Traditional and recent approaches in background mode overview

Computer Science Review 11-12, 31-66

DOI: 10.1016/j.cosrev.2014.04.001

Citation Report

#	Article	IF	CITATIONS
1	Incremental and Multi-feature Tensor Subspace Learning Applied for Background Modeling and Subtraction. Lecture Notes in Computer Science, 2014, , 94-103.	1.0	33
2	Background Subtraction Based on Pulse Coupled Neural Network. Applied Mechanics and Materials, 0, 701-702, 293-296.	0.2	O
3	Improved visual background extractor using an adaptive distance threshold. Journal of Electronic Imaging, 2014, 23, 063005.	0.5	11
4	Segmentation of Dishes for Customer Service Automation in a Self-service Canteen. Image Processing & Communications, 2015, 20, 5-16.	0.3	1
5	Double-constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance. , $2015, \ldots$		39
6	Stacked Multilayer Self-Organizing Map for Background Modeling. IEEE Transactions on Image Processing, 2015, 24, 2841-2850.	6.0	28
7	Online tracking of interventional devices for endovascular aortic repair. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 773-781.	1.7	16
8	Framework for dynamic background modeling and shadow suppression for moving object segmentation in complex wavelet domain. Journal of Electronic Imaging, 2015, 24, 051005.	0.5	5
9	Simultaneous Foreground Detection and Classification with Hybrid Features. , 2015, , .		12
10	Tracking-based human entry/exit detection on various video resolutions (A study on parameter) Tj ETQq1 1 0.78	34314 rgB ⁻	Г/Qverlock 10
10	Tracking-based human entry/exit detection on various video resolutions (A study on parameter) Tj ETQq1 1 0.78 Experiences from long range passive and active imaging. Proceedings of SPIE, 2015, , .	0.8	Γ/Qverlock 10 Ο
			1
11	Experiences from long range passive and active imaging. Proceedings of SPIE, 2015, , . Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured		0
11	Experiences from long range passive and active imaging. Proceedings of SPIE, 2015, , . Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured Foreground Constraints. , 2015, , .		0 40
11 12 13	Experiences from long range passive and active imaging. Proceedings of SPIE, 2015, , . Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured Foreground Constraints. , 2015, , . Real-time adaptive background modeling in fast changing conditions. , 2015, , . Background modeling in videos revisited using finite mixtures of generalized Gaussians and spatial		0 40 1
11 12 13	Experiences from long range passive and active imaging. Proceedings of SPIE, 2015, , . Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured Foreground Constraints. , 2015, , . Real-time adaptive background modeling in fast changing conditions. , 2015, , . Background modeling in videos revisited using finite mixtures of generalized Gaussians and spatial information. , 2015, , . Vehicles detection in complex urban traffic scenes using a nonparametric approach with confidence		0 40 1
11 12 13 14 15	Experiences from long range passive and active imaging. Proceedings of SPIE, 2015, , . Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured Foreground Constraints. , 2015, , . Real-time adaptive background modeling in fast changing conditions. , 2015, , . Background modeling in videos revisited using finite mixtures of generalized Gaussians and spatial information. , 2015, , . Vehicles detection in complex urban traffic scenes using a nonparametric approach with confidence measurement. , 2015, , .		1 0 40 1 3

#	Article	IF	CITATIONS
19	Efficient Foreground Extraction From HEVC Compressed Video for Application to Real-Time Analysis of Surveillance â€~Big' Data. IEEE Transactions on Image Processing, 2015, 24, 3574-3585.	6.0	68
20	Detection of Bird Nests during Mechanical Weeding by Incremental Background Modeling and Visual Saliency. Sensors, 2015, 15, 5096-5111.	2.1	8
21	Moving object detection and tracking from video captured by moving camera. Journal of Visual Communication and Image Representation, 2015, 30, 164-180.	1.7	80
23	Multi-modal Background Model Initialization. Lecture Notes in Computer Science, 2015, , 485-492.	1.0	3
24	Fuzzy-neural self-adapting background modeling with automatic motion analysis for dynamic object detection. Applied Soft Computing Journal, 2015, 36, 570-577.	4.1	13
25	Long-Term Stationary Object Detection Based on Spatio-Temporal Change Detection. IEEE Signal Processing Letters, 2015, 22, 2368-2372.	2.1	9
26	Motion objects segmentation based on structural similarity background modelling. IET Computer Vision, 2015, 9, 476-488.	1.3	8
27	Towards Benchmarking Scene Background Initialization. Lecture Notes in Computer Science, 2015, , 469-476.	1.0	82
28	Comparison of Matrix Completion Algorithms for Background Initialization in Videos. Lecture Notes in Computer Science, 2015, , 510-518.	1.0	16
29	A novel object detection technique for dynamic scene and static object. MATEC Web of Conferences, 2016, 54, 08003.	0.1	0
30	Segmentation of Moving Object Using Background Subtraction Method in Complex Environments. Radioengineering, 2016, 25, 399-408.	0.3	7
31	Moving Object Detection on a Vehicle Mounted Back-Up Camera. Sensors, 2016, 16, 23.	2.1	18
32	Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform. Sensors, 2016, 16, 456.	2.1	5
33	Bio-inspired Boosting for Moving Objects Segmentation. Lecture Notes in Computer Science, 2016, , 397-406.	1.0	4
34	Detection of stationary foreground objects: A survey. Computer Vision and Image Understanding, 2016, 152, 41-57.	3.0	42
35	Evaluation of the background modeling method Auto-Adaptive Parallel Neural Network Architecture in the SBMnet dataset. , $2016, , .$		3
36	Scene background estimation based on temporal median filter with Gaussian filtering. , 2016, , .		3
37	A novel background subtraction using canonical correlation analysis. , 2016, , .		0

#	Article	IF	Citations
38	Robust region extraction of moving objects in dynamic background., 2016,,.		0
39	Rejection based multipath reconstruction for background estimation in SBMnet 2016 dataset. , 2016, , .		2
40	Online Weighted One-Class Ensemble for feature selection in background/foreground separation. , 2016, , .		9
41	Foreground segmentation in atmospheric turbulence degraded video sequences to aid in background stabilization. Journal of Electronic Imaging, 2016, 25, 063010.	0.5	5
42	Improving sperms detection and counting using single Gaussian background subtraction. , 2016, , .		1
43	Vehicle detection in urban traffic scenes using the Pixel-Based Adaptive Segmenter with Confidence Measurement. Journal of Intelligent and Fuzzy Systems, 2016, 31, 1609-1620.	0.8	3
44	A cellular logic array based data mining framework for object detection in video surveillance system. , $2016, \ldots$		3
45	Background Subtraction Using Local SVD Binary Pattern. , 2016, , .		35
46	Fast \hat{a} , " 1 -minimization algorithm for robust background subtraction. Eurasip Journal on Image and Video Processing, 2016 , 2016 , .	1.7	2
47	A Survey of Background Modeling Based on Robust Subspace Learning via Sparse and Low-rank Matrix Decomposition. , 2016, , .		2
48	Comparative analysis of Background Subtraction techniques and applications. , 2016, , .		4
49	Feature-based motion detection and tracking on approximate 3D ground plane. , 2016, , .		2
50	On Virtual Characters that Can See. Procedia Computer Science, 2016, 88, 528-533.	1.2	1
51	Background Subtraction Using Illumination-Invariant Structural Complexity. IEEE Signal Processing Letters, 2016, 23, 634-638.	2.1	24
52	Rejection based multipath reconstruction for background estimation in video sequences with stationary objects. Computer Vision and Image Understanding, 2016, 147, 23-37.	3.0	23
53	Randomized low-rank Dynamic Mode Decomposition for motion detection. Computer Vision and Image Understanding, 2016, 146, 40-50.	3.0	46
54	An online background subtraction algorithm deployed on a NAO humanoid robot based monitoring system. Robotics and Autonomous Systems, 2016, 85, 37-47.	3.0	11
55	Adaptive maintenance scheme for codebook-based dynamic background subtraction. Computer Vision and Image Understanding, 2016, 152, 58-66.	3.0	18

#	Article	IF	CITATIONS
56	Deep background subtraction with scene-specific convolutional neural networks., 2016,,.		203
57	Twoâ€dimension principal component analysisâ€based motion detection framework with subspace update of background. IET Computer Vision, 2016, 10, 603-612.	1.3	8
58	Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Computer Vision and Image Understanding, 2016, 152, 103-117.	3.0	96
59	Smart motion detection sensor based on video processing using self-organizing maps. Expert Systems With Applications, 2016, 64, 476-489.	4.4	17
60	Universal Background Subtraction Using Word Consensus Models. IEEE Transactions on Image Processing, 2016, 25, 4768-4781.	6.0	113
61	A Modified Frame Difference Method Using Correlation Coefficient for Background Subtraction. Procedia Computer Science, 2016, 93, 478-485.	1.2	36
62	A Robust Approach for the Background Subtraction Based on Multi-Layered Self-Organizing Maps. IEEE Transactions on Image Processing, 2016, 25, 5239-5251.	6.0	33
63	Fast illumination-robust foreground detection using hierarchical distribution map for real-time video surveillance system. Expert Systems With Applications, 2016, 66, 32-41.	4.4	7
64	Abandoned object detection via subspace learning. , 2016, , .		1
65	Dynamic occlusion detection and inpainting of in situ captured terrestrial laser scanning point clouds sequence. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119, 90-107.	4.9	28
66	Vehicles detection in complex urban traffic scenes using Gaussian mixture model with confidence measurement. IET Intelligent Transport Systems, 2016, 10, 445-452.	1.7	28
67	Background modeling for dynamic scenes using tensor decomposition. , 2016, , .		2
68	A refinement framework for background subtraction based on color and depth data., 2016,,.		6
69	Semi-dense motion segmentation for moving cameras by discrete energy minimization. , 2016, , .		1
70	A collaborative client participant fusion system for realistic remote conferences. Journal of Supercomputing, 2016, 72, 2720-2733.	2.4	3
71	Can DMD obtain a Scene Background in color?. , 2016, , .		5
72	Video object extraction and its tracking using background subtraction in complex environments. Perspectives in Science, 2016, 8, 317-322.	0.6	28
73	A Unified View of Nonconvex Heuristic Approach for Low-Rank and Sparse Structure Learning. , 2016, , 13-1-13-19.		0

