanced Materials, 2021, 33, e2104730.	11.1	100
1028	Analysis of a reduced-order model for the simulation of elastic geometric zigzag-spring meta-materials. Computers and Graphics, 2022, 102, 187-198.	1.4	4
1029	Strength through defects: A novel Bayesian approach for the optimization of architected materials. Science Advances, 2021, 7, eabk2218.	4.7	41
1030	Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure. Nature Materials, 2021, 20, 1498-1505.	13.3	28
1031	Topology optimization design of porous infill structure with thermo-mechanical buckling criteria. International Journal of Mechanics and Materials in Design, 2022, 18, 267-288.	1.7	3
1032	Meta-Aerogels: Auxetic Shape-Memory Polyurethane Aerogels. ACS Applied Polymer Materials, 2021, 3, 5727-5738.	2.0	15
1033	Recent Progress in Nanofabrication Using Two-Photon Microfabrication. The Review of Laser Engineering, 2015, 43, 735.	0.0	0
1034	General Conclusions and Outlook. Springer Theses, 2015, , 81-88.	0.0	0
1035	TWO-LAYER PLATE MECHANICAL METAMATERIALS. , 2016, , .		1
1036	Preliminary Development of Pinwheel Model Created by Convergent Truss Structure with Biological DNA Structure. Journal of the Korea Convergence Society, 2016, 7, 181-190.	0.1	O

#	Article	IF	CITATIONS
1037	Optical 3D printing in mesoscale. , 2018, , .		0
1038	High-throughput 3D printing of customized imaging lens. , 2018, , .		2
1039	Mesoscale ultrafast laser 3D lithography: throughput in voxels-per-second. , 2018, , .		0
1040	Collapse Surfaces Of The Octet-Truss Lattice At Different Lattice Angles. , 2018, , .		О
1041	POLYMERIC HEART VALVE PROSTHESES: CONDITION AND PERSPECTIVES. Vestnik Transplantologii I Iskusstvennykh Organov, 2018, 20, 100-111.	0.1	1
1043	Mechanics Modeling of Additive Manufactured Polymers. , 2019, , 51-71.		1
1044	Fabrication Techniques for Three-Dimensional Optical Metamaterials. Springer Series in Materials Science, 2019, , 7-42.	0.4	1
1045	Investigation of Elevated Temperature Mechanical Properties of Intermetallic Compounds in the Cuâ \in "Sn System Using Nanoindentation. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142, .	1.2	6
1046	Microstructural Stress Shape Optimization Using the Level Set Method. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .	1.7	1
1047	Vat-Photopolymerization-Based Ceramic Manufacturing. , 2020, , 81-96.		1
1048	Lattice Structure Optimization With Orientation-Dependent Material Properties. , 2020, , .		0
1049	Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Materials Science and Engineering Reports, 2021, 146, 100648.	14.8	209
1050	Scalable visible light 3D printing and bioprinting using an organic light-emitting diode microdisplay. IScience, 2021, 24, 103372.	1.9	12
1051	Single point exposure LPBF for the production of biodegradable Zn-alloy lattice structures. Additive Manufacturing, 2021, 48, 102426.	1.7	13
1052	The recent development of vat photopolymerization: A review. Additive Manufacturing, 2021, 48, 102423.	1.7	67
1053	Two-Dimensional In-Plane Elastic Waves in Curved-Tapered Square Lattice Frame Structure. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	7
1054	Mechanical response of shape-recovering metamaterial structures fabricated by additive manufacturing. Materials Research Express, 0, , .	0.8	7
1055	Mimicking nature to control bio-material surface wetting and adhesion. International Materials Reviews, 2022, 67, 658-681.	9.4	50

#	Article	IF	CITATIONS
1056	Metamaterials mapped lightweight structures by principal stress lines and topology optimization: Methodology, additive manufacturing, ductile failure and tests. Materials and Design, 2021, 212, 110192.	3.3	9
1057	On the fabrication and mechanical modelling microscale bistable tensegrity systems. IOP Conference Series: Materials Science and Engineering, 0, 999, 012002.	0.3	0
1058	4D printed programmable auxetic metamaterials with shape memory effects. Composite Structures, 2022, 279, 114791.	3.1	28
1059	Multi-bionic mechanical metamaterials: A composite of FCC lattice and bone structures. International Journal of Mechanical Sciences, 2022, 213, 106857.	3 . 6	38
1060	Identifying structure-property relationships of micro-architectured porous scaffolds through 3D printing and finite element analysis. Computational Materials Science, 2022, 202, 110987.	1.4	5
1061	Additive Manufacturing of Micro-Electro-Mechanical Systems (MEMS). Micromachines, 2021, 12, 1374.	1.4	11
1062	Nanostructure Control in 3D Printed Materials. Advanced Materials, 2022, 34, e2107643.	11.1	40
1063	Design and elastic mechanical response of a novel 3D-printed hexa-chiral helical structure with negative Poisson's ratio. Materials and Design, 2021, 212, 110219.	3.3	19
1064	Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nature Communications, 2021, 12, 6458.	5.8	51
1065	Additive Manufacturing Technologies Based on Photopolymerization. , 2021, , 263-282.		0
1066	Heterogeneous compressive responses of additively manufactured Ti-6Al-4V lattice structures by varying geometric parameters of cells. International Journal of Mechanical Sciences, 2022, 214, 106922.	3.6	33
1067	Mechanical behavior of Al–Si10–Mg gyroid surface with variable topological parameters fabricated via laser powder bed fusion. Journal of Materials Research and Technology, 2021, 15, 5650-5661.	2.6	16
1068	General One-Pot Method for Preparing Highly Water-Soluble and Biocompatible Photoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Interfaces, 2021, 13, 55507-55516.	4.0	27
1069	Bamboo-inspired, simulation-guided design and 3D printing of light-weight and high-strength mechanical metamaterials. Applied Materials Today, 2022, 26, 101268.	2.3	28
1070	Hierarchical porous materials made by stereolithographic printing of photo-curable emulsions. Scientific Reports, 2021, 11, 22316.	1.6	18
1071	Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nature Communications, 2021, 12, 6599.	5.8	64
1072	3D chiral metamaterial modular design with highly-tunable tension-twisting properties. Materials Today Communications, 2022, 30, 103006.	0.9	7
1073	A Photoinduced Dualâ€Wavelength Approach for 3D Printing and Selfâ€Healing of Thermosetting Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37

