Dengue outlook for the World Cup in Brazil: an early wa real-time seasonal climate forecasts

Lancet Infectious Diseases, The 14, 619-626 DOI: 10.1016/s1473-3099(14)70781-9

Citation Report

#	Article	IF	CITATIONS
1	Perceptions of representatives of a committee against dengue in the health education actions, Goiás, Brazil Revista Da Escola De Enfermagem Da U S P, 2014, 48, 94-99.	0.3	2
2	Dengue and the World Football Cup: A Matter of Timing. PLoS Neglected Tropical Diseases, 2014, 8, e3022.	1.3	3
3	Risk of Dengue for Tourists and Teams during the World Cup 2014 in Brazil. PLoS Neglected Tropical Diseases, 2014, 8, e3063.	1.3	25
4	Modeling tools for dengue risk mapping - a systematic review. International Journal of Health Geographics, 2014, 13, 50.	1.2	97
5	Dengue outlook for the World Cup in Brazil. Lancet Infectious Diseases, The, 2014, 14, 552-553.	4.6	13
6	Journal Roundup. Journal of Hospital Infection, 2014, 88, 55-57.	1.4	0
7	Football fans and fevers: dengue and the World Cup in Brazil. Lancet Infectious Diseases, The, 2014, 14, 543-544.	4.6	6
8	Carnival or football, is there a real risk for acquiring dengue fever in Brazil during holidays seasons?. Scientific Reports, 2015, 5, 8462.	1.6	18
9	Visualization of dengue incidences for vulnerability using K-means. , 2015, , .		4
10	Dengue transmission during the 2014 FIFA World Cup in Brazil. Lancet Infectious Diseases, The, 2015, 15, 765-766.	4.6	17
11	Dengue disease outbreak definitions are implicitly variable. Epidemics, 2015, 11, 92-102.	1.5	68
12	A Reevaluation of the Role of <i>Aedes albopictus </i> in Dengue Transmission. Journal of Infectious Diseases, 2015, 212, 1177-1179.	1.9	13
13	Automated text message reminders to promote good health. Lancet Infectious Diseases, The, 2015, 15, 19-20.	4.6	3
14	Interpretation of probabilistic forecasts of epidemics. Lancet Infectious Diseases, The, 2015, 15, 20.	4.6	4
15	Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 311-321.	0.8	55
16	Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis. International Journal of Environmental Research and Public Health, 2016, 13, 186.	1.2	12
17	Dengue and chikungunya: modelling the expansion of mosquito-borne viruses into naÃ ⁻ ve populations. Parasitology, 2016, 143, 860-873.	0.7	12
18	Seasonal forecasting and health impact models: challenges and opportunities. Annals of the New York Academy of Sciences, 2016, 1382, 8-20.	1.8	15

#	Article	IF	CITATIONS
19	Superensemble forecasts of dengue outbreaks. Journal of the Royal Society Interface, 2016, 13, 20160410.	1.5	77
20	Climate Information for Arbovirus Risk Monitoring: Opportunities and Challenges. Bulletin of the American Meteorological Society, 2016, 97, ES107-ES111.	1.7	2
21	The risk of dengue for non-immune foreign visitors to the 2016 summer olympic games in Rio de Janeiro, Brazil. BMC Infectious Diseases, 2016, 16, 186.	1.3	31
22	Characterizing a large outbreak of dengue fever in Guangdong Province, China. Infectious Diseases of Poverty, 2016, 5, 44.	1.5	79
23	Dengue, chikungunya and Zika and mass gatherings: What happened in Brazil, 2014. Travel Medicine and Infectious Disease, 2016, 14, 7-8.	1.5	33
24	Modelling Climate-Sensitive Disease Risk: A Decision Support Tool for Public Health Services. Advances in Natural and Technological Hazards Research, 2016, , 115-130.	1.1	1
25	Quantifying the added value of climate information in a spatio-temporal dengue model. Stochastic Environmental Research and Risk Assessment, 2016, 30, 2067-2078.	1.9	44
26	The practice of prediction: What can ecologists learn from applied, ecology-related fields?. Ecological Complexity, 2017, 32, 156-167.	1.4	22
27	Infectious disease prediction with kernel conditional density estimation. Statistics in Medicine, 2017, 36, 4908-4929.	0.8	43
28	Climate services for health: predicting the evolution of the 2016 dengue season in Machala, Ecuador. Lancet Planetary Health, The, 2017, 1, e142-e151.	5.1	97
29	Efficient Gaussian Process-Based Inference for Modelling Spatio-Temporal Dengue Fever. , 2017, , .		1
30	Spatial patterns of dengue cases in Brazil. PLoS ONE, 2017, 12, e0180715.	1.1	16
32	Translation of Real-Time Infectious Disease Modeling into Routine Public Health Practice. Emerging Infectious Diseases, 2017, 23, .	2.0	28
33	Spatiotemporal modeling of relative risk of dengue disease in Colombia. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1587-1601.	1.9	24
34	Temporal Variations and Associated Remotely Sensed Environmental Variables of Dengue Fever in Chitwan District, Nepal. ISPRS International Journal of Geo-Information, 2018, 7, 275.	1.4	2
35	Two-level resolution of relative risk of dengue disease in a hyperendemic city of Colombia. PLoS ONE, 2018, 13, e0203382.	1.1	12
36	Analysis of the spatial distribution of scientific publications regarding vector-borne diseases related to climate variability in South America. Spatial and Spatio-temporal Epidemiology, 2018, 26, 35-93.	0.9	11
37	Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLoS ONE, 2018, 13, e0195065.	1.1	49