#	Article	IF	Citations
74	LRSLibrary: Low-Rank and Sparse Tools for Background Modeling and Subtraction in Videos. , 2016, , 18-1-18-15.		3
75	Robust Principal Component Analysis. , 2016, , 1-1-1-61.		3
76	Dynamic Mode Decomposition for Robust PCA with Applications to Foreground/Background Subtraction in Video Streams and Multi-Resolution Analysis., 2016,, 19-1-19-16.		0
77	LRSLibrary: Low-Rank and Sparse Tools for Background Modeling and Subtraction in Videos. , 2016, , 426-440.		38
78	Dynamic Mode Decomposition for Robust PCA with Applications to Foreground/Background Subtraction in Video Streams and Multi-Resolution Analysis., 2016,, 441-456.		4
79	Background light ray modeling for change detection. Journal of Visual Communication and Image Representation, 2016, 38, 55-64.	1.7	2
80	Statistical feature bag based background subtraction for local change detection. Information Sciences, 2016, 366, 31-47.	4.0	25
81	Fast background subtraction for moving cameras based on nonparametric models. Journal of Electronic Imaging, 2016, 25, 033017.	0.5	4
82	Total Variation Regularized Tensor RPCA for Background Subtraction From Compressive Measurements. IEEE Transactions on Image Processing, 2016, 25, 4075-4090.	6.0	135
83	A Multi-view Learning Approach to Foreground Detection for Traffic Surveillance Applications. IEEE Transactions on Vehicular Technology, 2016, 65, 4144-4158.	3.9	36
84	Auto-Adaptive Parallel SOM Architecture with a modular analysis for dynamic object segmentation in videos. Neurocomputing, 2016, 175, 990-1000.	3.5	55
85	Big data analytic architecture for intruder detection in heterogeneous wireless sensor networks. Journal of Network and Computer Applications, 2016, 66, 236-249.	5.8	23
86	A novel robust approach for handling illumination changes in video segmentation. Engineering Applications of Artificial Intelligence, 2016, 49, 43-60.	4.3	18
87	Background modeling using Object-based Selective Updating and Correntropy adaptation. Image and Vision Computing, 2016, 45, 22-36.	2.7	8
88	Integration of fuzzy Markov random field and local information for separation of moving objects and shadows. Information Sciences, 2016, 331, 15-31.	4.0	9
89	Maritime Object Segmentation Using Dynamic Background Modeling and Shadow Suppression. Computer Journal, 2016, 59, 1303-1329.	1.5	5
90	Fixed-point Gaussian Mixture Model for analysis-friendly surveillance video coding. Computer Vision and Image Understanding, 2016, 142, 65-79.	3.0	7
91	A Disparity-Based Adaptive Multihomography Method for Moving Target Detection Based on Global Motion Compensation. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26, 1407-1420.	5.6	6

#	Article	IF	CITATIONS
92	An algorithm twisted from generalized ADMM for multi-block separable convex minimization models. Journal of Computational and Applied Mathematics, 2017, 309, 342-358.	1.1	26
93	Pixel Modeling Using Histograms Based on Fuzzy Partitions for Dynamic Background Subtraction. IEEE Transactions on Fuzzy Systems, 2017, 25, 584-593.	6.5	15
94	Moving object detection in the encrypted domain. Multimedia Tools and Applications, 2017, 76, 9759-9783.	2.6	5
95	NIC: A Robust Background Extraction Algorithm for Foreground Detection in Dynamic Scenes. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27, 1478-1490.	5.6	35
96	Video Processing From Electro-Optical Sensors for Object Detection and Tracking in a Maritime Environment: A Survey. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 1993-2016.	4.7	246
97	Temporal weighted learning model for background estimation with an automatic re-initialization stage and adaptive parameters update. Pattern Recognition Letters, 2017, 96, 34-44.	2.6	20
98	BBBCO and fuzzy entropy based modified background subtraction algorithm for object detection in videos. Applied Intelligence, 2017, 47, 1008-1021.	3.3	6
99	Comparative study of motion detection methods for video surveillance systems. Journal of Electronic Imaging, 2017, 26, 023025.	0.5	40
100	Efficient and fast multi-modal foreground-background segmentation using RGBD data. Pattern Recognition Letters, 2017, 97, 13-20.	2.6	16
101	Background estimation by weightless neural networks. Pattern Recognition Letters, 2017, 96, 55-65.	2.6	36
102	Adaptive background model registration for moving cameras. Pattern Recognition Letters, 2017, 96, 86-95.	2.6	12
103	Recent Advances in the Field of Foreground Detection: An Overview. Studies in Computational Intelligence, 2017, , 261-269.	0.7	8
104	Counting vehicles in urban traffic scenes using foreground timeâ€spatial images. IET Intelligent Transport Systems, 2017, 11, 61-67.	1.7	19
105	LaBGen: A method based on motion detection for generating the background of a scene. Pattern Recognition Letters, 2017, 96, 12-21.	2.6	33
106	Compressed sensing based foreground detection vector for object detection in Wireless Visual Sensor Networks. AEU - International Journal of Electronics and Communications, 2017, 72, 216-224.	1.7	11
107	Scene background initialization: A taxonomy. Pattern Recognition Letters, 2017, 96, 3-11.	2.6	69
108	Detection of Stationary Foreground Objects Using Multiple Nonparametric Background-Foreground Models on a Finite State Machine. IEEE Transactions on Image Processing, 2017, 26, 1127-1142.	6.0	22
109	Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset. Computer Science Review, 2017, 23, 1-71.	10.2	259

#	Article	IF	Citations
110	Analytics of deep neural network in change detection., 2017,,.		12
111	Stand-alone quality estimation of background subtraction algorithms. Computer Vision and Image Understanding, 2017, 162, 87-102.	3.0	4
112	Dynamic background modeling using tensor representation and ant colony optimization. Science China Mathematics, 2017, 60, 2287-2302.	0.8	0
113	Atanassov's intuitionistic fuzzy histon for robust moving object detection. International Journal of Approximate Reasoning, 2017, 91, 80-95.	1.9	13
114	Circulant structures based moving object detection. , 2017, , .		0
115	Extensive Benchmark and Survey of Modeling Methods for Scene Background Initialization. IEEE Transactions on Image Processing, 2017, 26, 5244-5256.	6.0	50
116	Motion detection using block based bi-directional optical flow method. Journal of Visual Communication and Image Representation, 2017, 49, 89-103.	1.7	24
117	Background Subtraction with Multispectral Images Using Codebook Algorithm. Lecture Notes in Computer Science, 2017, , 581-590.	1.0	1
118	Background initialisation by spatio-temporal motion estimation. , 2017, , .		0
119	Distributed mean-field-type filter for vehicle tracking. , 2017, , .		7
120	A keypoint-based method for background modeling and foreground detection using a PTZ camera. Pattern Recognition Letters, 2017, 96, 96-105.	2.6	30
121	Moving Object Detection Using Tensor-Based Low-Rank and Saliently Fused-Sparse Decomposition. IEEE Transactions on Image Processing, 2017, 26, 724-737.	6.0	50
122	Parallel multi-modal background modeling. Pattern Recognition Letters, 2017, 96, 45-54.	2.6	15
123	An adaptive hybrid GMM for multiple human detection in crowd scenario. Multimedia Tools and Applications, 2017, 76, 14129-14149.	2.6	10
124	Modeling depth for nonparametric foreground segmentation using RGBD devices. Pattern Recognition Letters, 2017, 96, 76-85.	2.6	22
125	Interactive deep learning method for segmenting moving objects. Pattern Recognition Letters, 2017, 96, 66-75.	2.6	244
126	An Adaptive Background Modeling Method for Foreground Segmentation. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 1109-1121.	4.7	53
127	Background subtraction based on modified online robust principal component analysis. International Journal of Machine Learning and Cybernetics, 2017, 8, 1839-1852.	2.3	12

#	Article	IF	CITATIONS
128	Vision Based Human Activity Recognition: A Review. Advances in Intelligent Systems and Computing, 2017, , 341-371.	0.5	59
129	Background subtraction based on circulant matrix. Signal, Image and Video Processing, 2017, 11, 407-414.	1.7	12
130	Shooting for Smarter Motion Detection in Cameras: Improvements for the Visual Background Extractor Algorithm Using Optical Flow. IEEE Consumer Electronics Magazine, 2017, 6, 81-91.	2.3	6
131	Sample-based integrated background subtraction and shadow detection. IPSJ Transactions on Computer Vision and Applications, 2017, 9, .	4.4	32
132	Background subtraction using spatial mixture of Gaussian model with dynamic shadow filtering. , $2017, \ldots$		3
133	Comparative analysis of motion based and feature based algorithms for object detection and tracking. , 2017, , .		2
134	Exploiting Color and Depth for Background Subtraction. Lecture Notes in Computer Science, 2017, , 254-265.	1.0	12
135	Simple Combination of Appearance and Depth for Foreground Segmentation. Lecture Notes in Computer Science, 2017, , 266-277.	1.0	9
136	On the development of moving object detection from traditional to fuzzy based techniques. , 2017, , .		1
137	CDoTS: Change detection on time series background for video foreground segmentation. , 2017, , .		1
138	Design and implementation of a following robot system based on monocular vision., 2017,,.		1
139	Review of model-free gait recognition in biometrie systems. , 2017, , .		4
140	Improved adaptive mixture of Gaussians model for moving objects detection. , 2017, , .		1
141	A Novel Tensor-Based Video Rain Streaks Removal Approach via Utilizing Discriminatively Intrinsic Priors., 2017,,.		110
142	Semantic background subtraction., 2017,,.		72
143	Neighborhood based codebook model for moving object segmentation. , 2017, , .		0
144	Background modelling using discriminative motion representation. IET Computer Vision, 2017, 11, 463-470.	1.3	6
145	Robust median background subtraction for embedded vision platforms., 2017,,.		1