#	Article	IF	CITATIONS
1074	A Photoinduced Dualâ€Wavelength Approach for 3D Printing and Selfâ€healing of Thermosetting Materials. Angewandte Chemie, 0, , .	1.6	2
1075	Engineering of polymer-based materials for thermal management solutions. Composites Communications, 2022, 29, 101048.	3.3	29
1076	Stressâ€constrained multiscale topology optimization with connectable graded microstructures using the worstâ€case analysis. International Journal for Numerical Methods in Engineering, 2022, 123, 1882-1906.	1.5	4
1077	Ultra-light kirigami lantern chain for superior impact mitigation. Extreme Mechanics Letters, 2022, 51, 101602.	2.0	3
1078	A 3D modular meta-structure with continuous mechanism motion and bistability. Extreme Mechanics Letters, 2022, 51, 101584.	2.0	4
1079	Tacticity-based one-dimensional chiral equilateral lattice for tailored wave propagation and design of elastic wave logic gate. Journal of Sound and Vibration, 2022, 521, 116671.	2.1	10
1080	Ti–6Al–4V truss lattices with a composite topology of double-simple-cubic and body-centered-cubic. European Journal of Mechanics, A/Solids, 2022, 92, 104486.	2.1	2
1081	Properties and applications of additively manufactured metallic cellular materials: A review. Progress in Materials Science, 2022, 125, 100918.	16.0	164
1083	Origin of nonlinear force distributions in a composite system. Scientific Reports, 2022, 12, 632.	1.6	3
1084	Feasible strategy for simultaneously achieving excellent frequency selective characteristic and ultralight mechanical properties. Optics Express, 2022, 30, 4492.	1.7	2
1085	Unraveling the Mechanisms Governing Anisotropy in Accordionâ€Shaped Honeycomb Microlattice Fabricated by Twoâ€Photon Polymerization. Advanced Engineering Materials, 0, , 2101190.	1.6	0
1086	Geometrical parameters and mechanical properties of Ti6Al4V hollow-walled lattices. Materials Science & Science & Properties, Microstructure and Processing, 2022, 840, 142667.	2.6	16
1087	Acoustic Metamaterials for Noise Reduction: A Review. Advanced Materials Technologies, 2022, 7, 2100698.	3.0	141
1088	Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects. Journal of Materials Science and Technology, 2022, 117, 79-98.	5. 6	29
1089	Structural and material electro-mechanical instabilities in microstructured dielectric elastomer plates. European Journal of Mechanics, A/Solids, 2022, 94, 104534.	2.1	8
1090	Multiscale topology optimization for graded cellular structures based on level set surface cutting. Structural and Multidisciplinary Optimization, 2022, 65, 1.	1.7	7
1091	Effect of surface residual stress and surface layer stiffness on mechanical properties of nanowires. Acta Mechanica, 2022, 233, 233-257.	1.1	6
1092	3D Printed Templateâ€Directed Assembly of Multiscale Graphene Structures. Advanced Functional Materials, 2022, 32, .	7.8	18

#	Article	IF	CITATIONS
1093	On Stiffness, Strength, Anisotropy, and Buckling of 30 Strutâ€Based Lattices with Cubic Crystal Structures. Advanced Engineering Materials, 2022, 24, .	1.6	21
1094	Elastically isotropic open-cell uniform thickness shell lattices with optimized elastic moduli via shape optimization. Materials and Design, 2022, 215, 110426.	3.3	10
1095	The family of elastically isotropic stretching-dominated cubic truss lattices. International Journal of Solids and Structures, 2022, 239-240, 111451.	1.3	2
1096	Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures. International Journal of Mechanical Sciences, 2022, 219, 107093.	3.6	67
1097	Variation of Poisson's Ratio with Axial Strain for Three-Dimensional Reentrant Auxetic Structures. Material Design and Processing Communications, 2022, 2022, 1-8.	0.5	1
1098	The toughness of mechanical metamaterials. Nature Materials, 2022, 21, 297-304.	13.3	61
1099	Shaping soft materials via digital light processing-based 3D printing: A review. Forces in Mechanics, 2022, 6, 100074.	1.3	29
1100	Synchronous involvement of topology and microstructure to design additively manufactured lattice structures. Additive Manufacturing, 2022, 52, 102618.	1.7	4
1101	Understanding size-dependent thermal, microstructural, mechanical behaviors of additively manufactured Ti-6Al-4V from experiments and thermo-metallurgical simulation. Journal of Manufacturing Processes, 2022, 75, 1162-1174.	2.8	7
1102	Reversible energy absorption of elasto-plastic auxetic, hexagonal, and AuxHex structures fabricated by FDM 4D printing. Smart Materials and Structures, 2022, 31, 055021.	1.8	36
1103	Transforming 3D-printed mesostructures into multimodal sensors with nanoscale conductive metal oxides. Cell Reports Physical Science, 2022, 3, 100786.	2.8	11
1104	Design method and mechanical properties of a new pipe lattice structure. Mechanics of Advanced Materials and Structures, 2023, 30, 2557-2573.	1.5	1
1105	3D Printing of Auxetic Metamaterials with Highâ€Temperature and Programmable Mechanical Properties. Advanced Materials Technologies, 2022, 7, .	3.0	15
1106	Ultrahigh thermopower waves in carbon nanotubeâ€antimony telluride composites enabled by thermal decomposition of formaldehyde. International Journal of Energy Research, 0, , .	2.2	0
1107	Experimental and Numerical Investigation of a Lattice Structure for Energy Absorption: Application to the Design of an Automotive Crash Absorber. Polymers, 2022, 14, 1116.	2.0	27
1108	Stimuli-responsive metamaterials with information-driven elastodynamics programming. Matter, 2022, 5, 988-1003.	5.0	12
1109	A New Strategy of 3D Printing Lightweight Lamellar Graphene Aerogels for Electromagnetic Interference Shielding and Piezoresistive Sensor Applications. Advanced Materials Technologies, 2022, 7, .	3.0	20
1110	A metafluid with multistable density and internal energy states. Nature Communications, 2022, 13, 1810.	5.8	5

