CITATION REPORT List of articles citing

State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicin

DOI: 10.1016/j.jconrel.2014.05.036 Journal of Controlled Release, 2014, 187, 133-44.

Source: https://exaly.com/paper-pdf/59741491/citation-report.pdf

Version: 2024-04-27

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
399	AEG-1 promoter-mediated imaging of prostate cancer. 2014 , 74, 5772-81		29
398	Designing hybrid onconase nanocarriers for mesothelioma therapy: a Taguchi orthogonal array and multivariate component driven analysis. 2014 , 11, 3671-83		37
397	Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. 2014 , 2, 69		96
396	Reinvention of chemotherapy: drug conjugates and nanoparticles. 2015 , 27, 232-42		12
395	Controlling toxicity of Peptide-drug conjugates by different chemical linker structures. 2015 , 10, 804-1	4	26
394	Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies. 2015 , 10, 4099-109		21
393	Potential Use of Biological Proteins for Liver Failure Therapy. <i>Pharmaceutics</i> , 2015 , 7, 255-74	6.4	8
392	pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. 2015 , 10, 6185-97		46
391	Nanoformulation of Geranylgeranyltransferase-I Inhibitors for Cancer Therapy: Liposomal Encapsulation and pH-Dependent Delivery to Cancer Cells. <i>PLoS ONE</i> , 2015 , 10, e0137595	3.7	7
390	Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs. 2015 , 10, 847-58		20
389	Diagnosis of prostate cancer via nanotechnological approach. 2015 , 10, 6555-69		18
388	Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies. 2015 , 6, 480-503		79
387	Applications of nanoparticles in cancer medicine and beyond: optical and multimodal in vivo imaging, tissue targeting and drug delivery. <i>Expert Opinion on Drug Delivery</i> , 2015 , 12, 1837-49	8	38
386	Engineering Biomaterial-Drug Conjugates for Local and Sustained Chemotherapeutic Delivery. 2015 , 26, 1212-23		23
385	Nanomicellar TGX221 blocks xenograft tumor growth of prostate cancer in nude mice. 2015 , 75, 593-6	02	16
384	Evaluation of a PSMA-targeted BNF nanoparticle construct. 2015 , 7, 4432-42		32
383	Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair. 2015 , 7, 3876-87		12

(2015-2015)

382	Mathematical models of the steps involved in the systemic delivery of a chemotherapeutic to a solid tumor: From circulation to survival. <i>Journal of Controlled Release</i> , 2015 , 212, 78-84	11.7	9
381	Effect of residue structure on the thermal and thermoresponsive properties of Bubstituted poly(N-acryloyl-2-pyrrolidones). 2015 , 6, 5993-6000		5
380	Regulatory challenges and approaches to characterize nanomedicines and their follow-on similars. <i>Nanomedicine</i> , 2015 , 10, 659-74	5.6	40
379	Dendritic core-shell systems as soft drug delivery nanocarriers. 2015 , 33, 1327-41		44
378	Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood. <i>Cellular and Molecular Bioengineering</i> , 2015 , 8, 137-150	3.9	25
377	Targeted killing of metastatic cells using a platelet-inspired drug delivery system. 2015 , 5, 46218-46228		14
376	Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation, and drug delivery. 2015 , 14, 1391-402		55
375	Design and assembly of supramolecular dual-modality nanoprobes. 2015 , 7, 9462-6		14
374	Towards protein-based viral mimetics for cancer therapies. 2015 , 33, 253-8		54
373	Self-assembled polymer/inorganic hybrid nanovesicles for multiple drug delivery to overcome drug resistance in cancer chemotherapy. 2015 , 31, 5115-22		57
372	Liposomes as nanomedical devices. 2015 , 10, 975-99		1142
371	Lung cancer nanomedicine: potentials and pitfalls. <i>Nanomedicine</i> , 2015 , 10, 3203-12	5.6	42
370	Ultrasmall dual-modality silica nanoparticle drug conjugates: Design, synthesis, and characterization. 2015 , 23, 7119-30		22
369	Choline Derivate-Modified Doxorubicin Loaded Micelle for Glioma Therapy. 2015 , 7, 21589-601		49
368	Recommendations for Benchmarking Preclinical Studies of Nanomedicines. 2015 , 75, 4016-20		20
367	Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. 2015 , 17, 1327-40		164
366	Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged		24
	bacterial vesicles. 2015 , 6, 873-87		

364	Glucan particles loaded with a NIRF agent for imaging monocytes/macrophages recruitment in a mouse model of rheumatoid arthritis. 2015 , 5, 34078-34087		7
363	Chlorambucil gemcitabine conjugate nanomedicine for cancer therapy. <i>European Journal of Pharmaceutical Sciences</i> , 2015 , 79, 20-6	5.1	34
362	Poly(2-oxazoline)-based nanogels as biocompatible pseudopolypeptide nanoparticles. 2015 , 16, 183-91		21
361	Dendrimer-stabilized smart-nanoparticle (DSSN) platform for targeted delivery of hydrophobic antitumor therapeutics. 2015 , 32, 910-28		56
360	Evaluation of Eyclodextrin-modified gemini surfactant-based delivery systems in melanoma models. 2016 , 11, 6703-6712		8
359	PDE5 Inhibitors-Loaded Nanovesicles: Physico-Chemical Properties and In Vitro Antiproliferative Activity. <i>Nanomaterials</i> , 2016 , 6,	5.4	16
358	In vivo Biocompatibility, Biodistribution and Therapeutic Efficiency of Titania Coated Upconversion Nanoparticles for Photodynamic Therapy of Solid Oral Cancers. 2016 , 6, 1844-65		68
357	Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. 2016 , 11, 791-822		70
356	What is the role of curvature on the properties of nanomaterials for biomedical applications?. 2016 , 8, 334-54		28
355	Radionuclide imaging of liposomal drug delivery. Expert Opinion on Drug Delivery, 2016, 13, 1231-42	8	22
354	Opportunities and obstacles to the development of nanopharmaceuticals for human use. 2016 , 24, 23		15
353	Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. 2016 , 7, 11838		73
352	History: Potential, Challenges, and Future Development in Nanopharmaceutical Research and Industry. 2016 , 1-16		1
351	Overview of Techniques and Description of Established Processes. 2016 , 175-230		
350	An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors. 2016 , 6, 21417		39
349	Ferrocene-Modified Phospholipid: An Innovative Precursor for Redox-Triggered Drug Delivery Vesicles Selective to Cancer Cells. 2016 , 32, 4169-78		49
348	Design and characterization of gadolinium infused theranostic liposomes. 2016 , 6, 36898-36905		22
347	pH-Sensitive, Long-Circulating Liposomes as an Alternative Tool to Deliver Doxorubicin into Tumors: a Feasibility Animal Study. 2016 , 18, 898-904		21