#	Article	IF	CITATIONS
146	Tensor learningusing N-mode SVD for dynamic background modelling and subtraction. , 2017, , .		0
147	Mutual Foreground Segmentation with Multispectral Stereo Pairs. , 2017, , .		4
148	A Batch-Incremental Video Background Estimation Model Using Weighted Low-Rank Approximation of Matrices. , 2017 , , .		3
149	Weighted Low Rank Approximation for Background Estimation Problems. , 2017, , .		4
150	Multi-feature fusion based background subtraction for video sequences with strong background changes., 2017,,.		0
151	Leveraging weak segmentation for multi-object tracking system. , 2017, , .		0
152	Motion detection by eigen-projections from incremental subspace learning., 2017,,.		1
153	Comparative Evaluation of Background Subtraction Algorithms in Remote Scene Videos Captured by MWIR Sensors. Sensors, 2017, 17, 1945.	2.1	20
154	An improved sample-based model for background subtraction. , 2017, , .		1
155	Robust Background Subtraction via the Local Similarity Statistical Descriptor. Applied Sciences (Switzerland), 2017, 7, 989.	1.3	7
156	Integration of GIS and Moving Objects in Surveillance Video. ISPRS International Journal of Geo-Information, 2017, 6, 94.	1.4	18
157	Surveillance Video Synopsis in GIS. ISPRS International Journal of Geo-Information, 2017, 6, 333.	1.4	8
158	Modified codebook algorithm with Kalman filter for foreground segmentation in video sequences. , 2017, , .		0
159	A novel method for semi transparency effect in academic videos. , 2017, , .		1
160	A Comprehensive Review on Handcrafted and Learning-Based Action Representation Approaches for Human Activity Recognition. Applied Sciences (Switzerland), 2017, 7, 110.	1.3	111
161	Real Time Efficient Foreground Extraction with Video Processing. , 2017, , .		1
162	POINT TARGET DETECTION IN SPACE-BASED INFRARED IMAGING SYSTEM BASED ON MULTI-DIRECTION FILTERING FUSION. Progress in Electromagnetics Research M, 2017, 56, 145-156.	0.5	3
163	On the role and the importance of features for background modeling and foreground detection. Computer Science Review, 2018, 28, 26-91.	10.2	78

#	Article	IF	CITATIONS
164	Illumination-aware live videos background replacement using antialiasing optimization. Multimedia Tools and Applications, 2018, 77, 24477-24497.	2.6	5
165	BMOG: boosted Gaussian Mixture Model with controlled complexity for background subtraction. Pattern Analysis and Applications, 2018, 21, 641-654.	3.1	12
166	Background Modeling by Stability of Adaptive Features in Complex Scenes. IEEE Transactions on Image Processing, 2018, 27, 1112-1125.	6.0	17
167	A Background Modeling and Foreground Detection Algorithm Using Scaling Coefficients Defined With a Color Model Called Lightness-Red-Green-Blue. IEEE Transactions on Image Processing, 2018, 27, 1243-1258.	6.0	18
168	Robust 3D Action Recognition Through Sampling Local Appearances and Global Distributions. IEEE Transactions on Multimedia, 2018, 20, 1932-1947.	5.2	30
169	Multiscale Fully Convolutional Network for Foreground Object Detection in Infrared Videos. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 617-621.	1.4	34
170	Silhouette-Based Human Action Recognition by Embedding HOG and PCA Features. Advances in Intelligent Systems and Computing, 2018, , 363-371.	0.5	4
171	<pre><scp>trackdem</scp>: Automated particle tracking to obtain population counts and size distributions from videos in <scp>r</scp>. Methods in Ecology and Evolution, 2018, 9, 965-973.</pre>	2.2	27
172	The development of image processing technique to study the interfacial behavior of air-water slug two-phase flow in horizontal pipes. Flow Measurement and Instrumentation, 2018, 59, 168-180.	1.0	34
173	Foreground Detection by Competitive Learning for Varying Input Distributions. International Journal of Neural Systems, 2018, 28, 1750056.	3.2	24
174	\$M^{4}CD\$: A Robust Change Detection Method for Intelligent Visual Surveillance. IEEE Access, 2018, 6, 15505-15520.	2.6	37
175	Background Modeling and Referencing for Moving Cameras-Captured Surveillance Video Coding in HEVC. IEEE Transactions on Multimedia, 2018, 20, 2921-2934.	5.2	33
176	A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain. IEEE Transactions on Image Processing, 2018, 27, 3918-3930.	6.0	32
177	Background Subtraction Using Multiscale Fully Convolutional Network. IEEE Access, 2018, 6, 16010-16021.	2.6	72
178	Performance Analysis of Vehicle Detection Techniques: A Concise Survey. Advances in Intelligent Systems and Computing, 2018, , 491-500.	0.5	3
179	New trends on moving object detection in video images captured by a moving camera: A survey. Computer Science Review, 2018, 28, 157-177.	10.2	172
180	A fast valley-based segmentation for detection of slowly moving objects. Signal, Image and Video Processing, 2018, 12, 1265-1272.	1.7	7
181	Automatic segmentation of trees in dynamic outdoor environments. Computers in Industry, 2018, 98, 90-99.	5.7	11

#	Article	IF	Citations
182	Group object detection and tracking by combining RPCA and fractal analysis. Soft Computing, 2018, 22, 231-242.	2.1	7
183	Enhanced Macroblock Features for Dynamic Background Modeling in H.264/AVC Video Encoded at Low Bitrate. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28, 616-625.	5.6	6
184	The effect of noise on foreground detection algorithms. Artificial Intelligence Review, 2018, 49, 407-438.	9.7	9
185	Spatiotemporal Low-Rank Modeling for Complex Scene Background Initialization. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28, 1315-1329.	5.6	68
186	Real-time foreground detection approach based on adaptive ensemble learning with arbitrary algorithms for changing environments. Information Fusion, 2018, 39, 154-167.	11.7	15
187	Review of background subtraction methods using Gaussian mixture model for video surveillance systems. Artificial Intelligence Review, 2018, 50, 241-259.	9.7	56
188	Foreground Segmentation in Videos Combining General Gaussian Mixture Modeling and Spatial Information. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28, 1330-1345.	5.6	23
189	Suspicious human activity recognition: a review. Artificial Intelligence Review, 2018, 50, 283-339.	9.7	95
190	WeSamBE: A Weight-Sample-Based Method for Background Subtraction. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28, 2105-2115.	5.6	121
191	Spatiotemporal GMM for Background Subtraction with Superpixel Hierarchy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40, 1518-1525.	9.7	81
192	Transferring deep knowledge for object recognition in Low-quality underwater videos. Neurocomputing, 2018, 275, 897-908.	3.5	69
193	Fast Robust PCA on Background Modeling. Lecture Notes in Electrical Engineering, 2018, , 399-411.	0.3	0
194	Performance evaluation of fuzzy 2-partition entropy and big bang big crunch optimization based object detection and tracking approach. Multidimensional Systems and Signal Processing, 2018, 29, 1579-1611.	1.7	1
195	Intelligent video surveillance beyond robust background modeling. Expert Systems With Applications, 2018, 91, 138-149.	4.4	19
196	Perception, cognition and reasoning about shadows. Spatial Cognition and Computation, 2018, 18, 78-85.	0.6	5
197	Real-time nonparametric background subtraction with tracking-based foreground update. Pattern Recognition, 2018, 74, 156-170.	5.1	56
198	Fusion-based foreground enhancement for background subtraction using multivariate multi-model Gaussian distribution. Information Sciences, 2018, 430-431, 414-431.	4.0	39
199	Region MoG and texture descriptor-based motion segmentation under sudden illumination in continuous pan and excess zoom. Multimedia Tools and Applications, 2018, 77, 9621-9649.	2.6	5

#	Article	IF	Citations
200	A Practical Approach for Counting and Classifying Vehicles Using Rising/Falling Edge Thresholding in a Virtual Detection Line. , $2018, \ldots$		1
201	A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Medicine - Open, 2018, 4, 24.	1.3	297
202	Accelerating SuperBE with Hardware/Software Co-Design. Journal of Imaging, 2018, 4, 122.	1.7	4
203	A Robust Background Initialization Method Based on Stable Image Patches. , 2018, , .		1
204	Object Detection Based on Saliency and Sea-Sky Line for USV Vision. , 2018, , .		7
205	An Improved Version of Texture-based Foreground Segmentation: Block-based Adaptive Segmenter. Procedia Computer Science, 2018, 135, 579-586.	1.2	20
206	Modified hybrid decomposition of the augmented Lagrangian method with larger step size for three-block separable convex programming. Journal of Inequalities and Applications, 2018, 2018, 269.	0.5	0
207	Algorithm of Moving Object Detection of Surveillance Video Combined with WiFi Technology. , 2018, , .		1
208	CANDID: Robust Change Dynamics and Deterministic Update Policy for Dynamic Background Subtraction. , 2018, , .		14
209	Vehicles detection for illumination changes urban traffic scenes employing adaptive local texture feature background model. IET Intelligent Transport Systems, 2018, 12, 1283-1290.	1.7	4
210	Robust tracking of multiple objects in video by adaptive fusion of subband particle filters. IET Computer Vision, 2018, 12, 1207-1218.	1.3	1
211	A Framework for Background Modeling Using Vehicle-to-Infrastructure Communication for Improved Candidate Generation in Pedestrian Detection. , 2018, , .		3
212	Hardware implementation of the Gaussian Mixture Model foreground object segmentation algorithm working with ultra-high resolution video stream in real-time. , 2018, , .		1
213	Image Analysis Based Fish Tail Beat Frequency Estimation for Fishway Efficiency. , 2018, , .		2
214	Centroid tracking and velocity measurement of white blood cell in video. Health Information Science and Systems, 2018, 6, 20.	3.4	3
215	Local Compact Binary Patterns for Background Subtraction in Complex Scenes. , 2018, , .		3
216	Background Subtraction via 3D Convolutional Neural Networks. , 2018, , .		10
217	A hybrid framework combining background subtraction and deep neural networks for rapid person detection. Journal of Big Data, 2018, 5, .	6.9	50