#	Article	IF	CITATIONS
1111	Topology Optimization of Graded Truss Lattices Based on On-the-Fly Homogenization. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	12
1112	Elastic anisotropy and wave propagation properties of multifunctional hollow sphere foams. Composite Structures, 2022, , 115540.	3.1	2
1113	Program multi-directional thermal expansion in a series of bending dominated mechanical metamaterials. Thin-Walled Structures, 2022, 174, 109147.	2.7	14
1114	Geometric design, deformation mode, and energy absorption of patterned thin-walled structures. Mechanics of Materials, 2022, 168, 104269.	1.7	29
1115	Design and fabrication of architected multi-material lattices with tunable stiffness, strength, and energy absorption. Materials and Design, 2022, 217, 110613.	3.3	34
1116	Self-adaptive 3D lattice for curved sandwich structures. Additive Manufacturing, 2022, 54, 102761.	1.7	1
1117	High performance, microarchitected, compact heat exchanger enabled by 3D printing. Applied Thermal Engineering, 2022, 210, 118339.	3.0	59
1118	Characterization of a 30µm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization. Additive Manufacturing, 2022, 55, 102800.	1.7	8
1119	High-resolution and electrically conductive three-dimensional printing of carbon nanotube-based polymer composites enabled by solution intercalation. Carbon, 2022, 194, 1-9.	5.4	16
1120	A mechanical metamaterial with reprogrammable logical functions. Nature Communications, 2021, 12, 7234.	5.8	63
1121	Scalable method for bio-based solid foams that mimic wood. Scientific Reports, 2021, 11, 24306.	1.6	15
1122	Photonic and Plasmonic Metasensors. Laser and Photonics Reviews, 2022, 16, .	4.4	62
1123	Remodeling of Architected Mesenchymal Microtissues Generated on Mechanical Metamaterials. 3D Printing and Additive Manufacturing, 2022, 9, 483-489.	1.4	3
1124	The design of strongly bonded nanoarchitected carbon materials for high specific strength and modulus. Carbon, 2022, 195, 387-394.	5.4	5
1125	The coupled strength and toughness of interconnected and interpenetrating multi-material gyroids. MRS Bulletin, 2022, 47, 461-473.	1.7	4
1126	Numerical Investigation of Pentamode Mechanical Metamaterials. WSEAS Transactions on Applied and Theoretical Mechanics, 2022, 17, 47-55.	0.4	1
1127	Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science, 2022, 376, 308-312.	6.0	94
1128	Customization of two-dimensional extremal materials. Materials and Design, 2022, 218, 110657.	3.3	4

#	Article	IF	CITATIONS
1129	Multiâ€Color 3D Printing via Singleâ€Vat Grayscale Digital Light Processing. Advanced Functional Materials, 2022, 32, .	7.8	22
1130	Design and quasi-static responses of a hierarchical negative Poisson's ratio structure with three plateau stages and three-step deformation. Composite Structures, 2022, 291, 115591.	3.1	20
1131	Twin mechanical metamaterials inspired by nano-twin metals: Experimental investigations. Composite Structures, 2022, 291, 115580.	3.1	5
1135	Additive manufacturing of high aspect-ratio structures with self-focusing photopolymerization. Light Advanced Manufacturing, 2022, 3, 542.	2.2	4
1136	Fracture behaviour of octet-truss lattices in different orientations. Procedia Structural Integrity, 2022, 37, 49-56.	0.3	6
1137	Multifunctionality of Nanoengineered Selfâ€Sensing Lattices Enabled by Additive Manufacturing. Advanced Engineering Materials, 2022, 24, .	1.6	8
1138	Enhancing specific energy absorption of additively manufactured titanium lattice structures through simultaneous manipulation of architecture and constituent material. Additive Manufacturing, 2022, 55, 102887.	1.7	4
1139	Recent Advances in Cryogenic 3D Printing Technologies. Advanced Engineering Materials, 2022, 24, .	1.6	6
1140	Graded infill design within free-form surfaces by conformal mapping. International Journal of Mechanical Sciences, 2022, 224, 107307.	3.6	15
1141	Stiffness and strength evaluation of lattice-based mechanical metamaterials by decoupled two-scale analysis. Materials Today Communications, 2022, 31, 103598.	0.9	3
1142	Photopolymerisable liquid crystals for additive manufacturing. Additive Manufacturing, 2022, 55, 102861.	1.7	1
1143	Preliminary study on the effect of microstructure shape on impact compression dynamic fracture of two-dimensional brittle materials protective structures. European Journal of Mechanics, A/Solids, 2022, 95, 104625.	2.1	3
1144	Three-dimensional assembled dual-material lattice with tailorable thermal expansion: Design method, modeling, and testing. Composite Structures, 2022, 293, 115724.	3.1	7
1145	Functionally graded lightweight cement-based composites with outstanding mechanical performances via additive manufacturing. Additive Manufacturing, 2022, 56, 102911.	1.7	3
1146	Parametric visco-hyperelastic constitutive modeling of functionally graded 3D printed polymers. International Journal of Mechanical Sciences, 2022, 226, 107335.	3.6	9
1147	Deformation Taxonomy of Additively Manufactured Lattice Structures. Proceedings of the Design Society, 2022, 2, 1361-1370.	0.5	О
1148	Topology optimization of additive-manufactured metamaterial structures: A review focused on multi-material types. Forces in Mechanics, 2022, 7, 100100.	1.3	20
1149	Enhanced Cellular Materials through Multiscale, Variable-Section Inner Designs: Mechanical Attributes and Neural Network Modeling. Materials, 2022, 15, 3581.	1.3	5