346	Prospects and progress of antibody-drug conjugates in solid tumor therapies. 2016 , 16, 883-93		25
345	Covalent conjugation of cysteine-engineered scFv to PEGylated magnetic nanoprobes for immunotargeting of breast cancer cells. 2016 , 6, 37099-37109		14
344	Advances in systemic delivery of anti-cancer agents for the treatment of metastatic cancer. <i>Expert Opinion on Drug Delivery</i> , 2016 , 13, 999-1013	8	6
343	Shape effects of electrospun fiber rods on the tissue distribution and antitumor efficacy. <i>Journal of Controlled Release</i> , 2016 , 244, 52-62	11.7	27
342	Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. 2016 , 96, 47-62		98
341	Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer. <i>Journal of Nanobiotechnology</i> , 2016 , 14, 33	9.4	43
340	Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4 colorectal cancer models. 2016 , 12, 1987-1996		29
339	A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. 2016 , 132, 93-103		63
338	RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin. 2016 , 144, 81-89		34
337	Therapeutic polymeric nanoparticles and the methods of making and using thereof: a patent evaluation of WO2015036792. 2016 , 26, 751-5		2
336	Acid-Responsive Polymeric Doxorubicin Prodrug Nanoparticles Encapsulating a Near-Infrared Dye for Combined Photothermal-Chemotherapy. 2016 , 28, 7039-7050		77
335	Introduction to Organ Fabrication. 2016 , 1-30		
334	Development and Application of a Novel Model System to Study "Active" and "Passive" Tumor Targeting. 2016 , 15, 2541-2550		7
333	Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. 2016 , 107, 60-7		18
332	Selective delivery of photothermal nanoparticles to tumors using mesenchymal stem cells as Trojan horses. 2016 , 6, 58723-58732		13
331	Self-Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. 2016 , 5, 2517-2527		19
330	Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement. 2016 , 18, 1		28
329	La nanomedicina y los sistemas de liberacifi de ffimacos: ¿la (r)evolucifi de la terapia contra el cficer?. 2016 , 27, 286-291		1

328	Opsonisation of nanoparticles prepared from poly(Ehydroxybutyrate) and poly(trimethylene carbonate)-b-poly(malic acid) amphiphilic diblock copolymers: Impact on the in vitro cell uptake by primary human macrophages and HepaRG hepatoma cells. 2016 , 513, 438-452		7
327	Anticancer nanoparticulate polymer-drug conjugate. 2016 , 1, 277-296		48
326	Efficient and Targeted Suppression of Human Lung Tumor Xenografts in Mice with Methotrexate Sodium Encapsulated in All-Function-in-One Chimeric Polymersomes. 2016 , 28, 8234-8239		53
325	The modulation of tumor vessel permeability by thalidomide and its impacts on different types of targeted drug delivery systems in a sarcoma mouse model. <i>Journal of Controlled Release</i> , 2016 , 238, 186-1	¹ 976	14
324	Analysis of nanoparticle delivery to tumours. <i>Nature Reviews Materials</i> , 2016 , 1,	3.3	2438
323	Metal Ion Ornamented Ultrafast Light-Sensitive Nanogel for Potential in Vivo Cancer Therapy. 2016 , 28, 8598-8610		17
322	Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice?. 2016 , 8, 2091-2112		33
321	A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic. 2016 , 6, 36614		44
320	A systematic High-Content Screening microscopy approach reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells. 2016 , 6, 28865		16
319	Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system. 2016 , 3, 24		20
318	Synergistic Effects of Gold Nanocages in Hyperthermia and Radiotherapy Treatment. 2016 , 11, 279		31
317	Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: A robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer 1 chemotherapy. <i>Journal of Controlled Release</i> , 2016 , 244, 326-335	1.7	68
316	Gold nanoparticles for cancer theranostics 🖪 brief update. 2016 , 09, 1630004		13
315	Stability of gum arabic-gold nanoparticles in physiological simulated pHs and their selective effect on cell lines. 2016 , 6, 9411-9420		19
314	Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. 2016 , 27, 065103		82
313	A new approach for the treatment of CLL using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles. 2016 , 9, 537-548		10
312	A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. 2016 , 91, 140-150		55
311	The Pharmacokinetics and Biodistribution of a 64 kDa PolyPEG Star Polymer After Subcutaneous and Pulmonary Administration to Rats. 2016 , 105, 293-300		15

310	Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in the lung. 2016 , 8, 8058-69	26
309	Pharmacokinetics and antitumor efficacy of micelles assembled from multiarmed amphiphilic copolymers with drug conjugates in comparison with drug-encapsulated micelles. 2016 , 98, 9-19	13
308	Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. 2016 , 76, 52-65	169
307	Nanomedicine applied to translational oncology: A future perspective on cancer treatment. 2016 , 12, 81-103	173
306	PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. <i>Advanced Drug Delivery Reviews</i> , 2016 , 99, 28-51	1814
305	Tumor delivery of liposomal doxorubicin prepared with poly-L-glutamic acid as a drug-trapping agent. 2017 , 27, 99-107	9
304	Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. <i>Journal of Controlled Release</i> , 2017 , 263, 211-222	42
303	RETRACTED: Carbon dot/TAT peptide co-conjugated bubble nanoliposome for multicolor cell imaging, nuclear-targeted delivery, and chemo/photothermal synergistic therapy. 2017 , 312, 144-157	20
302	Synergistically enhanced selective intracellular uptake of anticancer drug carrier comprising folic acid-conjugated hydrogels containing magnetite nanoparticles. 2017 , 7, 41090	32
301	Preclinical evaluation of taxane-binding peptide-modified polymeric micelles loaded with docetaxel in an orthotopic breast cancer mouse model. 2017 , 123, 39-47	31
300	Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(Ecaprolactone) micelles. <i>Acta Biomaterialia</i> , 2017 , 50, 396-406.	8o
299	Kidney stone nano-structure - Is there an opportunity for nanomedicine development?. 2017 , 1861, 1521-1529	95
298	Positioning metal-organic framework nanoparticles within the context of drug delivery - A comparison with mesoporous silica nanoparticles and dendrimers. 2017 , 123, 172-183	176
297	Biomimetic shear stress and nanoparticulate drug delivery. 2017 , 47, 133-139	8
296	Tumor accumulation of liposomal doxorubicin in three murine models: Optimizing delivery efficiency. 2017 , 13, 1637-1644	15
295	Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. 2017 , 50, 212-222	44
294	Expanding Analytical Tools for Characterizing Ultrasmall Silica-based Nanoparticles. 2017 , 7, 16861-16865	4
293	Liposomes: bio-inspired nano-containers for physically triggered targeted drug delivery. 2017 ,	1