#	Article	IF	Citations
218	Pedestrian Detection Based on Background Compensation with Block-Matching Algorithm., 2018, , .		9
219	Detection of a Moving Car Based on Invariant Moments. Journal of Computer Science, 2018, 14, 310-316.	0.5	2
220	Salient foreground detection in urban traffic scenes using the feedback visual background extractor. Journal of Intelligent and Fuzzy Systems, 2018, 35, 4609-4620.	0.8	0
221	Moving object detection by low rank approximation and mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si14.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow>	l:mmz 1 <td>nmusann></td>	nmusann>
222	56, 100 200. Background Modeling with Extracted Dynamic Pixels for Pumping Unit Surveillance. Mathematical Problems in Engineering, 2018, 2018, 1-11.	0.6	1
223	Spatial-temporal local contrast for moving point target detection in space-based infrared imaging system. Infrared Physics and Technology, 2018, 95, 53-60.	1.3	21
224	Background Subtraction Based on Deep Pixel Distribution Learning., 2018,,.		16
225	Compressive Online Video Background–Foreground Separation Using Multiple Prior Information and Optical Flow. Journal of Imaging, 2018, 4, 90.	1.7	12
226	Automated Kinematic Analysis Using Holistic Based Human Gait Motion for Biomedical Applications. , 2018, , .		0
227	Reconstruction-Based Change Detection with Image Completion for a Free-Moving Camera. Sensors, 2018, 18, 1232.	2.1	7
228	Cut set-based Dynamic Key frame selection and Adaptive Layer-based Background Modeling for background subtraction. Journal of Visual Communication and Image Representation, 2018, 55, 434-446.	1.7	10
229	Dynamic background subtraction method based on spatioâ€ŧemporal classification. IET Computer Vision, 2018, 12, 492-501.	1.3	5
230	A novel framework for background subtraction and foreground detection. Pattern Recognition, 2018, 84, 28-38.	5.1	9
231	Impact of Analog Memories Non-Idealities on the Performance of Foreground Detection Algorithms. , 2018, , .		0
232	Extended scale invariant local binary pattern for background subtraction. IET Image Processing, 2018, 12, 1292-1302.	1.4	9
233	High variation removal for background subtraction in traffic surveillance systems. IET Computer Vision, 2018, 12, 1163-1170.	1.3	12
234	A Novel Background Subtraction Method Based on ViBe. Lecture Notes in Computer Science, 2018, , 428-437.	1.0	2
235	Robust video tracking algorithm: a multiâ€feature fusion approach. IET Computer Vision, 2018, 12, 640-650.	1.3	14

#	ARTICLE	IF	Citations
236	Background Subtraction for Moving Object Detection in RGBD Data: A Survey. Journal of Imaging, 2018, 4, 71.	1.7	61
237	Analytics of Deep Neural Network-Based Background Subtraction. Journal of Imaging, 2018, 4, 78.	1.7	41
238	LaBGen-P-Semantic: A First Step for Leveraging Semantic Segmentation in Background Generation. Journal of Imaging, 2018, 4, 86.	1.7	16
239	Shannon Entropy as Background Dynamics Estimator In Foreground Detector Algorithms. , 2018, , .		O
240	Foreground segmentation with PTZ camera: a survey. Multimedia Tools and Applications, 2018, 77, 22489-22542.	2.6	16
241	Towards computer vision-based approach for an adaptive traffic control system. Imaging Science Journal, 2018, 66, 419-432.	0.2	2
242	Vehicle tracking on video sequences via subspace learning. , 2018, , .		0
243	Adaptive background modeling of complex scenarios based on pixel level learning modeled with a retinotopic self-organizing map and radial basis mapping. Applied Intelligence, 2018, 48, 4976-4997.	3.3	4
244	Foot Contact Timings and Step Length for Sprint Training. , 2018, , .		4
245	Background Subtraction Based on Random Superpixels Under Multiple Scales for Video Analytics. IEEE Access, 2018, 6, 33376-33386.	2.6	10
246	Object Detection in a Maritime Environment: Performance Evaluation of Background Subtraction Methods. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 1787-1802.	4.7	48
247	Real-time scene background initialization based on spatio-temporal neighborhood exploration. Multimedia Tools and Applications, 2019, 78, 7289-7319.	2.6	8
248	Simultaneous denoising and moving object detection using low rank approximation. Future Generation Computer Systems, 2019, 90, 198-210.	4.9	20
249	Abandoned or removed object detection from visual surveillance: a review. Multimedia Tools and Applications, 2019, 78, 7585-7620.	2.6	14
250	Distributed Mean-Field-Type Filters for Traffic Networks. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 507-521.	4.7	21
251	Hierarchical Improvement of Foreground Segmentation Masks in Background Subtraction. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29, 1645-1658.	5.6	14
252	A robust background initialization algorithm with superpixel motion detection. Signal Processing: Image Communication, 2019, 71, 1-12.	1.8	16
253	Background Subtraction Based on Integration of Alternative Cues in Freely Moving Camera. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29, 1933-1945.	5.6	11

#	Article	IF	Citations
254	TGLSTM: A time based graph deep learning approach to gait recognition. Pattern Recognition Letters, 2019, 126, 132-138.	2.6	52
255	Foreground Gating and Background Refining Network for Surveillance Object Detection. IEEE Transactions on Image Processing, 2019, 28, 6077-6090.	6.0	52
256	Refinement of Background-Subtraction Methods Based on Convolutional Neural Network Features for Dynamic Background. Algorithms, 2019, 12, 128.	1.2	4
257	Video Analytics for Visual Surveillance and Applications: An Overview and Survey. Learning and Analytics in Intelligent Systems, 2019, , 475-515.	0.5	11
258	Vehicle Counting in Video Sequences: An Incremental Subspace Learning Approach. Sensors, 2019, 19, 2848.	2.1	12
259	Entropy Based Illumination-Invariant Foreground Detection. IEICE Transactions on Information and Systems, 2019, E102.D, 1434-1437.	0.4	1
260	Local Compact Binary Count Based Nonparametric Background Modeling for Foreground Detection in Dynamic Scenes. IEEE Access, 2019, 7, 92329-92340.	2.6	12
261	Moving Object Detection Method via ResNet-18 With Encoder–Decoder Structure in Complex Scenes. IEEE Access, 2019, 7, 108152-108160.	2.6	76
262	Semi-Supervised Faster RCNN-Based Person Detection and Load Classification for Far Field Video Surveillance. Machine Learning and Knowledge Extraction, 2019, 1, 756-767.	3.2	35
263	Moving Vehicle Detection with Shadow Elimination Based on Improved ViBe Algorithm. Journal of Physics: Conference Series, 2019, 1302, 022080.	0.3	3
264	Detection of Dynamic Objects in Videos Using LBSP and Fuzzy Gray Level Difference Histograms. , 2019, , .		1
265	Weighted RPCA based Background Subtraction for Automatic Berthing. , 2019, , .		1
266	Dynamic ARMA-Based Background Subtraction for Moving Objects Detection. IEEE Access, 2019, 7, 128659-128668.	2.6	7
267	Compute-Extensive Background Subtraction for Efficient Ghost Suppression. IEEE Access, 2019, 7, 130180-130196.	2.6	8
268	Video Foreground Extraction Using Multi-View Receptive Field and Encoder–Decoder DCNN for Traffic and Surveillance Applications. IEEE Transactions on Vehicular Technology, 2019, 68, 9478-9493.	3.9	51
269	Real-Time Dynamic Object Detection for Autonomous Driving Using Prior 3D-Maps. Lecture Notes in Computer Science, 2019, , 567-582.	1.0	25
270	An Algorithm for Tracking Multiple Fish Based on Biological Water Quality Monitoring. IEEE Access, 2019, 7, 15018-15026.	2.6	20
271	Background subtraction with multi-scale structured low-rank and sparse factorization. Neurocomputing, 2019, 328, 113-121.	3.5	14