#	Article	IF	CITATIONS
1150	Superelastic and Photothermal RGO/Zr-Doped TiO ₂ Nanofibrous Aerogels Enable the Rapid Decomposition of Chemical Warfare Agents. Nano Letters, 2022, 22, 4368-4375.	4. 5	15
1151	Architectural Design and Additive Manufacturing of Mechanical Metamaterials: A Review. Engineering, 2022, 17, 44-63.	3.2	44
1152	Closed-loop additive manufacturing of upcycled commodity plastic through dynamic cross-linking. Science Advances, 2022, 8, .	4.7	33
1153	Microstructured Scales in Porous Piezoresistive Vibration Sensor with Strainâ€Rateâ€Adaptive Gauge Factor. Macromolecular Materials and Engineering, 2022, 307, .	1.7	2
1154	Low Heat Capacity 3D Hollow Microarchitected Reactors for Thermal and Fluid Applications. Energies, 2022, 15, 4073.	1.6	2
1155	Bionic polycellular structures for axial compression. International Journal of Mechanical Sciences, 2022, 226, 107428.	3.6	24
1156	Asymmetric chiral and antichiral mechanical metamaterials with tunable Poisson's ratio. APL Materials, 2022, 10, .	2.2	9
1157	Calculating bandgaps of nonlinear mechanical metamaterials. Modern Physics Letters B, 0, , .	1.0	1
1158	Review: Auxetic Polymer-Based Mechanical Metamaterials for Biomedical Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2798-2824.	2.6	25
1159	Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science, 2022, 376, 1287-1293.	6.0	90
1160	Programmable Auxeticity in Hydrogel Metamaterials via Shapeâ€Morphing Unit Cells. Advanced Science, 2022, 9, .	5.6	9
1161	Defect control in digital light processing of high-solid-loading ceramic core. Ceramics International, 2022, 48, 28739-28744.	2.3	12
1162	Programmable gear-based mechanical metamaterials. Nature Materials, 2022, 21, 869-876.	13.3	65
1164	Three-Dimensional Open Water Microchannel Transpiration Mimetics. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30435-30442.	4.0	13
1165	Highâ€Precision 3D Printing of Highâ€Strength Polymerâ€Derived Ceramics: Impact of Precursor's Molecular Structure. Advanced Engineering Materials, 2022, 24, .	1.6	5
1166	Responsive materials architected in space and time. Nature Reviews Materials, 2022, 7, 683-701.	23.3	80
1167	Cuttleboneâ€Derived Interfacial Solar Evaporators for Longâ€Term Desalination and Water Harvesting. Advanced Sustainable Systems, 2022, 6, .	2.7	4
1168	Quasi-static compressive mechanical properties of multilayer micro-lattice biomaterials for skull repair. Materials and Design, 2022, 220, 110871.	3.3	4

#	Article	IF	CITATIONS
1169	Mechanical properties of unidirectional nanoporous gold under compression. Acta Materialia, 2022, 235, 118078.	3.8	5
1170	Hierarchical Fe6W6C enabling ultra-strong porous tungsten. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143466.	2.6	2
1171	Fabrication and experimental characterisation of a bistable tensegrity-like unit for lattice metamaterials. Additive Manufacturing, 2022, 57, 102946.	1.7	5
1172	On the assessment of the mechanical properties of additively manufactured lattice structures. Engineering Analysis With Boundary Elements, 2022, 142, 93-116.	2.0	20
1173	Closed tubular mechanical metamaterial as lightweight load-bearing structure and energy absorber. Journal of the Mechanics and Physics of Solids, 2022, 167, 104957.	2.3	15
1174	3D printed architected lattice structures by material jetting. Materials Today, 2022, 59, 107-132.	8.3	39
1175	Deployable mechanical metamaterials with multistep programmable transformation. Science Advances, 2022, 8, .	4.7	43
1176	The Tessellation Rule and Properties Programming of Origami Metasheets Built with a Mixture of Rigid and Non-Rigid Square-Twist Patterns. Engineering, 2022, 17, 82-92.	3.2	6
1177	Design of lightweight and ultrastrong nanoarchitected carbon by a coarse-grained model. Composites Part A: Applied Science and Manufacturing, 2022, 161, 107066.	3.8	1
1178	A class of periodic lattices for tuning elastic instabilities. Extreme Mechanics Letters, 2022, 55, 101839.	2.0	3
1179	PEG-in-PDMS drops stabilised by soft silicone skins as a model system for elastocapillary emulsions with explicit morphology control. Journal of Colloid and Interface Science, 2022, , .	5.0	0
1180	Tunable infrared meta-absorber with single- and dual-absorption resonances. Surfaces and Interfaces, 2022, 32, 102178.	1.5	9
1181	On the compressive strength of brittle lattice metamaterials. International Journal of Solids and Structures, 2022, 257, 111871.	1.3	8
1182	Compositional optimization of high-solid-loading ceramic cores via 3D printing. Additive Manufacturing, 2022, 58, 103054.	1.7	1
1183	Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers. Nature Communications, 2022, 13 , .	5.8	39
1184	A Method for 3D Printing and Rapid Prototyping of Fieldable Untethered Soft Robots. Soft Robotics, 2023, 10, 292-300.	4.6	10
1185	Hierarchically porous ceramics via direct writing of preceramic polymer-triblock copolymer inks. Materials Today, 2022, 58, 71-79.	8.3	30
1186	Reversibly Compressible Supramolecular Aerogels with Low Density and Sound Insulation Performance. Advanced Materials Interfaces, 2022, 9, .	1.9	2

#	Article	IF	CITATIONS
1187	3D Printed Biohybrid Microsystems. Advanced Materials Technologies, 2023, 8, .	3.0	5
1188	Debonding analysis via digital volume correlation during in-situ pull-out tests on fractal fibers. Composites Part C: Open Access, 2022, 9, 100302.	1.5	2
1189	Polyurethane (<scp>PU</scp>) based multifunctional materials: Emerging paradigm for functional textiles, smart, and biomedical applications. Journal of Applied Polymer Science, 2022, 139, .	1.3	19
1190	Bubble Templated Flexible Ceramic Nanofiber Aerogels with Cascaded Resonant Cavities for High-Temperature Noise Absorption. ACS Nano, 2022, 16, 13740-13749.	7.3	25
1191	Hierarchical and fractal structured materials: Design, additive manufacturing and mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072211219.	0.7	1
1192	Growing designability in structural materials. Nature Materials, 2022, 21, 968-970.	13.3	8
1193	A Unit Cell with Tailorable Negative Thermal Expansion Based On a Bolted Additively Manufactured Auxetic Mechanical Metamaterial Structure: Development and Investigation., 2023,, 198-211.		3
1194	Superelastic graphene aerogel-based metamaterials. Nature Communications, 2022, 13, .	5.8	41
1195	Achieving the theoretical limit of strength in shell-based carbon nanolattices. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
1196	A novel strategy for designable alloy coatings in electroless plating. Transactions of the Institute of Metal Finishing, 2023, 101, 101-112.	0.6	2
1197	Thermal transport in 3D printed shape memory polymer metamaterials. APL Materials, 2022, 10, .	2.2	7
1198	Nanoarchitected metal/ceramic interpenetrating phase composites. Science Advances, 2022, 8, .	4.7	25
1199	Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges. Journal of Manufacturing Processes, 2022, 81, 1040-1063.	2.8	55
1200	Fracture resistance of 3D nano-architected lattice materials. Extreme Mechanics Letters, 2022, 56, 101883.	2.0	6
1201	FFT-based Inverse Homogenization for Cellular Material Design. International Journal of Mechanical Sciences, 2022, 231, 107572.	3.6	4
1202	Responsive friction modulation of 3D printed elastomeric bioinspired structures. Tribology International, 2022, 175, 107823.	3.0	3
1203	Micro-mechano-morphology-informed continuum damage modeling with intrinsic 2nd gradient (pantographic) grain–grain interactions. International Journal of Solids and Structures, 2022, 254-255, 111880.	1.3	6
1204	A 3D metamaterial with negative stiffness for six-directional energy absorption and cushioning. Thin-Walled Structures, 2022, 180, 109963.	2.7	12