292	Exploiting passive nanomedicine accumulation at sites of enhanced vascular permeability for non-cancerous applications. <i>Journal of Controlled Release</i> , 2017 , 261, 10-22	1.7	40
291	Prodigiosenes conjugated to tamoxifen and estradiol. 2017 , 15, 5410-5427		2
2 90	Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: promoting preclinical applications. 2017 , 37,		32
289	Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery. 2017 , 139, 187-194		46
288	Barley grass extract causes apoptosis of cancer cells by increasing intracellular reactive oxygen species production. 2017 , 6, 681-685		8
287	Microemulsion-made gadolinium carbonate hollow nanospheres showing magnetothermal heating and drug release. 2017 , 9, 8362-8372		9
286	Influence of Size and Shape on the Anatomical Distribution of Endotoxin-Free Gold Nanoparticles. ACS Nano, 2017, 11, 5519-5529	6.7	99
285	Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis. <i>Journal of Colloid and Interface Science</i> , 2017 , 499, 209-219	, 3	40
284	Evaluating the influence of mechanical stress on anticancer treatments through a multiphase porous media model. 2017 , 421, 179-188		15
283	The role of the microvascular network structure on diffusion and consumption of anticancer drugs. 2017 , 33, e2857		16
282	Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. 2017 , 2, 43-57		171
281	Legomedicine-A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody-Nanoparticle Conjugates. 2017 , 28, 539-548		29
2 80	Integrin-targeted reduction-sensitive micellar mertansine prodrug: Superb drug loading, enhanced stability, and effective inhibition of melanoma growth in vivo. <i>Journal of Controlled Release</i> , 2017 , 259, 176-186	1.7	19
279	Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules. 2017 , 43, 177-189		16
278	Cell membrane coated nanoparticles: next-generation therapeutics. <i>Nanomedicine</i> , 2017 , 12, 2677-2692 ₅	.6	87
277	Tumor-Targeting Micelles Based on Linear-Dendritic PEG-PTX Conjugate for Triple Negative Breast Cancer Therapy. 2017 , 14, 3409-3421		14
276	Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. <i>Advanced Drug Delivery Reviews</i> , 2017 , 118, 52-64	8.5	19
275	Engineered nanoparticles for the detection, treatment and prevention of atherosclerosis: how close are we?. 2017 , 22, 1438-1446		14

(2018-2017)

274	Nanomaterials for the Capture and Therapeutic Targeting of Circulating Tumor Cells. <i>Cellular and Molecular Bioengineering</i> , 2017 , 10, 275-294	3.9	21	
273	Silk nanoparticles: proof of lysosomotropic anticancer drug delivery at single-cell resolution. 2017 , 25, 865-872		34	
272	Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo. <i>Journal of Controlled Release</i> , 2017 , 264, 14-23	11.7	11	
271	Interface-Engineered Amphiphilic Block Copolymers with Tuned Enzymatic Resistance for Controlled Delivery of Chemotherapeutic Drugs. 2017 , 211-229			
270	Factorial Design Based Multivariate Modeling and Optimization of Tunable Bioresponsive Arginine Grafted Poly(cystaminebis(acrylamide)-diaminohexane) Polymeric Matrix Based Nanocarriers. 2017 , 14, 252-263		2	
269	Trends on polymer- and lipid-based nanostructures for parenteral drug delivery to tumors. 2017 , 79, 251-265		21	
268	Tumor Targeting Synergistic Drug Delivery by Self-Assembled Hybrid Nanovesicles to Overcome Drug Resistance. 2017 , 34, 148-160		11	
267	Co-delivery of multiple drug resistance inhibitors by polymer/inorganic hybrid nanoparticles to effectively reverse cancer drug resistance. 2017 , 149, 250-259		21	
266	Fabrication of liposomal doxorubicin exhibiting ultrasensitivity against phospholipase A for efficient pulmonary drug delivery to lung cancers. 2017 , 517, 35-41		25	
265	Preclinical evaluation of cisplatin-incorporated bio-nanocapsules as chemo-radiotherapy for human hepatocellular carcinoma. 2017 , 38, 2259-2266		3	
264	Natural plant-derived anticancer drugs nanotherapeutics: a´review on preclinical to clinical success. 2017 , 775-809		12	
263	Personalized Nanomedicine: A Revolution at the Nanoscale. 2017 , 7,		72	
262	Nanosized drug delivery systems as radiopharmaceuticals. 2017 , 563-592		1	
261	Nanotechnological approaches toward cancer chemotherapy. 2017 , 211-240		3	
260	Application Potential of Engineered Liposomes in Tumor Targeting. 2017, 171-191		9	
259	Nanoparticle size and production efficiency are affected by the presence of fatty acids during albumin nanoparticle fabrication. <i>PLoS ONE</i> , 2017 , 12, e0189814	3.7	6	
258	Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment. 2018 , 20, 1		21	
257	Hydrophilicity Regulates the Stealth Properties of Polyphosphoester-Coated Nanocarriers. 2018 , 57, 5548-5553		66	

256	Mesoporous silica nanoparticles engineered for ultrasound-induced uptake by cancer cells. 2018 , 10, 6402-6408		46
255	Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. 2018 , 166, 13-26		32
254	Hydrophilie als bestimmender Faktor des Stealth-Effekts von Polyphosphoester-funktionalisierten Nanotr		8
253	Surfactant-free solubilization and systemic delivery of anti-cancer drug using low molecular weight methylcellulose. <i>Journal of Controlled Release</i> , 2018 , 276, 42-49	11.7	10
252	Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. <i>Advanced Drug Delivery Reviews</i> , 2018 , 128, 115-131	18.5	46
251	Photo-induced anticancer activity and singlet oxygen production of prodigiosenes. 2018 , 17, 599-606		O
250	Effective light-triggered contents release from helper lipid-incorporated liposomes co-encapsulating gemcitabine and a water-soluble photosensitizer. 2018 , 540, 50-56		25
249	Advanced architectures in the design of responsive polymers for cancer nanomedicine. 2018 , 135, 46154	1	39
248	Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. 2018 , 163, 14-24		79
247	F-Radiolabeling and In Vivo Analysis of SiFA-Derivatized Polymeric Core-Shell Nanoparticles. 2018 , 29, 89-95		17
246	An overview on the current status of cancer nanomedicines. 2018 , 34, 911-921		29
245	Directing Nanoparticle Biodistribution through Evasion and Exploitation of Stab2-Dependent Nanoparticle Uptake. <i>ACS Nano</i> , 2018 , 12, 2138-2150	16.7	115
244	Effect of XlogP and Hansen Solubility Parameters on Small Molecule Modified Paclitaxel Anticancer Drug Conjugates Self-Assembled into Nanoparticles. 2018 , 29, 437-444		17
243	Dual functionality nanobioconjugates: a new tool for intracellular bacterial targeting in cancer cells?. 2018 , 9, 317-320		
242	The pathogenicity of Aspergillus fumigatus, drug resistance, and nanoparticle delivery. 2018, 64, 439-45	3	21
241	Priming the body to receive the therapeutic agent to redefine treatment benefit/risk profile. 2018 , 8, 4797		13
240	Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. <i>Advanced Drug Delivery Reviews</i> , 2018 , 128, 84-100	18.5	138
239	Multifunctional Efficiency: Extending the Concept of Atom Economy to Functional Nanomaterials. <i>ACS Nano</i> , 2018 , 12, 2094-2105	16.7	165

	Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. 2018 , 414, 57-70	45
237	Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery. 2018 , 340, 2-8	60
236	Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics. 2018 , 29, 4-16	81
235	Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. 2018 , 48, 43-60	225
234	Leakage kinetics of the liposomal chemotherapeutic agent Doxil: The role of dissolution, protonation, and passive transport, and implications for mechanism of action. <i>Journal of Controlled Release</i> , 2018 , 269, 171-176	37
233	In Silico Models for Nanomedicine: Recent Developments. 2018 , 25, 4192-4207	13
232	. 2018,	
231	. 2018,	17
230	Amphiphilic Drug Conjugates as Nanomedicines for Combined Cancer Therapy. 2018 , 29, 3967-3981	37
229	Thrombolysis Enhancing by Magnetic Manipulation of FeDINanoparticles. 2018, 11,	9
229	Thrombolysis Enhancing by Magnetic Manipulation of Fe®INanoparticles. 2018, 11, Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. 2018, 25, 4269-4303	9
228	Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. 2018 , 25, 4269-4303 The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric	96
228	Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. 2018 , 25, 4269-4303 The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes. 2018 , 25, 4224-4268 A novel microfluidic liposomal formulation for the delivery of the SN-38 camptothecin:	96 67
228 227 226	Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. 2018, 25, 4269-4303 The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes. 2018, 25, 4224-4268 A novel microfluidic liposomal formulation for the delivery of the SN-38 camptothecin: characterization and in vitro assessment of its cytotoxic effect on two tumor cell lines. 2018, 13, 5301-5320 Deepened cellular/subcellular interface penetration and enhanced antitumor efficacy of cyclic	96 67 8
228 227 226 225	Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. 2018, 25, 4269-4303 The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes. 2018, 25, 4224-4268 A novel microfluidic liposomal formulation for the delivery of the SN-38 camptothecin: characterization and in vitro assessment of its cytotoxic effect on two tumor cell lines. 2018, 13, 5301-5320 Deepened cellular/subcellular interface penetration and enhanced antitumor efficacy of cyclic peptidic ligand-decorated accelerating active targeted nanomedicines. 2018, 13, 5537-5559 Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond.	966787
228 227 226 225	Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. 2018, 25, 4269-4303 The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes. 2018, 25, 4224-4268 A novel microfluidic liposomal formulation for the delivery of the SN-38 camptothecin: characterization and in vitro assessment of its cytotoxic effect on two tumor cell lines. 2018, 13, 5301-5320 Deepened cellular/subcellular interface penetration and enhanced antitumor efficacy of cyclic peptidic ligand-decorated accelerating active targeted nanomedicines. 2018, 13, 5537-5559 Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. 2018, 102, 9449-9470 Ultrasound-Responsive Nanoparticulate for Selective Amplification of Chemotherapeutic Potency	96 67 8 7 40

220 Conclusions and Perspectives. 2018, 241-245

219	The role of nanoparticles in the improvement of systemic anticancer drug delivery. 2018 , 9, 527-545	7
218	Crosslinked gelatin hydrogels as carriers for controlled heparin release. 2018 , 228, 375-378	16
217	Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. 2018 , 3-41	13
216	Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. 2018 , 179, 209-245	77
215	Nanoliposome technology for the food and nutraceutical industries. 2018 , 79, 106-115	109
214	Nanotherapeutics to Modulate the Compromised Micro-Environment for Lung Cancers and Chronic Obstructive Pulmonary Disease. <i>Frontiers in Pharmacology</i> , 2018 , 9, 759	7
213	Nanomedicine via Freeze-drying and Ice Templating. 2018 , 277-311	
212	A Transferrin-Conjugated Hollow Nanoplatform for Redox-Controlled and Targeted Chemotherapy of Tumor with Reduced Inflammatory Reactions. 2018 , 8, 518-532	40
211	Smart nanoconstructs for theranostics in cancer and cardiovascular diseases. 2018 , 297-321	O
210	Targeted Nanotheranostics for Selective Drug Delivery in Cancer. 2018 , 245-277	4
209	Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment. 2018 , 8,	15
208	Liposomal Drug Delivery Systems and Anticancer Drugs. 2018 , 23,	224
207	pH-sensitive prodrug conjugated polydopamine for NIR-triggered synergistic chemo-photothermal therapy. 2018 , 128, 260-271	22
206	Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy. 2018 , 10, 761-774	23
205	A facile doxorubicin-dichloroacetate conjugate nanomedicine with high drug loading for safe drug delivery. 2018 , 13, 1281-1293	16
204	Gold Nanoparticles for Imaging and Cancer Therapy. 2018 , 1-50	
203	Toxicological study of a new doxorubicin-loaded pH-sensitive liposome: A preclinical approach. 2018 , 352, 162-169	18

202	Nanoparticles of Metal-Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine. 2018 , 30, e1707365	325
201	Niosomes, an alternative for liposomal delivery. <i>PLoS ONE</i> , 2018 , 13, e0194179 3.7	96
200	Plasmid-DNA lipid nanovaccines: An innovative approach for a better world health. 2018, 231-267	2
199	Acid/light dual-responsive biodegradable polymeric nanocarriers for efficient intracellular drug delivery. 2019 , 76, 1775-1792	5
198	Engineering patient-specific cancer immunotherapies. 2019 , 3, 768-782	66
197	pH-sensitive and pluronic-modified pullulan nanogels for greatly improved antitumor in vivo. 2019, 139, 277-289	11
196	On Command Drug Delivery via Cell-Conveyed Phototherapeutics. 2019 , 15, e1901442	11
195	A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. 2019 , 7, 259	136
194	Theranostic nanocarriers combining high drug loading and magnetic particle imaging. 2019 , 572, 118796	12
193	Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. 2019 , 1, 211-220	36
192	Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. <i>Expert Opinion on Drug Delivery</i> , 2019 , 8 16, 1095-1112	38
191	Controlling Surface Chemical Heterogeneities of Ultrasmall Fluorescent CoreBhell Silica Nanoparticles as Revealed by High-Performance Liquid Chromatography. 2019 , 123, 23246-23254	5
190	Particulate carrier systems as adjuvants for cancer vaccines. <i>Biomaterials Science</i> , 2019 , 7, 4873-4887 7.4	10
189	Micro/nanomachines: what is needed for them to become a real force in cancer therapy?. 2019 , 11, 6519-653.	2 38
188	Nanomedicines for cancer therapy: current status, challenges and future prospects. 2019 , 10, 113-132	75
187	Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy. <i>Frontiers in Oncology</i> , 2019 , 9, 59	36
186	Nanocarriers in Different Preclinical and Clinical Stages. 2019 , 685-731	8
185	Engineered Mesenchymal Stem Cells as Nanocarriers for Cancer Therapy and Diagnosis. 2019 , 19-56	