#	Article	IF	CITATIONS
272	A novel instrument to compare dynamic object detection algorithms. Image and Vision Computing, 2019, 88, 19-28.	2.7	6
273	X-Net: A Binocular Summation Network for Foreground Segmentation. IEEE Access, 2019, 7, 71412-71422.	2.6	9
274	Online and Batch Supervised Background Estimation Via L1 Regression. , 2019, , .		4
275	The study on tire tread depth measurement method based on machine vision. Advances in Mechanical Engineering, 2019, 11, 168781401983782.	0.8	6
276	A Comprehensive Survey of Video Datasets for Background Subtraction. IEEE Access, 2019, 7, 59143-59171.	2.6	38
277	A Novel and Practical Scheme for Resolving the Quality of Samples in Background Modeling. Sensors, 2019, 19, 1352.	2.1	0
278	Motion and appearance based background subtraction for freely moving cameras. Signal Processing: Image Communication, 2019, 75, 11-21.	1.8	11
279	Dynamic background modeling using intensity and orientation distribution of video sequence. Multimedia Tools and Applications, 2019, 78, 22537-22554.	2.6	6
280	Dynamic Background Subtraction Using Histograms Based on Fuzzy C-Means Clustering and Fuzzy Nearness Degree. IEEE Access, 2019, 7, 14671-14679.	2.6	13
281	Foreground detection based on co-occurrence background model with hypothesis on degradation modification in dynamic scenes. Signal Processing, 2019, 160, 66-79.	2.1	15
282	Background Subtraction With Real-Time Semantic Segmentation. IEEE Access, 2019, 7, 153869-153884.	2.6	38
283	Extended Codebook with Multispectral Sequences for Background Subtraction. Sensors, 2019, 19, 703.	2.1	8
284	ANTIC: antithetic isomeric cluster patterns for medical image retrieval and change detection. IET Computer Vision, 2019, 13, 31-43.	1.3	19
285	A New Approach for Moving Object Detection under Varying Illumination Environments. , 2019, , .		2
286	From Comparison to Retrieval: Scalable Change Retrieval from Discriminatively Learned Deep Three-dimensional Neural Codes. , 2019, , .		1
287	Adaptive auxiliary input extraction based on vanishing point detection for distant object detection in high-resolution railway scene. , $2019, \dots$		6
288	An Adaptive Background Modelling Method Based on Modified Running Averages. , 2019, , .		1
289	Global Optimality Guarantees for Nonconvex Unsupervised Video Segmentation. , 2019, , .		1

#	Article	IF	CITATIONS
290	Rate-Distortion Driven Separation of Diffuse and Specular Components in Multiview Imagery. , 2019, , .		0
291	Analysis and Trends on Moving Object Detection Algorithm Techniques. IEEE Latin America Transactions, 2019, 17, 1771-1783.	1.2	5
292	Rain Streak Removal from Video Sequence using Spatiotemporal Appearance. , 2019, , .		3
293	Simple background subtraction constraint for weakly supervised background subtraction network. , 2019, , .		12
294	Adaptive Multi-Strategy Observation of Kernelized Correlation Filter for Visual Object Tracking. , 2019, , .		0
295	Nonparametric background modelling and segmentation to detect micro air vehicles using RGB-D sensor. International Journal of Micro Air Vehicles, 2019, 11, 175682931882232.	1.0	3
296	Kernel Density Estimation for Foreground Detection in Dynamic Video Processing for Unmanned Aerial Vehicle Application., 2019,,.		3
297	RetailNet: A Deep Learning Approach for People Counting and Hot Spots Detection in Retail Stores. , 2019, , .		15
298	A Benchmark of Motion Detection Algorithms for Static Camera: Application on CDnet 2012 Dataset. Lecture Notes in Networks and Systems, 2019, , 235-245.	0.5	0
299	FastDeRain: A Novel Video Rain Streak Removal Method Using Directional Gradient Priors. IEEE Transactions on Image Processing, 2019, 28, 2089-2102.	6.0	121
300	Locally Statistical Dual-Mode Background Subtraction Approach. IEEE Access, 2019, 7, 9769-9782.	2.6	8
301	Online Mutual Foreground Segmentation for Multispectral Stereo Videos. International Journal of Computer Vision, 2019, 127, 1044-1062.	10.9	9
302	Real-time record sensitive background classifier (RSBC). Expert Systems With Applications, 2019, 119, 104-117.	4.4	3
303	Design and implementation of colour textureâ€based multiple object detection using morphological gradient approach. Concurrency Computation Practice and Experience, 2019, 31, e4980.	1.4	2
304	Twin background model for foreground detection in video sequence. Cluster Computing, 2019, 22, 11659-11668.	3.5	2
305	LRR for Subspace Segmentation via Tractable Schatten-\$p\$ Norm Minimization and Factorization. IEEE Transactions on Cybernetics, 2019, 49, 1722-1734.	6.2	63
306	Change Detection by Training a Triplet Network for Motion Feature Extraction. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29, 433-446.	5.6	32
307	Camera-trap images segmentation using multi-layer robust principal component analysis. Visual Computer, 2019, 35, 335-347.	2.5	14

#	Article	IF	Citations
308	SuperBE: computationally light background estimation with superpixels. Journal of Real-Time Image Processing, 2019, 16, 2319-2335.	2.2	12
309	Compressed dynamic mode decomposition for background modeling. Journal of Real-Time Image Processing, 2019, 16, 1479-1492.	2.2	85
310	Multimodal background subtraction for high-performance embedded systems. Journal of Real-Time Image Processing, 2019, 16, 1407-1423.	2.2	8
311	Pedestrian detection with LeNet-like convolutional networks. Neural Computing and Applications, 2020, 32, 13175-13181.	3.2	2
312	An Effective Subsuperpixel-Based Approach for Background Subtraction. IEEE Transactions on Industrial Electronics, 2020, 67, 601-609.	5.2	29
313	Cauchy Mixture Model-based Foreground Object Detection with New Dynamic Learning Rate Using Spatial and Statistical information for Video Surveillance Applications. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2020, 90, 911-924.	0.8	O
314	Rapid and Robust Background Modeling Technique for Low-Cost Road Traffic Surveillance Systems. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 2204-2215.	4.7	17
315	Comparative study of illumination-invariant foreground detection. Journal of Supercomputing, 2020, 76, 2289-2301.	2.4	1
316	Multi-modal foreground detection via inter- and intra-modality-consistent low-rank separation. Neurocomputing, 2020, 371, 27-38.	3.5	4
317	Foreground Segmentation Using Adaptive 3 Phase Background Model. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 2287-2296.	4.7	11
318	Fast Adjacent LBP Based Background Modeling for Foreground Detection in Video Sequences. , 2020, , 845-853.		0
319	Spatiotemporally scalable matrix recovery for background modeling and moving object detection. Signal Processing, 2020, 168, 107362.	2.1	13
320	Moving object detection and description. , 2020, , 433-481.		0
321	Coarse-to-fine sample-based background subtraction for moving object detection. Optik, 2020, 207, 164195.	1.4	15
322	Squeezing the DCT to Fight Camouflage. Journal of Mathematical Imaging and Vision, 2020, 62, 206-222.	0.8	1
323	Moving object detection under different weather conditions using full-spectrum light sources. Pattern Recognition Letters, 2020, 129, 205-212.	2.6	21
324	A CMOS Vision Sensor for Background Subtraction. , 2020, , .		3
325	Moving objects detection with a moving camera: A comprehensive review. Computer Science Review, 2020, 38, 100310.	10.2	56

#	Article	IF	CITATIONS
326	Foreground detection by ensembles of random polygonal tilings. Expert Systems With Applications, 2020, 161, 113518.	4.4	1
327	A review of silhouette extraction algorithms for use within visual hull pipelines. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2020, 8, 649-670.	1.3	5
328	A Light-Weight Change Detection Method Using YCbCr-Based Texture Consensus Model. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34, 2050023.	0.7	7
329	Real-Time Semantic Background Subtraction. , 2020, , .		19
330	Moving Target Detection and Tracking Based on Improved FCM Algorithm. International Journal of Cognitive Informatics and Natural Intelligence, 2020, 14, 63-74.	0.4	4
331	Improved Change Detector Using Dual-Camera Sensors for Intelligent Surveillance Systems. IEEE Sensors Journal, 2021, 21, 11435-11442.	2.4	9
332	Best Pair Formulation & Accelerated Scheme for Non-Convex Principal Component Pursuit. IEEE Transactions on Signal Processing, 2020, 68, 6128-6141.	3.2	3
333	Testing dataset for head segmentation accuracy for the algorithms in the  BGSLibrary' v3.0.0 developed by Andrews Sobral. Data in Brief, 2020, 33, 106385.	0.5	1
334	FISHnet: Learning to Segment the Silhouettes of Swimmers. IEEE Access, 2020, 8, 178311-178321.	2.6	5
335	Summarizing The Performances Of A Background Subtraction Algorithm Measured On Several Videos. , 2020, , .		1
336	Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning. IEEE Access, 2020, 8, 163015-163025.	2.6	9
337	HMR-vid: a comparative analytical survey on human motion recognition in video data. Multimedia Tools and Applications, 2020, 79, 31819-31863.	2.6	16
338	Ant_ViBe: Improved ViBe Algorithm Based on Ant Colony Clustering under Dynamic Background. Mathematical Problems in Engineering, 2020, 2020, 1-13.	0.6	1
339	Incept_LSTM: Accession for human activity concession in automatic surveillance. Journal of Discrete Mathematical Sciences and Cryptography, 2022, 25, 2259-2273.	0.5	3
340	Foreground Objects Detection Using a Fully Convolutional Network With a Background Model Image and Multiple Original Images. IEEE Access, 2020, 8, 159864-159878.	2.6	16
341	A Linearized Alternating Direction Method of Multipliers for a Special Three-Block Nonconvex Optimization Problem of Background/Foreground Extraction. IEEE Access, 2020, 8, 198886-198899.	2.6	2
342	Scene Independency Matters: An Empirical Study of Scene Dependent and Scene Independent Evaluation for CNN-Based Change Detection. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 2031-2044.	4.7	27
343	Indoor Parking Method Based on Cooperation of Intelligent Vehicle and Parking Lot. Journal of Physics: Conference Series, 2020, 1651, 012004.	0.3	0