#	Article	IF	Citations
1205	Tunable mechanical performance of additively manufactured plate lattice metamaterials with half-open-cell topology. Composite Structures, 2022, 300, 116172.	3.1	10
1206	Compressive property of a hybrid hierarchical metamaterial. Materials Today Communications, 2022, 33, 104260.	0.9	O
1207	Numerical Study on the Quantitative Structure-Property Relation of Lattice Truss Metals. Materials Transactions, 2022, 63, 1317-1322.	0.4	1
1208	Superior compressive performance of hierarchical origami-corrugation metallic sandwich structures based on selective laser melting. Composite Structures, 2022, 300, 116181.	3.1	4
1209	Lightweight lattice-based skeleton of the sponge Euplectella aspergillum: On the multifunctional design. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 135, 105448.	1.5	6
1210	Intelligent additive manufacturing and design: state of the art and future perspectives. Additive Manufacturing, 2022, 59, 103139.	1.7	12
1211	Mn doping accelerates regeneration of Fe2+ in FeOOH and promotes efficient H2O2 activation for degradation of As(III). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130166.	2.3	5
1212	Physical realization and experimental validation of effective phononic crystals for control of radial torsional waves. Journal of Sound and Vibration, 2022, 540, 117305.	2.1	5
1213	Micro/nano functional devices fabricated by additive manufacturing. Progress in Materials Science, 2023, 131, 101020.	16.0	55
1214	Fatigue crack propagation of differently oriented octet-truss lattices. International Journal of Fatigue, 2023, 166, 107250.	2.8	1
1215	Modeling Three-Dimensional-Printed Polymer Lattice Metamaterial Recovery After Cyclic Large Deformation. , 2022, 1 , .		0
1216	Moisture-sensitive mechanical metamaterials with unusual and re-programmable hygroscopic deformation modes. Materials Horizons, 2022, 9, 2835-2845.	6.4	4
1217	Mechanostructures: Rational mechanical design, fabrication, performance evaluation, and industrial application of advanced structures. Progress in Materials Science, 2023, 131, 101021.	16.0	30
1218	Using Mechanical Metamaterials in Guitar Top Plates: A Numerical Study. Applied Sciences (Switzerland), 2022, 12, 8619.	1.3	4
1219	Introduction of Graphene/h-BN Metamaterial as Neutron Radiation Shielding by Implementing Monte Carlo Simulation. Materials, 2022, 15, 6667.	1.3	8
1220	Influence of dimension, building position, and orientation on mechanical properties of EBM lattice Ti6Al4V trusses. International Journal of Advanced Manufacturing Technology, 2022, 122, 3183-3198.	1.5	10
1221	3D printing of void-free glass monoliths: rheological and geometric considerations. Rheologica Acta, 2022, 61, 773-784.	1.1	2
1222	Minimal model of an active solid deviates from equilibrium mechanics. European Physical Journal B, 2022, 95, .	0.6	2

#	Article	IF	Citations
1223	Lightweight, ultra-tough, 3D-architected hybrid carbon microlattices. Matter, 2022, 5, 4029-4046.	5.0	13
1224	Mechanical Profile of Smooth Cellular Materials. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2023, 145, .	1.3	3
1225	Systematic design of Cauchy symmetric structures through Bayesian optimization. International Journal of Mechanical Sciences, 2022, 236, 107741.	3.6	19
1226	Fabrication of silica-based ceramic cores with internal lattice structures by stereolithography. China Foundry, 2022, 19, 369-379.	0.5	5
1227	Hierarchical Porous Structure Fabrication via Hybrid Stereolithography and Inkjet Printing with Sacrificial Liquid. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 0, , 1-21.	1.3	0
1228	Superior mechanical properties by exploiting size-effects and multiscale interactions in hierarchically architected foams. Extreme Mechanics Letters, 2022, 57, 101899.	2.0	5
1229	3D lightweight mechanical metamaterial with nearly isotropic inelastic large deformation response. Journal of the Mechanics and Physics of Solids, 2022, 169, 105057.	2.3	11
1230	Robust and Multifunctional Kirigami Electronics with a Tough and Permeable Aramid Nanofiber Framework. Advanced Materials, 2022, 34, .	11.1	18
1231	3D Auxetic Metamaterials with Elasticallyâ€Stable Continuous Phase Transition. Advanced Science, 2022, 9, .	5.6	12
1232	A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples. Nature Biomedical Engineering, 2023, 7, 135-148.	11.6	11
1233	Hyperelastic Kevlar Nanofiber Aerogels as Robust Thermal Switches for Smart Thermal Management. Advanced Materials, 2023, 35, .	11.1	28
1234	High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid. Nature Communications, 2022, 13, .	5 . 8	16
1235	On the Effect of Lattice Topology on Mechanical Properties of SLS Additively Manufactured Sheet-, Ligament-, and Strut-Based Polymeric Metamaterials. Polymers, 2022, 14, 4583.	2.0	8
1236	Biomimetic Robust Allâ€Polymer Porous Coatings for Passive Daytime Radiative Cooling. Macromolecular Rapid Communications, 2023, 44, .	2.0	4
1237	Decoupling toughness and strength through architected plasticity. Extreme Mechanics Letters, 2022, 57, 101912.	2.0	3
1238	Light-sheet 3D microprinting via two-colour two-step absorption. Nature Photonics, 2022, 16, 784-791.	15.6	50
1239	A review on the research progress of mechanical meta-structures and their applications in rail transit. , 2022, 1 , .		1
1240	Stereolithography 3D printing of Si3N4 cellular ceramics with ultrahigh strength by using highly viscous paste. Ceramics International, 2023, 49, 6984-6995.	2.3	7