184	Nanoparticle ferritin-bound erastin and rapamycin: a nanodrug combining autophagy and ferroptosis for anticancer therapy. <i>Biomaterials Science</i> , 2019 , 7, 3779-3787	7.4	38
183	Enhanced Tumor Penetration and Chemotherapy Efficiency by Covalent Self-Assembled Nanomicelle Responsive to Tumor Microenvironment. 2019 , 20, 2637-2648		15
182	Preparation, Characterization, and in Vitro/in Vivo Evaluation of Paclitaxel-Bound Albumin-Encapsulated Liposomes for the Treatment of Pancreatic Cancer. 2019 , 4, 8693-8700		16
181	Sonochemical Formation of Copper/Iron-Modified Graphene Oxide Nanocomposites for Ketorolac Delivery. <i>Chemistry - A European Journal</i> , 2019 , 25, 6233-6245	4.8	9
180	Colloidal Drug Aggregate Stability in High Serum Conditions and Pharmacokinetic Consequence. 2019 , 14, 751-757		16
179	Cabazitaxel-Loaded Nanocarriers for Cancer Therapy with Reduced Side Effects. <i>Pharmaceutics</i> , 2019 , 11,	6.4	21
178	Natural product drug delivery: A special challenge?. 2019 , 58, 157-187		10
177	Applicability and Limitations in the Characterization of Poly-Dispersed Engineered Nanomaterials in Cell Media by Dynamic Light Scattering (DLS). 2019 , 12,		7
176	Bubble-Manipulated Local Drug Release from a Smart Thermosensitive Cerasome for Dual-Mode Imaging Guided Tumor Chemo-Photothermal Therapy. 2019 , 9, 8138-8154		14
175	Chemotherapeutic Drug Delivery and Quantitative Analysis of Proliferation, Apoptosis, and Migration in a Tissue-Engineered Three-Dimensional Microvessel Model of the Tumor Microenvironment. 2019 , 5, 633-643		8
174	Three-Dimensional Quantitative Co-Mapping of Pulmonary Morphology and Nanoparticle Distribution with Cellular Resolution in Nondissected Murine Lungs. <i>ACS Nano</i> , 2019 , 13, 1029-1041	16.7	28
173	Intratumorally Injected Photothermal Agent-Loaded Photodynamic Nanocarriers for Ablation of Orthotopic Melanoma and Breast Cancer. 2019 , 5, 724-739		8
172	Nanotheranostics for Cancer Applications. <i>Bioanalysis</i> , 2019 ,	0.5	2
171	Cancer-targeted and glutathione-responsive micellar carriers for controlled delivery of cabazitaxel. 2019 , 30, 055601		4
170	Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. <i>Nanomedicine</i> , 2019 , 14, 93-126	5.6	211
169	Poly (lactic-co-glycolic acid) nanospheres allow for high l-asparaginase encapsulation yield and activity. 2019 , 98, 524-534		12
168	Assemblies of Peptide-Cytotoxin Conjugates for Tumor-Homing Chemotherapy. <i>Advanced Functional Materials</i> , 2019 , 29, 1807446	15.6	32
167	Thiophene Derivatives as Anticancer Agents and Their Delivery to Tumor Cells Using Albumin Nanoparticles. 2019 , 24,		13

166	Microfabrication and microfluidic devices for drug delivery. 2019 , 123-136	4
165	Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines. Advanced Functional Materials, 2019 , 29, 1806696	62
164	Using the dispersion-retention-formulation methodle estimate clinical and preclinical dosage limits for interstitial nanomedicines or agents. 2019 , 473, 74-78	2
163	Preparation and anti-Raji lymphoma efficacy of a novel pH sensitive and magnetic targeting nanoparticles drug delivery system. 2020 , 94, 103375	4
162	The structural fate of lipid nanoparticles in the extracellular matrix. 2020, 7, 125-134	7
161	Nanoparticles for multimodal antivascular therapeutics: Dual drug release, photothermal and photodynamic therapy. <i>Acta Biomaterialia</i> , 2020 , 101, 459-468	34
160	Clinically Approved MRI Contrast Agents as Imaging Labels for a Porous Iron-Based MOF Nanocarrier: A Systematic Investigation in a Clinical MRI Setting. <i>Advanced Therapeutics</i> , 2020 , 3, 1900126.9	10
159	Sardine Roe as a Source of Lipids To Produce Liposomes. 2020 , 6, 1017-1029	5
158	M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. 2020 , 13, 5	132
157	Biomimetic cellular vectors for enhancing drug delivery to the lungs. 2020 , 10, 172	8
156	CD44 targeted redox-triggered self-assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer. <i>Biomaterials Science</i> , 2019 , 8, 212-223	21
155	Enhancing cancer therapeutic efficacy through ultrasound-mediated micro-to-nano conversion. 2020 , 12, e1604	5
154	Updates on the use of liposomes for active tumor targeting in cancer therapy. <i>Nanomedicine</i> , 2020 , 15, 303-318	47
153	Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. 2020 , 232, 119707	81
152	GSH responsive nanomedicines self-assembled from small molecule prodrug alleviate the toxicity of cardiac glycosides as potent cancer drugs. 2020 , 575, 118980	10
151	Stimuli-responsive phospholipid-drug conjugates (PDCs)-based nanovesicles for drug delivery and theranostics. 2020 , 590, 119920	3
150	Functionalized Fluorescent Silica Nanoparticles for Bioimaging of Cancer Cells. 2020 , 20,	2
149	Barriers for Tumor Drug Delivery. 2020 , 5-26	1

148	Gold/alpha-lactalbumin nanoprobes for the imaging and treatment of breast cancer. 2020, 4, 686-703	33
147	Light-induced liposomes for cancer therapeutics. 2020 , 79, 101052	22
146	Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. 2020 , 17, 4421-44	434 27
145	Nanopharmaceuticals: A focus on their clinical translatability. 2020 , 578, 119098	31
144	Simple weak-acid derivatives of paclitaxel for remote loading into liposomes and improved therapeutic effects 2020 , 10, 27676-27687	3
143	. 2020,	2
142	Protein-coated corrole nanoparticles for the treatment of prostate cancer cells. 2020, 6, 67	8
141	Silver Nanoparticles Agglomerate Intracellularly Depending on the Stabilizing Agent: Implications for Nanomedicine Efficacy. <i>Nanomaterials</i> , 2020 , 10,	1 7
140	Progress, challenges, and future of nanomedicine. 2020 , 35, 101008	32
139	A mini-review of X-ray photodynamic therapy (XPDT) nonoagent constituents' safety and relevant design considerations. 2020 , 19, 1134-1144	3
138	Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis. 2020 , 8, 1011	2
137	Reactive Oxygen Species-Responsive Liposomes via Boronate-Caged Phosphatidylethanolamine. 2020 , 31, 2220-2230	5
136	CD44-Targeting Oxygen Self-Sufficient Nanoparticles for Enhanced Photodynamic Therapy Against Malignant Melanoma. 2020 , 15, 10401-10416	6
135	Development of Self-Associating SN-38-Conjugated Poly(ethylene oxide)-Poly(ester) Micelles for Colorectal Cancer Therapy. <i>Pharmaceutics</i> , 2020 , 12,	1 3
134	Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. 2020 , 106, 101252	19
133	Targeting CD4 Cells with Anti-CD4 Conjugated Mertansine-Loaded Nanogels. 2020 , 21, 2473-2481	7
132	Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy. 2020 , 10, 1730-1740	23
131	Assessing the targeting and fate of cathepsin k antibody-modified nanoparticles in a rat abdominal aortic aneurysm model. <i>Acta Biomaterialia</i> , 2020 , 112, 225-233	.8 3