#	Article	IF	CITATIONS
344	TensorMoG: A Tensor-Driven Gaussian Mixture Model with Dynamic Scene Adaptation for Background Modelling. Sensors, 2020, 20, 6973.	2.1	4
345	Semi-Supervised Background Subtraction Of Unseen Videos: Minimization Of The Total Variation Of Graph Signals. , 2020, , .		19
346	Detecting and Tracking Moving Airplanes from Space Based on Normalized Frame Difference Labeling and Improved Similarity Measures. Remote Sensing, 2020, 12, 3589.	1.8	5
347	Rapid Ship Detection Method on Movable Platform Based on Discriminative Multi-Size Gradient Features and Multi-Branch Support Vector Machine. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1357-1367.	4.7	6
348	Dynamic Spatial Predicted Background. IEEE Transactions on Image Processing, 2020, 29, 5517-5530.	6.0	2
349	A universal sample-based background subtraction method for traffic surveillance videos. Multimedia Tools and Applications, 2020, 79, 22211-22234.	2.6	5
350	Design of Moving Object Detection Algorithm Based on Computer Vision., 2020,,.		1
351	Animal Localization in Camera-Trap Images with Complex Backgrounds. , 2020, , .		10
352	Asynchronous Semantic Background Subtraction. Journal of Imaging, 2020, 6, 50.	1.7	7
353	Hybrid Fusion-Based Background Segmentation in Multispectral Polarimetric Imagery. Remote Sensing, 2020, 12, 1776.	1.8	6
354	Rate-Distortion Driven Decomposition of Multiview Imagery to Diffuse and Specular Components. IEEE Transactions on Image Processing, 2020, 29, 5469-5480.	6.0	3
355	Texture collinearity foreground segmentation for night videos. Computer Vision and Image Understanding, 2020, 200, 103032.	3.0	2
356	Background Subtraction using Adaptive Singular Value Decomposition. Journal of Mathematical Imaging and Vision, 2020, 62, 1159-1172.	0.8	4
357	Background Subtraction Based on Modified Pulse Coupled Neural Network in Compressive Domain. IEEE Access, 2020, 8, 114422-114432.	2.6	2
358	The effect of downsampling–upsampling strategy on foreground detection algorithms. Artificial Intelligence Review, 2020, 53, 4935-4965.	9.7	2
359	Fusing Self-Organized Neural Network and Keypoint Clustering for Localized Real-Time Background Subtraction. International Journal of Neural Systems, 2020, 30, 2050016.	3.2	6
360	A Parallel Splitting Augmented Lagrangian Method for Two-Block Separable Convex Programming with Application in Image Processing. Mathematical Problems in Engineering, 2020, 2020, 1-10.	0.6	2
361	Selective Subtraction for Handheld Cameras. IEEE Access, 2020, 8, 36556-36568.	2.6	1

#	ARTICLE	IF	CITATIONS
362	Are Object Detection Assessment Criteria Ready for Maritime Computer Vision?. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 5295-5304.	4.7	15
363	Automated detection of helmet on motorcyclists from traffic surveillance videos: a comparative analysis using hand-crafted features and CNN. Multimedia Tools and Applications, 2020, 79, 14179-14199.	2.6	36
364	Change detection based on tensor RPCA for longitudinal retinal fundus images. Neurocomputing, 2020, 387, 1-12.	3.5	5
365	A Robust Tracking-by-Detection Algorithm Using Adaptive Accumulated Frame Differencing and Corner Features. Journal of Imaging, 2020, 6, 25.	1.7	7
366	Proposing a new feature descriptor for moving object detection. Optik, 2020, 209, 164563.	1.4	11
367	Low-Tubal-Rank Plus Sparse Tensor Recovery With Prior Subspace Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3492-3507.	9.7	23
368	Annotation and Benchmarking of a Video Dataset under Degraded Complex Atmospheric Conditions and Its Visibility Enhancement Analysis for Moving Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 844-862.	5.6	7
369	Foreground detection using motion histogram threshold algorithm in high-resolution large datasets. Multimedia Systems, 2021, 27, 667-678.	3.0	4
370	LRCN-RetailNet: A recurrent neural network architecture for accurate people counting. Multimedia Tools and Applications, 2021, 80, 5517-5537.	2.6	7
371	Comprehensive comparative evaluation of background subtraction algorithms in open sea environments. Computer Vision and Image Understanding, 2021, 202, 103101.	3.0	11
372	Human action recognition using distance transform and entropy based features. Multimedia Tools and Applications, 2021, 80, 8147-8173.	2.6	16
373	Optical flow estimation combining with illumination adjustment and edge refinement in livestock UAV videos. Computers and Electronics in Agriculture, 2021, 180, 105910.	3.7	6
374	An adaptive background modeling for foreground detection using spatio-temporal features. Multimedia Tools and Applications, 2021, 80, 1311-1341.	2.6	4
375	A Three-Way Optimization Technique for Noise Robust Moving Object Detection Using Tensor Low-Rank Approximation, I _{1/2} , and TTV Regularizations. IEEE Transactions on Cybernetics, 2021, 51, 1004-1014.	6.2	23
376	Denoising-Based Turbo Message Passing for Compressed Video Background Subtraction. IEEE Transactions on Image Processing, 2021, 30, 2682-2696.	6.0	8
377	Human Detection/Tracking System for Video Surveillance With Noise Removal. Advances in Information Security, Privacy, and Ethics Book Series, 2021, , 72-108.	0.4	1
378	Protection of visual privacy in videos acquired with RGB cameras for active and assisted living applications. Multimedia Tools and Applications, 2021, 80, 23649.	2.6	11
379	Image Background Subtraction and Partial Stylization Based on Style Representation of Convolutional Neural Networks. Lecture Notes in Electrical Engineering, 2021, , 19-30.	0.3	1

#	Article	IF	CITATIONS
380	A GPU-Accelerated Modified Unsharp-Masking Method for High-Frequency Background- Noise Suppression. IEEE Access, 2021, 9, 68746-68757.	2.6	5
381	Entropy feature and peak-means clustering based slowly moving object detection in head and shoulder video sequences. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 5296-5304.	2.7	2
382	An Empirical Review of Deep Learning Frameworks for Change Detection: Model Design, Experimental Frameworks, Challenges and Research Needs. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 6101-6122.	4.7	42
383	The Emerging Field of Graph Signal Processing for Moving Object Segmentation. Communications in Computer and Information Science, 2021, , 31-45.	0.4	18
384	Moving Vehicle Detection in Traffic Video Using Modified SXCS-LBP Texture Descriptor. Advances in Logistics, Operations, and Management Science Book Series, 2021, , 257-273.	0.3	0
385	Illation of Video Visual Relation Detection Based on Graph Neural Network. IEEE Access, 2021, 9, 141144-141153.	2.6	1
386	Establishment of a comprehensive analysis method for the microfaunal movement in activated sludge. Environmental Science and Pollution Research, 2021, 28, 17084-17097.	2.7	0
387	A Method for Detection of Small Moving Objects in UAV Videos. Remote Sensing, 2021, 13, 653.	1.8	23
388	Foreground Objects Detection by U-Net with Multiple Difference Images. Applied Sciences (Switzerland), 2021, 11, 1807.	1.3	5
389	Adjacent LBP and LTP based background modeling with mixed-mode learning for foreground detection. Pattern Analysis and Applications, 2021, 24, 1047-1074.	3.1	9
390	Moving Object Detection System Based on the Modified Temporal Difference and OTSU algorithm. , 2021, , .		4
392	Geometric Change Detection in Digital Twins. Digital, 2021, 1, 111-129.	1.1	6
393	Research on Foreground Object Recognition Tracking and Background Restoration in AloT Era. , 2021, , .		0
394	A sparse tensor optimization approach for background subtraction from compressive measurements. Multimedia Tools and Applications, 2021, 80, 26657.	2.6	1
395	Dynamic obstacle detection based on panoramic vision in the moving state of agricultural machineries. Computers and Electronics in Agriculture, 2021, 184, 106104.	3.7	17
396	Change detection with various combinations of fluid pyramid integration networks. Neurocomputing, 2021, 437, 84-94.	3.5	13
397	A survey on deep learning and its applications. Computer Science Review, 2021, 40, 100379.	10.2	502
398	Comparison of Background Extraction Methods for Anomaly Detection. , 2021, , .		0

#	Article	IF	Citations
399	An improved scheme for multifeature-based foreground detection using challenging conditions. , 2021, 113, 103030.		5
400	Kernel density estimation and correntropy based background modeling and camera model parameter estimation for underwater video object detection. Soft Computing, 2021, 25, 10477-10496.	2.1	6
401	Deep Fusion of Appearance and Frame Differencing for Motion Segmentation. , 2021, , .		4
402	A Large Dataset With a New Framework for Abandoned Object Detection in Complex Scenarios. IEEE MultiMedia, 2021, 28, 75-87.	1.5	2
403	Spatial-Temporal Integration Network with Self-Guidance for Robust Video Deraining. , 2021, , .		2
404	Automatic high fidelity foot contact location and timing for elite sprinting. Machine Vision and Applications, 2021, 32, 1.	1.7	1
405	Background subtraction for moving object detection: explorations of recent developments and challenges. Visual Computer, 2022, 38, 4151-4178.	2.5	25
406	Experimental Study on Tire-Road Dynamic Contact Pressure Distribution Using FTIR Imaging. International Journal of Automotive Technology, 2021, 22, 1305-1317.	0.7	4
407	Deep Variation Transformation Network for Foreground Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 3544-3558.	5.6	7
408	Multispectral background subtraction with deep learning. Journal of Visual Communication and Image Representation, 2021, 80, 103267.	1.7	5
409	Anomalous object detection by active search with PTZ cameras. Expert Systems With Applications, 2021, 181, 115150.	4.4	6
410	Tensor-Based Approach for Liquefied Natural Gas Leakage Detection From Surveillance Thermal Cameras: A Feasibility Study in Rural Areas. IEEE Transactions on Industrial Informatics, 2021, 17, 8122-8130.	7.2	14
411	An extended proximal ADMM algorithm for three-block nonconvex optimization problems. Journal of Computational and Applied Mathematics, 2021, 398, 113681.	1.1	6
412	Probability-Based Framework to Fuse Temporal Consistency and Semantic Information for Background Segmentation. IEEE Transactions on Multimedia, 2022, 24, 740-754.	5.2	2
413	GraphBGS: Background Subtraction via Recovery of Graph Signals. , 2021, , .		12
414	Simple Median-Based Method for Stationary Background Generation Using Background Subtraction Algorithms. Lecture Notes in Computer Science, 2015, , 477-484.	1.0	22
415	A Generic Feature Selection Method for Background Subtraction Using Global Foreground Models. Lecture Notes in Computer Science, 2015, , 717-728.	1.0	6
416	BMOG: Boosted Gaussian Mixture Model withÂControlled Complexity. Lecture Notes in Computer Science, 2017, , 50-57.	1.0	14