#	Article	IF	CITATIONS
1241	Additive Manufacturing of Energy Storage Devices. , 2023, , 51-83.		0
1242	Al-aided design of multiscale lattice metastructures for controllable anisotropy. Materials and Design, 2022, 223, 111254.	3.3	4
1243	Bandgap and Vibration Suppression Mechanisms of Novel Starâ€Shaped Hybrid Metamaterials. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	2
1244	Reprogrammable flexible mechanical metamaterials. Applied Materials Today, 2022, 29, 101662.	2.3	9
1245	Data-driven multi-objective optimization of ultralight hierarchical origami-corrugation meta-sandwich structures. Composite Structures, 2023, 303, 116334.	3.1	4
1246	Novel slow-sound lattice absorbers based on the sonic black hole. Composite Structures, 2023, 304, 116434.	3.1	14
1247	A novel design of vibration isolator with high and frequency dependent damping characteristics based on a Large Negative Poisson's Ratio (LNPR) structure. Mechanical Systems and Signal Processing, 2023, 186, 109818.	4.4	4
1248	Particle-reinforced ultralight hollow Ni-P-B4C microlattice composite materials. Materials Letters, 2023, 331, 133438.	1.3	2
1249	On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers, 2022, 14, 4698.	2.0	23
1250	Single-digit-micrometer-resolution continuous liquid interface production. Science Advances, 2022, 8,	4.7	13
1251	Bayesian optimization for mixed-variable, multi-objective problems. Structural and Multidisciplinary Optimization, 2022, 65, .	1.7	6
1252	Anisotropic Metallic Microlattice Structures for Underwater Operations. Advanced Engineering Materials, 2023, 25, .	1.6	2
1253	Architected frames for elastic wave attenuation: Experimental validation and local tuning via affine transformation. Applied Physics Letters, 2022, 121, .	1.5	3
1254	Optimal Design of Three-Dimensional Voxel Printed Multimaterial Lattice Metamaterials via Machine Learning and Evolutionary Algorithm. Physical Review Applied, 2022, 18, .	1.5	5
1255	3D conductive material strategies for modulating and monitoring cells. Progress in Materials Science, 2023, 133, 101041.	16.0	3
1256	A beam model for duoskelion structures derived by asymptotic homogenization and its application to axial loading problems. European Journal of Mechanics, A/Solids, 2023, 98, 104848.	2.1	5
1257	Liquid metal lattice materials with simultaneously high strength and reusable energy absorption. Applied Materials Today, 2022, 29, 101671.	2.3	2
1258	Fabrication of three-dimensional opal nanolattices using template-directed colloidal assembly. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2022, 40, .	0.6	4

#	Article	IF	CITATIONS
1259	Mechanical nanolattices printed using nanocluster-based photoresists. Science, 2022, 378, 768-773.	6.0	20
1260	Automated Folding of Origami Lattices: From Nanopatterned Sheets to Stiff Metaâ€Biomaterials. Small, 2023, 19, .	5.2	3
1261	Tailoring Structureâ€Borne Sound through Bandgap Engineering in Phononic Crystals and Metamaterials: A Comprehensive Review. Advanced Functional Materials, 2023, 33, .	7.8	37
1262	Embedded 3D Printing of Multimaterial Polymer Lattices via Graphâ€Based Print Path Planning. Advanced Materials, 2023, 35, .	11.1	20
1263	3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications. Journal of Materials Chemistry A, 2023, 11, 512-547.	5.2	52
1264	Level set-based topological design of multiphase micro-architectured materials using alternating active-phase method. Materials and Design, 2023, 225, 111448.	3.3	3
1265	Nanonet-/fiber-structured flexible ceramic membrane enabling dielectric energy storage. Journal of Advanced Ceramics, 2023, 12, 145-154.	8.9	4
1266	Ultrastrong and damage-tolerant ceramic architectures via 3D printing. Additive Manufacturing, 2023, 61, 103361.	1.7	0
1267	Study on crashworthiness of nature-inspired functionally graded lattice metamaterials for bridge pier protection against ship collision. Engineering Structures, 2023, 277, 115404.	2.6	20
1268	Data-driven design of biometric composite metamaterials with extremely recoverable and ultrahigh specific energy absorption. Composites Part B: Engineering, 2023, 251, 110468.	5.9	8
1269	Deformation behaviors and damaging mechanisms of wood-pile structures printed by two-photon polymerization. Optics and Laser Technology, 2023, 159, 108971.	2.2	0
1270	Microstructure and Properties of Hollow Octet Nickel Lattice Materials. Materials, 2022, 15, 8417.	1.3	3
1271	A review on additive manufacturing of wave controlling metamaterial. International Journal of Advanced Manufacturing Technology, 2023, 124, 647-680.	1.5	5
1272	Digital light processingâ€based multiâ€material bioprinting: Processes, applications, and perspectives. Journal of Biomedical Materials Research - Part A, 2023, 111, 527-542.	2.1	10
1273	Extreme Specific Stiffness Through Interactive Cellular Networks in Biâ€Level Microâ€Topology Architected Metamaterials. Advanced Engineering Materials, 2023, 25, .	1.6	5
1274	Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices. Science and Technology of Advanced Materials, 2023, 24, .	2.8	8
1275	Additive manufacturing and characterization of microstructure evolution of Inconel 718 superalloy produced by vat photopolymerization. Additive Manufacturing, 2023, 61, 103367.	1.7	2
1276	Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nature Communications, 2022, 13, .	5.8	40