130	Dually Enzyme- and Acid-Triggered Self-Immolative Ketal Glycoside Nanoparticles for Effective Cancer Prodrug Monotherapy. 2020 , 20, 5465-5472		20
129	Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. <i>Pharmaceutics</i> , 2020 , 12,	6.4	39
128	Clinically Approved Carbon Nanoparticles with Oral Administration for Intestinal Radioprotection via Protecting the Small Intestinal Crypt Stem Cells and Maintaining the Balance of Intestinal Flora. 2020 , 16, e1906915		23
127	Tuning the Morphological Appearance of Iron(III) Fumarate: Impact on Material Characteristics and Biocompatibility. 2020 , 32, 2253-2263		7
126	Potent Anticancer Efficacy of First-In-Class Cu and Au Metaled Phosphorus Dendrons with Distinct Cell Death Pathways. <i>Chemistry - A European Journal</i> , 2020 , 26, 5903-5910	4.8	8
125	Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis. 2020 , 216, 153082		26
124	Polyphosphoestered Nanomedicines with Tunable Surface Hydrophilicity for Cancer Drug Delivery. 2020 , 12, 32312-32320		4
123	Elucidating the Molecular Interactions of Encapsulated Doxorubicin within a Nonionic, Thermoresponsive Polyester Coacervate <i>ACS Applied Bio Materials</i> , 2020 , 3, 4626-4634	4.1	3
122	Nanomaterials innovation as an enabler for effective cancer interventions. 2020 , 242, 119926		24
121	A [60]fullerene nanoconjugate with gemcitabine: synthesis, biophysical properties and biological evaluation for treating pancreatic cancer. 2020 , 11,		9
120	Dextran-covered pH-sensitive oily core nanocapsules produced by interfacial Reversible Addition-Fragmentation chain transfer miniemulsion polymerization. <i>Journal of Colloid and Interface Science</i> , 2020 , 569, 57-67	9.3	8
119	Ultrasound-Enhanced Chemo-Photodynamic Combination Therapy by Using Albumin "Nanoglue"-Based Nanotheranostics. <i>ACS Nano</i> , 2020 , 14, 5560-5569	16.7	43
118	Stealth Coating of Nanoparticles in Drug-Delivery Systems. <i>Nanomaterials</i> , 2020 , 10,	5.4	107
117	Natural productBased nanomedicine: polymeric nanoparticles as delivery cargoes of food bioactives and nutraceuticals for anticancer purposes. 2020 , 37-67		O
116	PEGylation and folate conjugation effects on the stability of chitosan-tripolyphosphate nanoparticles. 2020 , 158, 1055-1062		9
115	Regulation of Nanotechnology-Based Products Subject to Health Regulations: Application of Quality by Design (QbD) and Quality Risk Management (QRM). 2021 , 319-347		O
114	Highly-magnetic mineral proteinEannin vehicles with anti-breast cancer activity. 2021 , 5, 2007-2018		5
113	Encapsulation of glycosylated porphyrins in silica nanoparticles to enhance the efficacy of cancer photodynamic therapy. 2021 , 2, 1613-1620		O

Nanomedicine: Promises and challenges. **2021**, 109-123

111	Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. <i>Journal of Controlled Release</i> , 2021 , 330, 493-501	11.7	9
110	Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. 2021 , 36, 101057		31
109	Nanomicellar curcuminoids attenuates renal ischemia/reperfusion injury in rat through prevention of apoptosis and downregulation of MAPKs pathways. 2021 , 48, 1735-1743		2
108	Cancer-associated-platelet-inspired nanomedicines for cancer therapy. 2021 , 13, e1702		2
107	Self-assembled 5-fluorouracil-cinnamaldehyde nanodrugs for greatly improved chemotherapy in vivo. 2021 , 36, 592-604		O
106	Nanomedicines accessible in the market for clinical interventions. <i>Journal of Controlled Release</i> , 2021 , 330, 372-397	11.7	56
105	A Triptolide Loaded HER2-Targeted Nano-Drug Delivery System Significantly Suppressed the Proliferation of HER2-Positive and BRAF Mutant Colon Cancer. 2021 , 16, 2323-2335		O
104	Liposome nano-formulation with cationic polar lipid DOTAP and cholesterol as a suitable pH-responsive carrier for molecular therapeutic drug (all-trans retinoic acid) delivery to lung cancer cells. 2021 , 15, 380-390		2
103	Endogenous Stimuli-Activatable Nanomedicine for Immune Theranostics for Cancer. <i>Advanced Functional Materials</i> , 2021 , 31, 2100386	15.6	9
102	DNA origami nanostructures for controlled therapeutic drug delivery. 2021 , 52, 101411		15
101	Hybrid Drugs-A Strategy for Overcoming Anticancer Drug Resistance?. 2021 , 26,		11
100	Rapid Production and Purification of Dye-Loaded Liposomes by Electrodialysis-Driven Depletion. 2021 , 11,		2
99	Antibody conjugated lipid nanoparticles as a targeted drug delivery system for hydrophobic pharmaceuticals. European Journal of Pharmaceutical Sciences, 2021, 161, 105777	5.1	5
98	Functionalization of Photosensitized Silica Nanoparticles for Advanced Photodynamic Therapy of Cancer. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	О
97	The past, present, and future of breast cancer models for nanomedicine development. <i>Advanced Drug Delivery Reviews</i> , 2021 , 173, 306-330	18.5	22
96	Distribution of Gold Nanoparticles in the Anterior Chamber of the Eye after Intracameral Injection for Glaucoma Therapy. <i>Pharmaceutics</i> , 2021 , 13,	6.4	1
95	Meglumine Antimoniate-Loaded Aqueous-Core PLA Nanocapsules: Old Drug, New Formulation against Leishmania-Related Diseases. <i>Macromolecular Bioscience</i> , 2021 , 21, e2100046	5.5	2

(2016-2021)

94	Sub-50 nm Supramolecular Nanohybrids with Active Targeting Corona for Image-Guided Solid Tumor Treatment and Metastasis Inhibition. <i>Advanced Functional Materials</i> , 2021 , 31, 2103272	15.6	3
93	Nanotechnology as a Shield against COVID-19: Current Advancement and Limitations. <i>Viruses</i> , 2021 , 13,	6.2	17
92	Biparatopic Protein Nanoparticles for the Precision Therapy of CXCR4 Cancers. Cancers, 2021, 13,	6.6	2
91	Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. <i>Macromolecular Bioscience</i> , 2021 , 21, e2100105	5.5	2
90	Predictive Platforms of Bond Cleavage and Drug Release Kinetics for Macromolecule-Drug Conjugates. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2021 , 12, 241-261	8.9	3
89	Precision medicine based on nanoparticles: the paradigm between targeting and colloidal stability. <i>Nanomedicine</i> , 2021 , 16, 1451-1456	5.6	0
88	MRI-Active Metal-Organic Frameworks: Concepts for the Translation from Lab to Clinic. <i>Advanced Therapeutics</i> , 2021 , 4, 2100067	4.9	Ο
87	Personalized Medicine: Drug Delivery and Pharmacokinetics. 2021 , 407-422		
86	Improving the ameliorative effects of berberine and curcumin combination via dextran-coated bilosomes on non-alcohol fatty liver disease in mice. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 230	9.4	1
85	Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. <i>Advanced Drug Delivery Reviews</i> , 2021 , 178, 113907	18.5	10
85 84		18.5	10
	Advanced Drug Delivery Reviews, 2021, 178, 113907 Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition	4.1	
84	Advanced Drug Delivery Reviews, 2021, 178, 113907 Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition ACS Applied Bio Materials, 2021, 4, 7081-7093 Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials.	4.1	2
84	Advanced Drug Delivery Reviews, 2021, 178, 113907 Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition ACS Applied Bio Materials, 2021, 4, 7081-7093 Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. International Journal of Molecular Sciences, 2021, 22, Polymeric nanomedicines targeting hematological malignancies. Journal of Controlled Release,	4.1 6.3	2
84 83 82	Advanced Drug Delivery Reviews, 2021, 178, 113907 Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition ACS Applied Bio Materials, 2021, 4, 7081-7093 Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. International Journal of Molecular Sciences, 2021, 22, Polymeric nanomedicines targeting hematological malignancies. Journal of Controlled Release, 2021, 337, 571-588 Gold nanoparticle-coated thermosensitive liposomes for the triggered release of doxorubicin, and photothermal therapy using a near-infrared laser. Colloids and Surfaces A: Physicochemical and	4.1 6.3 11.7	2 1 4
84 83 82 81	Advanced Drug Delivery Reviews, 2021, 178, 113907 Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition ACS Applied Bio Materials, 2021, 4, 7081-7093 Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. International Journal of Molecular Sciences, 2021, 22, Polymeric nanomedicines targeting hematological malignancies. Journal of Controlled Release, 2021, 337, 571-588 Gold nanoparticle-coated thermosensitive liposomes for the triggered release of doxorubicin, and photothermal therapy using a near-infrared laser. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127038 Protein-like particles through nanoprecipitation of mixtures of polymers of opposite charge.	4.1 6.3 11.7 5.1	2 1 4 3
84 83 82 81 80	Advanced Drug Delivery Reviews, 2021, 178, 113907 Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition ACS Applied Bio Materials, 2021, 4, 7081-7093 Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. International Journal of Molecular Sciences, 2021, 22, Polymeric nanomedicines targeting hematological malignancies. Journal of Controlled Release, 2021, 337, 571-588 Gold nanoparticle-coated thermosensitive liposomes for the triggered release of doxorubicin, and photothermal therapy using a near-infrared laser. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127038 Protein-like particles through nanoprecipitation of mixtures of polymers of opposite charge. Journal of Colloid and Interface Science, 2022, 607, 1786-1795 Advances of smart nano-drug delivery systems in osteosarcoma treatment. Journal of Materials	4.1 6.3 11.7 5.1 9.3	2 1 4 3