#	Article	IF	CITATIONS
38	Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. PLoS Medicine, 2018, 15, e1002613.	3.9	135
39	Spatio-Temporal Modeling of Zika and Dengue Infections within Colombia. International Journal of Environmental Research and Public Health, 2018, 15, 1376.	1.2	19
40	Molecular Characterization of Dengue Virus Serotype 2 Cosmospolitan Genotype From 2015 Dengue Outbreak in Yunnan, China. Frontiers in Cellular and Infection Microbiology, 2018, 8, 219.	1.8	14
41	The Zika Virus Epidemic in Brazil: From Discovery to Future Implications. International Journal of Environmental Research and Public Health, 2018, 15, 96.	1.2	254
42	Spatiotemporal dengue fever hotspots associated with climatic factors in Taiwan including outbreak predictions based on machine-learning. Geospatial Health, 2019, 14, .	0.3	53
43	Assessing the interplay between dengue incidence and weather in Jakarta via a clustering integrated multiple regression model. Ecological Complexity, 2019, 39, 100768.	1.4	12
44	Forecasting Zoonotic Infectious Disease Response to Climate Change: Mosquito Vectors and a Changing Environment. Veterinary Sciences, 2019, 6, 40.	0.6	85
45	Sensitivity of large dengue epidemics in Ecuador to long-lead predictions of El Niño. Climate Services, 2019, 15, 100096.	1.0	7
46	Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15. PLoS Computational Biology, 2019, 15, e1006785.	1.5	74
47	Predicting Dengue Outbreaks in Cambodia. Emerging Infectious Diseases, 2019, 25, 2281-2283.	2.0	9
48	Evaluation of Dengue Disease in Brazil: Multivariable Analysis. , 2019, , .		0
49	Predicting Climate Impacts on Health at Sub-seasonal to Seasonal Timescales. , 2019, , 455-477.		6
51	Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review. Epidemiology and Infection, 2019, 147, e33.	1.0	52
52	Childhood malaria case incidence in Malawi between 2004 and 2017: spatio-temporal modelling of climate and non-climate factors. Malaria Journal, 2020, 19, 5.	0.8	18
53	Comparing different spatio-temporal modeling methods in dengue fever data analysis in Colombia during 2012–2015. Spatial and Spatio-temporal Epidemiology, 2020, 34, 100360.	0.9	9
54	Fuzzy Multidimensional Model to Cluster Dengue Risk in Sri Lanka. BioMed Research International, 2020, 2020, 1-16.	0.9	0
55	Emerging arboviruses in the urbanized Amazon rainforest. BMJ, The, 2020, 371, m4385.	3.0	32
56	Making predictive modelling ART: accurate, reliable, and transparent. Ecosphere, 2020, 11, e03160.	1.0	17