#	Article	IF	Citations
1277	Lightweight and Strong Ceramic Network with Exceptional Damage Tolerance. ACS Nano, 2023, 17, 1166-1173.	7. 3	10
1278	Bio-inspired vertex modified lattice with enhanced mechanical properties. International Journal of Mechanical Sciences, 2023, 244, 108081.	3.6	16
1280	Kirigami-inspired metamaterials for programming constitutive laws: Mixed-mode multidirectional auxeticity and contact-induced stiffness modulation. IScience, 2022, 25, 105656.	1.9	4
1281	Mechanics of 3D-Printed Polymer Lattices with Varied Design and Processing Strategies. Polymers, 2022, 14, 5515.	2.0	5
1282	Macroscale Fabrication of Lightweight and Strong Porous Carbon Foams through Templateâ€Coating Pair Design. Advanced Materials, 2023, 35, .	11.1	3
1283	Flows in Straws: Viscous Flows in One-Dimensional Metamaterial. Physical Review Applied, 2022, 18, .	1.5	0
1284	Manufacturing size effect on the structural and mechanical properties of additively manufactured Ti-6Al-4V microbeams. Journal of Materials Science and Technology, 2023, 149, 18-30.	5.6	6
1285	3D printing of hollow geometries using blocking liquid substitution stereolithography. Scientific Reports, 2023, 13, .	1.6	2
1286	Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption. International Journal of Mechanical Sciences, 2023, 246, 108102.	3.6	67
1287	Characterizing light engine uniformity and its influence on liquid crystal display based vat photopolymerization printing. Additive Manufacturing, 2023, 62, 103381.	1.7	4
1288	A comprehensive review of the thermal cracking stability of endothermic hydrocarbon fuels. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105867.	2.6	8
1289	Strut and sheet metal lattices produced via AM-assisted casting and powder bed fusion: A comparative study. Additive Manufacturing Letters, 2023, 4, 100118.	0.9	3
1290	In-plane elastic properties of the Euplectella aspergillum inspired lattice structures: Analytic modelling, finite element modelling and experimental validation. Structures, 2023, 48, 962-975.	1.7	3
1291	Design and characterization of 3-D printed hydrogel lattices with anisotropic mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105652.	1.5	1
1292	Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review. Materials Today Communications, 2023, 34, 105285.	0.9	17
1293	Photocured, highly flexible, and stretchable 3D-printed graphene/polymer nanocomposites for electrocardiography and electromyography smart clothing. Progress in Organic Coatings, 2023, 176, 107378.	1.9	8
1294	Dielectrically Graded Insulation Using Lattice Material: Concept and Numerical Exemplification. , 2022,		1
1295	Analysis and optimization of strut-based lattice structures by simplified finite element method. Acta Mechanica, 2023, 234, 1381-1408.	1.1	2

#	Article	IF	CITATIONS
1296	Moldable Carbon Dot-Linked Elastomers for Three-Dimensional Arbitrary Fluorescent Structures. ACS Applied Nano Materials, 2023, 6, 804-810.	2.4	1
1297	Photo-cross-linkable hyaluronic acid bioinks for bone and cartilage tissue engineering applications. International Materials Reviews, 2023, 68, 901-942.	9.4	15
1298	Synthesis and Properties of Octet NiCr Alloy Lattices Obtained by the Pack Cementation Process. Applied Sciences (Switzerland), 2023, 13, 1684.	1.3	0
1299	3D Laser Nanoprinting of Functional Materials. Advanced Functional Materials, 2023, 33, .	7.8	8
1300	New Class of Multifunctional Bioinspired Microlattice with Excellent Sound Absorption, Damage Tolerance, and High Specific Strength. ACS Applied Materials & Samp; Interfaces, 2023, 15, 9940-9952.	4.0	27
1301	Porous liquid metal–elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics. Science Advances, 2023, 9, .	4.7	29
1302	Architected lightweight, sound-absorbing, and mechanically efficient microlattice metamaterials by digital light processing 3D printing. Virtual and Physical Prototyping, 2023, 18, .	5. 3	19
1303	Buckling of Metamaterial-Based Cylindrical Shells under Axial Compression. , 2023, , .		0
1304	Non-Fourier thermal wave in 2D cellular metamaterials: From transient heat propagation to harmonic band gaps. International Journal of Heat and Mass Transfer, 2023, 205, 123917.	2.5	9
1305	Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity. Nature Communications, 2023, 14 , .	5.8	12
1306	A quasi-zero-stiffness elastic metamaterial for energy absorption and shock attenuation. Engineering Structures, 2023, 280, 115687.	2.6	15
1307	Architected microlattices for structural and functional applications: Lessons from nature. Matter, 2023, 6, 1082-1095.	5.0	1
1308	Tunable properties and responses of architected lattice-reinforced cementitious composite components induced by versatile cell topology and distributions. Composite Structures, 2023, 312, 116850.	3.1	3
1309	Controlling auxeticity in curved-beam metamaterials via a deep generative model. Computer Methods in Applied Mechanics and Engineering, 2023, 410, 116032.	3.4	8
1310	Chiral-based mechanical metamaterial with tunable normal-strain shear coupling effect. Engineering Structures, 2023, 284, 115952.	2.6	8
1311	Discovery of quasi-disordered truss metamaterials inspired by natural cellular materials. Journal of the Mechanics and Physics of Solids, 2023, 175, 105294.	2.3	4
1312	Accelerated Design of Architected Materials with Multifidelity Bayesian Optimization. Journal of Engineering Mechanics - ASCE, 2023, 149, .	1.6	2
1313	Experimental and numerical investigation of 3D printed bio-inspired lattice structures for mechanical behaviour under Quasi static loading conditions. Materials Today Communications, 2023, 35, 105658.	0.9	6

#	Article	IF	CITATIONS
1314	4D printed TMP origami metamaterials with programmable mechanical properties. International Journal of Mechanical Sciences, 2023, 250, 108275.	3.6	9
1315	Effect of micro-hole shape and arrangement on the impact properties of three-dimensional isotropic brittle structures. Theoretical and Applied Fracture Mechanics, 2023, 125, 103875.	2.1	1
1316	The ABH-based lattice structure for load bearing and vibration suppression. International Journal of Mechanical Sciences, 2023, 252, 108378.	3.6	14
1317	Singularity of lithosphere mass density over the mid-ocean ridges and implication on floor depth and heat flow. Geoscience Frontiers, 2023, 14, 101591.	4.3	1
1318	Enhanced thermal and mechanical performance of 3D architected micro-channel heat exchangers. Heliyon, 2023, 9, e13902.	1.4	3
1319	Micro-holes' effect on energy absorption ability in three-dimensional brittle materials under impact loading: A preliminary research. Structures, 2023, 52, 220-229.	1.7	0
1320	3D Printed Nonuniform Auxetic Structure: Programmable Local Stiffness to Improve Mechanical Property by Avoiding Buckling. International Journal of Applied Mechanics, 2022, 14, .	1.3	5
1321	Compressive mechanical properties and dynamic behaviour of origami-inspired tri-directional auxetic metastructure. Engineering Structures, 2023, 281, 115751.	2.6	6
1322	3D Printed Grapheneâ€Based Metamaterials: Guesting Multiâ€Functionality in One Gain. Small, 2023, 19, .	5.2	15
1323	Research on the coating formation of Al-induced electroless plating on metallic surfaces. Journal of Materials Science, 2023, 58, 3768-3789.	1.7	4
1324	Second-order computational homogenisation enhanced with non-uniform body forces for non-linear cellular materials and metamaterials. Computer Methods in Applied Mechanics and Engineering, 2023, 407, 115931.	3.4	8
1325	Mechanical Properties of Internally Hierarchical Multiphase Lattices Inspired by Precipitation Strengthening Mechanisms. ACS Applied Materials & Strengthening Mechanisms. ACS Applied Materials & Strengthening Mechanisms.	4.0	6
1326	The effect of geometric imperfections on the mechanical response of isotropic closed-cell plate lattices. Mechanics Research Communications, 2023, 128, 104073.	1.0	1
1327	Bioinspired Flexible and Programmable Negative Stiffness Mechanical Metamaterials. Advanced Intelligent Systems, 2023, 5, .	3.3	11
1328	Grayscale Digital Light Processing Gradient Printing for Stress Concentration Reduction and Material Toughness Enhancement. Journal of Applied Mechanics, Transactions ASME, 2023, 90, .	1.1	5
1329	Additively Manufactured Mechanical Metamaterialâ€Based Pressure Sensor with Tunable Sensing Properties for Stance and Motion Analysis. Advanced Engineering Materials, 2023, 25, .	1.6	2
1330	Machine learning and experiments: A synergy for the development of functional materials. MRS Bulletin, 2023, 48, 142-152.	1.7	4
1331	Experimental and Numerical Modal Characterization for Additively Manufactured Triply Periodic Minimal Surface Lattice Structures: Comparison between Freeâ€Size and Homogenizationâ€Based Optimization Methods. Advanced Engineering Materials, 2023, 25, .	1.6	2