#	Article	IF	CITATIONS
417	Joint Deep Learning of Foreground, Background and Shape for Robust Contextual Segmentation. Lecture Notes in Computer Science, 2017, , 622-632.	1.0	16
418	Efficient Real-Time Background Detection Based on the PCA Subspace Decomposition. Lecture Notes in Computer Science, 2017, , 485-496.	1.0	1
419	Background Subtraction Based on Superpixels Under Multi-scale in Complex Scenes. Communications in Computer and Information Science, 2016, , 392-403.	0.4	8
420	Background subtraction in dynamic scenes using the dynamic principal component analysis. IET Image Processing, 2020, 14, 245-255.	1.4	9
421	Fast Portrait Segmentation of the Head and Upper Body. , 2020, , .		1
422	Combining background subtraction algorithms with convolutional neural network. Journal of Electronic Imaging, 2019, 28, 1.	0.5	18
423	Deep learning-based scene-awareness approach for intelligent change detection in videos. Journal of Electronic Imaging, 2019, 28, 1.	0.5	6
424	Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction. , 2017, , .		8
425	Virtual High Dynamic Range Imaging for Underwater Drone Navigation., 2018,,.		3
426	Improved Object Localization Using Accurate Distance Estimation in Wireless Multimedia Sensor Networks. PLoS ONE, 2015, 10, e0141558.	1.1	4
427	Background Modeling Algorithm Based on Transitions Intensities. International Review on Computers and Software, 2015, 10, 387.	0.1	8
429	A new subspace based solution to background modelling and change detection. International Journal of Intelligent Systems and Applications in Engineering, 2016, 4, 82-86.	1.0	2
430	A Note on Background Subtraction by Utilizing a New Tensor Approach. International Journal of Intelligent Systems and Applications in Engineering, 2016, 4, 87-91.	1.0	1
431	Background extraction method for analysis of natural images captured by camera traps. Informatsionno-Upravliaiushchie Sistemy, 2018, , 35-45.	0.3	2
432	An Improved Moving Object Detection Algorithm Based on Gaussian Mixture Models. Open Journal of Applied Sciences, 2016, 06, 449-456.	0.2	5
433	A Novel Interest-Point-Based Background Subtraction Algorithm. Electronic Letters on Computer Vision and Image Analysis, 2014, 13, 50.	0.5	6
434	Traffic Video Enhancement based Vehicle Correct Tracked Methodology. International Journal of Image Graphics and Signal Processing, 2017, 9, 30-40.	0.8	1
435	Extracting Small Flying Airplane With Spatially Accurate and Temporally Consistent Foreground Modeling. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	0

#	Article	IF	CITATIONS
436	On the Development of Foreground Detection under Complex Background., 2021,,.		0
437	Background Subtraction Using A Hybrid Modelling Based Technique. , 2021, , .		0
438	Consistency-Constancy Bi-Knowledge Learning for Pedestrian Detection in Night Surveillance. , 2021, , .		13
439	Video Rain-Streaks Removal by Combining Data-Driven and Feature-Based Models. Sensors, 2021, 21, 6856.	2.1	2
440	Road pollution estimation from vehicle tracking in surveillance videos by deep convolutional neural networks. Applied Soft Computing Journal, 2021, 113, 107950.	4.1	10
441	An Adaptive Background Formation Algorithm Considering Stationary Object. Journal of the Korea Society of Computer and Information, 2014, 19, 55-62.	0.0	0
442	Change Detection of Medical Images for Three Dimensional Volumetric Data. Journal of Theoretical and Computational Science, 2015, 02, .	0.1	0
443	A Sparse Error Compensation Based Incremental Principal Component Analysis Method for Foreground Detection. Lecture Notes in Computer Science, 2015, , 233-242.	1.0	1
444	Time Ordering Shuffling for Improving Background Subtraction. Lecture Notes in Computer Science, 2015, , 58-69.	1.0	0
445	A Perfect Estimation of a Background Image Does Not Lead to a Perfect Background Subtraction: Analysis of the Upper Bound on the Performance. Lecture Notes in Computer Science, 2015, , 527-534.	1.0	1
446	Laser Spot Detection Using Robust Dictionary Construction and Update. Journal of Information and Communication Convergence Engineering, 2015, 13, 42-49.	0.2	0
447	Moving Object Segmentation in Dynamic Environment by Reducing Impulsive Noise from Background Model. International Journal of Computer Applications, 2015, 118, 43-48.	0.2	1
448	Moving Vehicles Detection in Traffic Video Using Modified SXCS-LBP Texture Descriptor. International Journal of Computer Vision and Image Processing, 2015, 5, 14-34.	0.3	0
449	An Improved Extraction Process of Moving Objects' Silhouettes in Video Sequences. Advances in Intelligent Systems and Computing, 2016, , 57-65.	0.5	0
450	FOREGROUND DETECTION IN SURVEILLANCE VIDEOS VIA A HYBRID LOCAL TEXTURE BASED METHOD. International Journal on Smart Sensing and Intelligent Systems, 2016, 9, 1668-1686.	0.4	1
451	A novel object detection technique for dynamic scene. , 2016, , .		0
452	Real-Time Multi-object Tracking with Occlusion and Stationary Objects Handling for Conveying Systems. Lecture Notes in Computer Science, 2016, , 136-145.	1.0	1
453	On Vision-Based Human-Centric Virtual Character Design. Advances in Computational Intelligence and Robotics Book Series, 2016, , 1-34.	0.4	0

#	Article	IF	Citations
454	Porcupine Recognition Algorithm Based on Gaussian Mixture Background Modeling., 2017,,.		О
455	Parallel Computing in Face Image Retrieval. Advances in Computational Intelligence and Robotics Book Series, 2017, , 155-189.	0.4	1
456	A New Intelligent Optimization Network Online Learning Behavior in Multimedia Big Data Environment. International Journal of Mobile Computing and Multimedia Communications, 2017, 8, 21-31.	0.4	0
457	Semitransparency Effect in a Video Using Deep Learning Approach. Communications in Computer and Information Science, 2018, , 564-573.	0.4	O
458	Enhanced Codebook Model and Fusion for Object Detection with Multispectral Images. Lecture Notes in Computer Science, 2018, , 225-232.	1.0	0
460	Moving Target Detection of Gaussian Mixture Model Based on Morphological Filter. International Journal of Engineering Research & Technology, 2018, V7, .	0.2	O
461	Real-time stereovision framework for underwater drone maneuvering., 2018,,.		3
462	Decision-making system for detection of moving vehicles using a field programmable gate array combining conventional techniques of digital image processing with a fuzzy integral. Journal of Electronic Imaging, 2018, 27, 1.	0.5	1
463	Spermiogram GÃ \P rÃ 1 /4ntÃ 1 /4lerinden Hareket Belirleme YÃ \P ntemleri ile Aktif Sperm SayÄ \pm sÄ \pm nÄ \pm n Tahmini. Journ of the Faculty of Engineering and Architecture of Gazi University, 2018, 2018, .	al _{0.3}	0
464	On Vision-Based Human-Centric Virtual Character Design. , 2019, , 1897-1923.		O
465	Refining background subtraction using consistent motion detection in adverse weather. Journal of Electronic Imaging, 2019, 28, 1.	0.5	2
466	Vehicle Classification using IPCP and EsKNN Algorithm for Surveillance Camera. Techn \tilde{A} © Jurnal Ilmiah Elektroteknika, 2019, 18, 15-30.	0.1	O
467	ANIMAL DETECTION USING A SERIES OF IMAGES UNDER COMPLEX SHOOTING CONDITIONS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W12, 249-257.	0.2	9
468	Background subtraction via time continuity and texture consistency constraints. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 1495.	0.8	1
469	Object Motion Detection Methods for Real-Time Video Surveillance: A Survey with Empirical Evaluation. Smart Innovation, Systems and Technologies, 2020, , 663-679.	0.5	3
470	Motion Detection Using a Hybrid Texture-Based Approach. Advances in Intelligent Systems and Computing, 2020, , 609-620.	0.5	O
471	CVABS: moving object segmentation with common vector approach for videos. IET Computer Vision, 2019, 13, 719-729.	1.3	4
472	ĐžĐ±Đ³Ñ€ÑƒĐ½Ñ,ÑƒĐ²Đ°Đ½Đ½Ñ∙Đ¿Đ¾Đ°Đ°ĐĐ½Đ¸Đ°Đ° Đ²Đ¸Đ±Đ¾Ñ€Ñƒ Đ¾Đ¿Ñ,Đ¸Đ¼Đ°Đ»ÑŒĐ½Đ¾Đ)3 6 3,3/4 а€)»Ð³Ð¾Ñ <mark>€</mark>