#	Article	IF	CITATIONS
57	Climate variability, socio-ecological factors and dengue transmission in tropical Queensland, Australia: A Bayesian spatial analysis. Environmental Research, 2021, 195, 110285.	3.7	11
58	A Bayesian Functional Methodology for Dengue Risk Mapping in Latin America and the Caribbean. Acta Tropica, 2021, 215, 105788.	0.9	3
59	Dynamic Mapping and Visualizing Dengue Incidences in Malaysia Using Machine Learning Techniques. EAI/Springer Innovations in Communication and Computing, 2021, , 195-226.	0.9	0
60	Forecasting the probability of local dengue outbreaks in Queensland, Australia. Epidemics, 2021, 34, 100422.	1.5	0
61	Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles. PLoS Medicine, 2021, 18, e1003542.	3.9	35
62	Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planetary Health, The, 2021, 5, e209-e219.	5.1	67
63	Climate services for health: From global observations to local interventions. Med, 2021, 2, 355-361.	2.2	3
64	Spatial connectivity in mosquito-borne disease models: a systematic review of methods and assumptions. Journal of the Royal Society Interface, 2021, 18, 20210096.	1.5	12
66	Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review. PLoS Neglected Tropical Diseases, 2021, 15, e0009686.	1.3	17
69	Analysis and forecast of dengue incidence in urban Colombo, Sri Lanka. Theoretical Biology and Medical Modelling, 2021, 18, 3.	2.1	6
70	Developing a Multiparametric Risk Index for Dengue Transmission. Studies in Systems, Decision and Control, 2020, , 213-244.	0.8	1
71	Barriers to Using Climate Information: Challenges in Communicating Probabilistic Forecasts to Decision-Makers. Advances in Natural and Technological Hazards Research, 2016, , 95-113.	1.1	12
72	Strengthening the global response to climate change and infectious disease threats. BMJ, The, 2020, 371, m3081.	3.0	31
73	Building resilience to mosquito-borne diseases in the Caribbean. PLoS Biology, 2020, 18, e3000791.	2.6	12
74	Dynamic spatiotemporal analysis of indigenous dengue fever at street-level in Guangzhou city, China. PLoS Neglected Tropical Diseases, 2018, 12, e0006318.	1.3	15
75	Alarm Variables for Dengue Outbreaks: A Multi-Centre Study in Asia and Latin America. PLoS ONE, 2016, 11, e0157971.	1.1	42
76	Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PLoS ONE, 2017, 12, e0178698.	1.1	60
77	Integrated Early Warning Surveillance: Achilles′ Heel of One Health?. Microorganisms, 2020, 8, 84.	1.6	11

#	Article	IF	Citations
78	Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil. ELife, 2016, 5, .	2.8	57
79	Machine Learning Techniques Using Enviromental Data from Remote Sensing Applied to Modeling Dengue Risk in Brazil. , 2021, , .		2
80	Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks. Lancet Planetary Health, The, 2021, 5, e739-e745.	5.1	22
81	Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines. PLoS Medicine, 2021, 18, e1003793.	3.9	42
82	Perspektywa wdrożeÅ,, dobrych praktyk z organizacji masowych imprez sportowych w logistyce miejskie. Management Sciences, 2014, , .	0.2	0
83	Dengue: 30 years of cases in an endemic area. Clinics, 2019, 74, e675.	0.6	2
86	Rethinking Mass-Gathering Domains for Understanding Patient Presentations: A Discussion Paper. Prehospital and Disaster Medicine, 2021, 36, 121-124.	0.7	2
88	How Is the Risk of Major Sudden Infectious Epidemic Transmitted? A Grounded Theory Analysis Based on COVID-19 in China. Frontiers in Public Health, 2021, 9, 795481.	1.3	6
89	Health impacts of wildfire-related air pollution in Brazil: a nationwide study of more than 2 million hospital admissions between 2008 and 2018. Nature Communications, 2021, 12, 6555.	5.8	40
90	Spatio-temporal detection for dengue outbreaks in the Central Region of Malaysia using climatic drivers at mesoscale and synoptic scale. Climate Risk Management, 2022, 36, 100429.	1.6	8
91	Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nature Communications, 2022, 13, 996.	5.8	16
92	The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009773.	1.3	22
93	The impact of long-term weather changes on air quality in Brazil. Atmospheric Environment, 2022, 283, 119182.	1.9	5
95	Faster indicators of chikungunya incidence using Google searches. PLoS Neglected Tropical Diseases, 2022, 16, e0010441.	1.3	1
96	Accounting Transparency, Fear Sentiment and the COVID-19 Epidemic: For Public Health Security and the Construction of an Early Warning System. Frontiers in Public Health, 0, 10, .	1.3	0
97	Dengue Disease Modelling and Forecasting: Utility and Limitations. Annals of the Academy of Medicine, Singapore, 2016, 45, 121-122.	0.2	2
98	Collaboration between meteorology and public health: Predicting the dengue epidemic in Guangzhou, China, by meteorological parameters. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
99	Paradox between adequate sanitation and rainfall in dengue fever cases. Science of the Total Environment, 2023, 860, 160491.	3.9	2

		CITATION REPORT		
#	Article		IF	CITATIONS
100	Air quality and individual-level academic performance in Brazil: A nationwide study of m million students between 2000 and 2020. Environmental Research, 2023, 226, 115689	10re than 15 9.	3.7	3
101	A systematic review of published literature on mosquito control action thresholds acroworld. PLoS Neglected Tropical Diseases, 2023, 17, e0011173.	ss the	1.3	6