76	Quantitative Analysis of the Enhanced Permeation and Retention (EPR) Effect. <i>PLoS ONE</i> , 2015 , 10, e0	123 / 161	68
75	Vincristine liposomes with smaller particle size have stronger diffusion ability in tumor and improve tumor accumulation of vincristine significantly. <i>Oncotarget</i> , 2017 , 8, 87276-87291	3.3	5
74	Overcoming chemo/radio-resistance of pancreatic cancer by inhibiting STAT3 signaling. <i>Oncotarget</i> , 2016 , 7, 11708-23	3.3	44
73	Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids. <i>Iranian Journal of Basic Medical Sciences</i> , 2019 , 22, 282-289	1.8	32
72	LncRNA Neat1 Promotes Macrophage Inflammatory Responses and Acts as a Therapeutic Target in Titanium Particle-Induced Osteolysis. <i>SSRN Electronic Journal</i> ,	1	O
71	pH-responsive and folate-coated liposomes encapsulating irinotecan as an alternative to improve efficacy of colorectal cancer treatment. <i>Biomedicine and Pharmacotherapy</i> , 2021 , 144, 112317	7.5	3
70	Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood. <i>Cellular and Molecular Bioengineering</i> ,	3.9	
69	RNA Nanoparticles as Potential Vaccines. 293-306		
68	Concluding Remarks and the Future of Nanotheranostics. <i>Bioanalysis</i> , 2019 , 461-470	0.5	
67	Nanotechnology: The Future for Cancer Treatment. 2019 , 389-418		
66	Nanotechnology: The Future for Cancer Treatment. 2019 , 389-418 Bioadhesive Polymers for Drug Delivery Applications. 2020 , 29-56		1
		6.4	1
66	Bioadhesive Polymers for Drug Delivery Applications. 2020 , 29-56 Synthetic Biology: A Solution for Tackling Nanomaterial Challenges. <i>Journal of Physical Chemistry</i>	6.4	4
66	Bioadhesive Polymers for Drug Delivery Applications. 2020 , 29-56 Synthetic Biology: A Solution for Tackling Nanomaterial Challenges. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4791-4802 Current Understandings and Clinical Translation of Nanomedicines for Breast Cancer Therapy.		4
66 65 64	Bioadhesive Polymers for Drug Delivery Applications. 2020, 29-56 Synthetic Biology: A Solution for Tackling Nanomaterial Challenges. <i>Journal of Physical Chemistry Letters</i> , 2020, 11, 4791-4802 Current Understandings and Clinical Translation of Nanomedicines for Breast Cancer Therapy. <i>Advanced Drug Delivery Reviews</i> , 2021, 180, 114034 Lipid Vesicles and Other Polymolecular AggregatesErom Basic Studies of Polar Lipids to	18.5	5
66 65 64 63	Bioadhesive Polymers for Drug Delivery Applications. 2020, 29-56 Synthetic Biology: A Solution for Tackling Nanomaterial Challenges. Journal of Physical Chemistry Letters, 2020, 11, 4791-4802 Current Understandings and Clinical Translation of Nanomedicines for Breast Cancer Therapy. Advanced Drug Delivery Reviews, 2021, 180, 114034 Lipid Vesicles and Other Polymolecular Aggregates From Basic Studies of Polar Lipids to Innovative Applications. Applied Sciences (Switzerland), 2021, 11, 10345 The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and	18.5	455
66 65 64 63 62	Bioadhesive Polymers for Drug Delivery Applications. 2020, 29-56 Synthetic Biology: A Solution for Tackling Nanomaterial Challenges. Journal of Physical Chemistry Letters, 2020, 11, 4791-4802 Current Understandings and Clinical Translation of Nanomedicines for Breast Cancer Therapy. Advanced Drug Delivery Reviews, 2021, 180, 114034 Lipid Vesicles and Other Polymolecular Aggregates From Basic Studies of Polar Lipids to Innovative Applications. Applied Sciences (Switzerland), 2021, 11, 10345 The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. Nanomaterials, 2021, 11, Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast	18.5 2.6 5.4	451