#	ARTICLE	IF	CITATIONS
1332	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7. 3	238
1333	Extreme hardness via nanoscale confinement effects in ultra-low density carbon matrix nanocomposites. Carbon, 2023, 207, 245-260.	5.4	0
1334	An Innovative Method to Analyse the Geometrical Accuracy of Ti6Al4V Octet-Truss Lattice Structures. Materials, 2023, 16, 2372.	1.3	2
1335	Topology optimization of self-supporting lattice structure. Additive Manufacturing, 2023, 67, 103507.	1.7	6
1336	Acoustic metasurfaces and topological phononics for acoustic/elastic device design. Japanese Journal of Applied Physics, 2023, 62, SJ0803.	0.8	3
1337	Multimaterial 3D printed self-locking thick-panel origami metamaterials. Nature Communications, 2023, 14, .	5.8	22
1338	Research on Interdisciplinary Design Thinking and Methods Based on Programmable Mechanical Metamaterials. Buildings, 2023, 13, 933.	1.4	2
1339	Biomimetic Design and Topology Optimization of Discontinuous Carbon Fiber-Reinforced Composite Lattice Structures. Biomimetics, 2023, 8, 148.	1.5	2
1340	3Dâ€Printed Micro/Nanoâ€Scaled Mechanical Metamaterials: Fundamentals, Technologies, Progress, Applications, and Challenges. Small, 2023, 19, .	5.2	20
1341	Bioinspired Adhesive Manufactured by Projection Microstereolithography 3D Printing Technology and Its Application. Advanced Materials Interfaces, 2023, 10, .	1.9	3
1342	Multiscale architected porous materials for renewable energy conversion and storage. Energy Storage Materials, 2023, 59, 102768.	9.5	6
1343	Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nature Communications, 2023, 14, .	5.8	14
1344	Mechanical characterisation of novel aperiodic lattice structures. Materials and Design, 2023, 229, 111922.	3.3	5
1345	Architected Piezoelectric Metamaterial with Designable Full Nonzero Piezoelectric Coefficients. Journal of Applied Mechanics, Transactions ASME, 0, , 1-18.	1.1	1
1346	Mechanical response and energy absorption of bridge block with negative Poisson's ratio. Soil Dynamics and Earthquake Engineering, 2023, 171, 107972.	1.9	2
1347	3D Chiral Microâ€Pinwheels Based on Rollingâ€Up Kirigami Technology. Small Methods, 2023, 7, .	4.6	3
1348	Shape memory mechanical metamaterials. Materials Today, 2023, 66, 36-49.	8.3	19
1349	Encoding and Storage of Information in Mechanical Metamaterials. Advanced Science, 2023, 10, .	5.6	8

#	Article	IF	CITATIONS
1350	Interpenetrating Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities. ACS Applied Materials & Samp; Interfaces, 2023, 15, 24868-24879.	4.0	6
1352	Non-affinity: The emergence of networks from amorphous planar graphs. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	1
1360	Mechanical metamaterials., 2023,, 15-60.		0
1361	Plate lattice metamaterials. , 2023, , 267-323.		0
1433	Mechanical Metamaterials for Sensor and Actuator Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2024, 11, 291-320.	2.7	2
1444	Mechanical metamaterials and beyond. Nature Communications, 2023, 14, .	5.8	18
1446	Disordered mechanical metamaterials. Nature Reviews Physics, 2023, 5, 679-688.	11.9	4
1453	Auxetic Materials for Biomedical and Tissue Engineering. Materials Horizons, 2023, , 1-36.	0.3	0
1487	Applications and Limitations of Additive Manufacturing Techniques for Manufacturing Components of Aerospace Industry. Lecture Notes in Mechanical Engineering, 2024, , 11-19.	0.3	0
1494	Design of Operators' Cabins for Mineral Processing Plants Using Specially Fabricated Acoustic Material With Simple Expansion Chamber Structure. Springer Proceedings in Earth and Environmental Sciences, 2023, , 376-386.	0.2	0
1529	The physics of 3D printing with light. Nature Reviews Physics, 2024, 6, 99-113.	11.9	4
1552	3D bioprinting of microorganisms: principles and applications. Bioprocess and Biosystems Engineering, 2024, 47, 443-461.	1.7	1
1553	Energy absorption of AlSi10Mg origami cellular structures fabricated via laser powder bed fusion. MRS Communications, 0, , .	0.8	0
1585	Experimental Analysis ofÂStrain andÂThermal Behaviour onÂ3D Printed Flexible Auxetic Structures. Advanced Structured Materials, 2024, , 85-102.	0.3	0
1587	Architected Lattice-Reinforced Composites for Cementitious Material and Asphalt Concrete Toward Lightweight and Energy Absorption. Lecture Notes in Civil Engineering, 2024, , 769-778.	0.3	0