#	Article	IF	Citations
473	Foreground segmentation using multiscale convolutional neural network. Electronics Letters, 2020, 56, 597-599.	0.5	2
474	Moving Objects Detection and Tracking with Camera Motion Compensation. Lecture Notes in Electrical Engineering, 2021, , 1193-1210.	0.3	0
475	Computer Vision in the Infrared Spectrum: Challenges and Approaches. Synthesis Lectures on Computer Vision, 2021, 10, 1-138.	0.4	2
476	Using polynomial modeling for calculation of sperm quality parameters in CASA. Bilgisayar Bilimleri, 0, , .	0.0	1
477	Moving Object Detection in Traffic Surveillance Video: New MOD-AT Method Based on Adaptive Threshold. ISPRS International Journal of Geo-Information, 2021, 10, 742.	1.4	5
478	Background Subtraction by Difference Clustering. Lecture Notes in Computer Science, 2020, , 45-56.	1.0	0
479	Classification of human activity detection based on an intelligent regression model in video sequences. IET Image Processing, 2021, 15, 65-76.	1.4	4
480	LIFADER: Light Face Detection and Recognition approach for people tracking. , 2020, , .		0
481	Investigation and Improvement of VGG based Encoder-Decoder Architecture for Background Subtraction. , 2020, , .		0
482	The tradeâ€off between accuracy and the complexity of realâ€time background subtraction. IET Image Processing, 2021, 15, 350-368.	1.4	5
483	Collaborative Gaussian mixture model for background subtraction. , 2020, , .		0
484	Background Subtraction Based on Online Tensor Decomposition. , 2020, , .		0
485	A Moving Object Detection Method Based on 3D Convolution Neural Network., 2020,,.		0
486	Graph Moving Object Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP, 1-1.	9.7	19
487	Rain Streak Removal with Well-Recovered Moving Objects from Video Sequences Using Photometric Correlation. Lecture Notes in Computer Science, 2020, , 3-13.	1.0	0
488	Feature Fusion Based Background Model Learning for Video Object Detection. , 2020, , .		0
489	Improved Candidate Generation for Pedestrian Detection using Background Modeling in Connected Vehicles. International Journal of Advanced Computer Science and Applications, 2020, 11 , .	0.5	1
491	Multispectral Dynamic Codebook and Fusion Strategy for Moving Objects Detection. Lecture Notes in Computer Science, 2020, , 35-43.	1.0	1

#	Article	IF	CITATIONS
492	An accurate foreground moving object detection based on segmentation techniques and optimal classifier. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	1
493	Survey of autonomous gas leak detection and quantification with snapshot infrared spectral imaging. Journal of Optics (United Kingdom), 2020, 22, 103001.	1.0	7
494	Robust Moving Targets Detection Based on Multiple Features. Advances in Intelligent Systems and Computing, 2021, , 521-531.	0.5	0
495	Humanâ€like evaluation method for object motion detection algorithms. IET Computer Vision, 2020, 14, 674-682.	1.3	7
496	Approaches to moving object detection and parameter estimation in a video sequence for the transport analysis system. Computer Optics, 2020, 44, .	1.3	8
497	An improved Gaussian Mixture Method based Background Subtraction Model for Moving Object Detection in Outdoor Scene. , 2021, , .		4
498	Video Based Human Head and Shoulders Detection Using Machine Learning., 2021,,.		1
500	Efficient High-Resolution Video Compression Scheme Using Background and Foreground Layers. IEEE Access, 2021, 9, 157411-157421.	2.6	2
501	Video Deraining Using the Visual Properties of Rain Streaks. IEEE Access, 2022, 10, 202-212.	2.6	3
502	Fusing Faster R-CNN and Background Subtraction Based on the Mixture of Gaussians Model. , 2020, , .		1
503	Đ"Đ¾ÑĐ»Ñ–ĐжĐμĐ½Đ⅓Ñ•Đ¼ĐμÑ,Đ¾ĐÑ–Đ² Đ²Đ,ĐÑ–Đ»ĐμĐ½Đ⅓Ñ•ĐĐ,Đ½Đ°Đ¼Ñ–Ñ‡Đ½Đ,ÑĐ¾	б'ђ	'ĐÑ,Ñ–Đ² Ñ
504	Video-Based Abnormal Behaviour Detection in Smart Surveillance Systems. Lecture Notes in Electrical Engineering, 2022, , 329-338.	0.3	0
505	Graph CNN for Moving Object Detection in Complex Environments from Unseen Videos., 2021,,.		14
506	An industrial portrait background removal solution based on knowledge infusion. Applied Intelligence, 2022, 52, 11592-11605.	3.3	1
507	Target Detection Based on Variable Frame Rate Sampling of Active Light Source. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2022, 26, 83-87.	0.5	0
508	An Effective Approach for Human Activity Classification Using Feature Fusion and Machine Learning Methods. Applied Bionics and Biomechanics, 2022, 2022, 1-14.	0.5	6
510	Unsupervised inner-point-pairs model for unseen-scene and online moving object detection. Visual Computer, 0 , 1 .	2.5	3
511	Eigenbackground Revisited: Can We Model the Background with Eigenvectors?. Journal of Mathematical Imaging and Vision, 0 , , 1 .	0.8	1

#	ARTICLE	IF	CITATIONS
512	Simultaneous Detection of Loop-Closures and Changed Objects. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2022, 26, 247-255.	0.5	0
513	A multi features based background modeling approach for moving object detection. Optik, 2022, 260, 168980.	1.4	4
514	Research on Multitarget Recognition and Detection Based on Computer Vision. Journal of Sensors, 2022, 2022, 1-13.	0.6	2
515	Is it Nemo or Dory? Fast and accurate object detection for IoT and edge devices. , 2021, , .		0
516	Singular Spectrum Analysis for Background Initialization with Spatio-Temporal RGB Color Channel Data. Entropy, 2021, 23, 1644.	1.1	2
517	Technologies for Building Intelligent Video Surveillance Systems and Methods for Background Subtraction in Video Sequences. Lecture Notes in Electrical Engineering, 2022, , 468-480.	0.3	2
518	NeuralDiff: Segmenting 3D objects that move in egocentric videos., 2021,,.		12
519	Multimodal Unrolled Robust PCA for Background Foreground Separation. IEEE Transactions on Image Processing, 2022, 31, 3553-3564.	6.0	6
520	A Tensor-Based Online RPCA Model for Compressive Background Subtraction. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 10668-10682.	7.2	7
521	Roadside LiDAR Vehicle Detection and Tracking Using Range and Intensity Background Subtraction. Journal of Advanced Transportation, 2022, 2022, 1-14.	0.9	9
522	A Fog-Assisted Framework for Intelligent Video Preprocessing in Cloud-Based Video Surveillance as a Service. IEEE Transactions on Sustainable Computing, 2022, 7, 825-838.	2,2	2
523	Automatic Target Detection in Cluttered Infrared Imagery using Background Modeling Approach. , 2022, , .		0
524	Automated image and video object detection based on hybrid heuristic-based U-net segmentation and faster region-convolutional neural network-enabled learning. Multimedia Tools and Applications, 2023, 82, 3459-3484.	2.6	4
525	A survey of moving object detection methods: A practical perspective. Neurocomputing, 2022, 503, 28-48.	3.5	12
526	Motion detection in moving camera videos using background modeling and FlowNet. Journal of Visual Communication and Image Representation, 2022, 88, 103616.	1.7	6
527	Moving Objects Detection in Intricate Scenes via Spatio-Temporal Co-occurrence Based Background Subtraction. Communications in Computer and Information Science, 2022, , 447-457.	0.4	0
528	Detection Method of Foreign Body in Large Volume Parenteral Based on Continuous Time Series. SSRN Electronic Journal, 0, , .	0.4	0
529	Foreground Detection Based on Superpixel and Semantic Segmentation. Computational Intelligence and Neuroscience, 2022, 2022, 1-14.	1.1	0

#	Article	IF	CITATIONS
530	Fusion Attention Mechanism for Foreground Detection Based on Multiscale U-Net Architecture. Computational Intelligence and Neuroscience, 2022, 2022, 1-13.	1.1	2
531	Moving Object Detection in Noisy Video Sequences Using Deep Convolutional Disentangled Representations. , 2022, , .		0
532	Performance analysis of U-Net with hybrid loss for foreground detection. Multimedia Systems, 2023, 29, 771-786.	3.0	1
533	Towards Communication-Efficient Distributed Background Subtraction. Communications in Computer and Information Science, 2022, , 490-502.	0.4	0
534	Background Subtraction Network Module Ensemble for Background Scene Adaptation. , 2022, , .		0
535	Moving Object Detection in Video Sequences Based on a Two-Frame Temporal Information CNN. Neural Processing Letters, 0, , .	2.0	3
536	ABGS Segmenter: pixel wise adaptive background subtraction and intensity ratio based shadow removal approach for moving object detection. Journal of Supercomputing, 2023, 79, 7937-7969.	2.4	2
537	Efficient detection of crossing pedestrians from a moving vehicle with an array of cameras. Optical Engineering, 2022, 62, .	0.5	1
538	Background-foreground segmentation for interior sensing in automotive industry. Journal of Mathematics in Industry, 2022, 12, .	0.7	0
539	Detection of Motorcyclists without Helmet from Traffic Video using Deep Learning Techniques. , 2022, , .		1
540	Combining Classical and Neural Approaches for Image Segmentation. , 2023, , .		0
541	Calculating the Traffic Density of Real-Time Video Using Moving Object Detection. Cognitive Science and Technology, 2023, , 959-967.	0.2	1
542	NeuroHSMD: Neuromorphic Hybrid Spiking Motion Detector. ACM Transactions on Reconfigurable Technology and Systems, 2023, 16, 1-23.	1.9	0
547	ZBS: Zero-Shot Background Subtraction via Instance-Level Background Modeling and Foreground Selection., 2023,,.		2
548	Real-Time Page Extraction for Document Digitization. , 2022, , .		0
549	Detecting the Foreground Dynamic Scenes using Gaussian Mixture Model Analysis Compared with Novel Principal Component Analysis. , 2023, , .		0
550	Automatic Helmet (Object) Detection and Tracking the Riders Using Kalman Filter Technique. , 2023, , 151-181.		1
551	EDAMOD: Edge Detection and Moving Object Detection Algorithm to Control Traffic Lights Dynamically. Cognitive Science and Technology, 2023, , 459-466.	0.2	0

#	Article	IF	CITATIONS
553	Detection of moving objects by background subtraction for foreground detection-a hybrid CNN-Viola-Jones model. AIP Conference Proceedings, 2023, , .	0.3	0