58	Single-Cellular Biological Effects of Cholesterol-Catabolic Bile Acid-Based Nano/Micro Capsules as Anti-Inflammatory Cell Protective Systems <i>Biomolecules</i> , 2022 , 12,	5.9	O
57	Targeted Drug Delivery and Theranostic Strategies in Malignant Lymphomas Cancers, 2022, 14,	6.6	0
56	Advanced Optical Imaging-Guided Nanotheranostics towards Personalized Cancer Drug Delivery <i>Nanomaterials</i> , 2022 , 12,	5.4	0
55	LncRNA Neat1 promotes the macrophage inflammatory response and acts as a therapeutic target in titanium particle-induced osteolysis <i>Acta Biomaterialia</i> , 2022 ,	10.8	2
54	Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment. <i>Nanotechnology in the Life Sciences</i> , 2022 , 83-116	1.1	1
53	Functional nanomaterials and nanocomposite in cancer vaccines. 2022 , 241-258		
52	Preclinical Animal Models for the Experimental Design of Pharmacokinetic Studies with Nanoparticulate Drug Delivery Systems. 2022 , 79-100		
51	Impact of the amount of PEG on prodrug nanoassemblies for efficient cancer therapy <i>Asian Journal of Pharmaceutical Sciences</i> , 2022 , 17, 241-252	9	1
50	Synergistic effect of Abraxane that combines human IL15 fused with an albumin-binding domain on murine models of pancreatic ductal adenocarcinoma <i>Journal of Cellular and Molecular Medicine</i> , 2022 ,	5.6	1
49	Systematic studies into uniform synthetic protein nanoparticles <i>Beilstein Journal of Nanotechnology</i> , 2022 , 13, 274-283	3	О
48	Albumin Nanoparticle Endocytosing Subset of Neutrophils for Precision Therapeutic Targeting of Inflammatory Tissue Injury <i>ACS Nano</i> , 2022 ,	16.7	0
47	A Nanoparticle's Journey to the Tumor: Strategies to Overcome First-Pass Metabolism and Their Limitations <i>Cancers</i> , 2022 , 14,	6.6	2
46	PEGylated and zwitterated silica nanoparticles as doxorubicin carriers applied in a breast cancer cell line: Effects on protein corona formation. <i>Journal of Drug Delivery Science and Technology</i> , 2022 , 10332	5 ^{4·5}	0
45	The effect of nanomicellar curcuminoids on renal ischemia/reperfusion injury and the expressions of COX-2 and Na +/K +-ATPase in ratakidney. <i>Physiology and Pharmacology</i> , 2021 , 0-0	3.5	
44	Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review <i>Frontiers in Pharmacology</i> , 2021 , 12, 787226	5.6	1
43	PEGylated Nanoparticles as a Versatile Drug Delivery System. 2022 , 309-341		1
42	Nano-Delivery of a Novel Inhibitor of Polynucleotide Kinase/Phosphatase (PNKP) for Targeted Sensitization of Colorectal Cancer to Radiation-Induced DNA Damage <i>Frontiers in Oncology</i> , 2021 , 11, 772920	5.3	2
41	Nanoscience versus Viruses: The SARS-CoV-2 Case. <i>Advanced Functional Materials</i> , 2022 , 32, 2107826	15.6	2

40	Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation <i>Biomaterials Science</i> , 2022 ,	7.4	3
39	Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration <i>Journal of Controlled Release</i> , 2022 ,	11.7	1
38	Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. <i>Cancers</i> , 2022 , 14, 2362	6.6	1
37	Nanomedicine as a magic bullet for combating lymphoma <i>Journal of Controlled Release</i> , 2022 , 347, 211	I- <u>236</u>	O
36	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. <i>Chinese Chemical Letters</i> , 2022 ,	8.1	5
35	Reactive Oxygen Species (ROS) Activated Liposomal Cell Delivery using a Boronate-Caged Guanidine Lipid. <i>Chemistry - A European Journal</i> ,	4.8	O
34	Gold nanoparticles in cancer theranostics. 2022 , 513-526		
33	Protein corona: challenges and opportunities for targeted delivery of nanomedicines. <i>Expert Opinion on Drug Delivery</i> ,	8	1
32	Nanomedicina y nanopartilulas en una nueva era oncoligica. <i>Anales Midicos De La Asociaci</i> lo <i>Midica Del Centro Midico ABC</i> , 2022 , 67, 131-136	О	
31	Microfluidics in Drug Delivery. 2022 , 135-162		
30	Promoting tumor accumulation of anticancer drugs by hierarchical carrying of exogenous and endogenous vehicles. <i>Small Structures</i> ,	8.7	3
29	Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. <i>OpenNano</i> , 2022 , 7, 100051	8.4	O
28	Polymeric particle-based therapies for acute inflammatory diseases. <i>Nature Reviews Materials</i> ,	73.3	1
27	The Future of Nanomedicine. 2022 , 1-28		
26	Glucuronides: From biological waste to bio-nanomedical applications. 2022, 349, 765-782		О
25	A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. 2022 , 140, 213049		O
24	Efficient extracellular vesicles freeze-dry method for direct formulations preparation and use. 2022 , 218, 112745		
23	Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. 2022 , 14, 1965		O

22	Applications of nanotechnology in pharmaceutical products. 2022, 119-156	1
21	An excipient-free Bugar-coated bulletIfor the targeted treatment of orthotopic hepatocellular carcinoma. 2022 , 13, 10815-10823	O
20	Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. 2022 , 13, 1623	2
19	Performance of Washing-Free Printing of Disperse Dye Inks: Influence of Water-Borne Polymers. 2022 , 14, 4277	O
18	An Implantable Polydopamine Nanoparticle-in-Nanofiber Device for Synergistic Cancer Photothermal/Chemotherapy. 2200076	0
17	Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment. 2022 ,	2
16	Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. 2023 , 353, 563-590	0
15	Torularhodin bilosomes attenuate high-fat diet-induced chronic kidney disease in mice by regulating the TLR4/NF- B pathway. 2023 , 51, 102288	O
14	ICAM1-Targeting Theranostic Nanoparticles for Magnetic Resonance Imaging and Therapy of Triple-Negative Breast Cancer. Volume 17, 5605-5619	О
13	The Future of Nanomedicine. 2023 , 847-873	О
13	The Future of Nanomedicine. 2023, 847-873 Application of 89Zr-DFO*-immuno-PET to assess improved target engagement of a bispecific anti-amyloid-Imonoclonal antibody.	0
	Application of 89Zr-DFO*-immuno-PET to assess improved target engagement of a bispecific	
12	Application of 89Zr-DFO*-immuno-PET to assess improved target engagement of a bispecific anti-amyloid-Imonoclonal antibody. Bench-to-bedside: Feasibility of nano-engineered and drug-delivery biomaterials for	0
12	Application of 89Zr-DFO*-immuno-PET to assess improved target engagement of a bispecific anti-amyloid-Imonoclonal antibody. Bench-to-bedside: Feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. 2023, 18, 100540	0
12 11 10	Application of 89Zr-DFO*-immuno-PET to assess improved target engagement of a bispecific anti-amyloid-Imonoclonal antibody. Bench-to-bedside: Feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. 2023, 18, 100540 Engineered liposomes as drug delivery and imaging agents. 2023, 75-108 Progress of Endogenous and Exogenous Nanoparticles for Cancer Therapy and Diagnostics. 2023,	0 0
12 11 10	Application of 89Zr-DFO*-immuno-PET to assess improved target engagement of a bispecific anti-amyloid-Imonoclonal antibody. Bench-to-bedside: Feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. 2023, 18, 100540 Engineered liposomes as drug delivery and imaging agents. 2023, 75-108 Progress of Endogenous and Exogenous Nanoparticles for Cancer Therapy and Diagnostics. 2023, 14, 259	0 0 0
12 11 10 9 8	Application of 89Zr-DFO*-immuno-PET to assess improved target engagement of a bispecific anti-amyloid-Imonoclonal antibody. Bench-to-bedside: Feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. 2023, 18, 100540 Engineered liposomes as drug delivery and imaging agents. 2023, 75-108 Progress of Endogenous and Exogenous Nanoparticles for Cancer Therapy and Diagnostics. 2023, 14, 259 Nanoparticle protein corona: from structure and function to therapeutic targeting.	0 0 0

1	Role of Micelle Size in Cell Transcytosis-Based Tumor Extravasation, Infiltration, and Treatment Efficacy.	0
2	Al approaches for the development of drug delivery systems. 2023 , 83-96	0
3	Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. 2023 , 13, 8606-8629	O
4	Supermolecule D rug Conjugates Based on Acid-Degradable Polyrotaxanes for pH-Dependent Intracellular Release of Doxorubicin. 2023 , 28, 2517	0