The ViewRay System: Magnetic Resonance–Guided a:

Seminars in Radiation Oncology 24, 196-199 DOI: 10.1016/j.semradonc.2014.02.008

Citation Report

#	Article	IF	CITATIONS
2	Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems. Medical Physics, 2015, 42, 856-865.	1.6	17
3	A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution. Medical Physics, 2015, 42, 7182-7189.	1.6	23
4	Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study. Medical Physics, 2015, 43, 368-377.	1.6	30
5	SIFT-based dense pixel tracking on 0.35 T cine-MR images acquired during image-guided radiation therapy with application to gating optimization. Medical Physics, 2015, 43, 279-293.	1.6	34
6	Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system. Medical Physics, 2015, 42, 5828-5837.	1.6	52
7	6 Physics and techniquesimage guidanceImage guidanceGuidance, imageStereotactic Spine Radiotherapy: Image Guidance and Patient Immobilization. , 2015, , .		0
8	A new methodology for inter- and intrafraction plan adaptation for the MR-linac. Physics in Medicine and Biology, 2015, 60, 7485-7497.	1.6	96
9	Commissioning Experience of Tri-Cobalt-60 MRI-guided Radiation Therapy System. Progress in Medical Physics, 2015, 26, 193.	0.4	24
10	Effect of Low Magnetic Field on Dose Distribution in the Partial-Breast Irradiation. Progress in Medical Physics, 2015, 26, 208.	0.4	12
11	On-line MR imaging for dose validation of abdominal radiotherapy. Physics in Medicine and Biology, 2015, 60, 8869-8883.	1.6	35
12	An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs. Physics in Medicine and Biology, 2015, 60, 9003-9029.	1.6	71
13	Magnetic Resonance Imaging-guided Radiation Therapy: Technological Innovation Provides a New Vision of Radiation Oncology Practice. Clinical Oncology, 2015, 27, 495-497.	0.6	12
14	Towards adaptive IMRT sequencing for the MR-linac. Physics in Medicine and Biology, 2015, 60, 2493-2509.	1.6	61
15	Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a 60 Co Magnetic Resonance Image Guidance Radiation Therapy System. International Journal of Radiation Oncology Biology Physics, 2015, 92, 771-778.	0.4	69
16	Image-guided radiotherapy and motion management in lung cancer. British Journal of Radiology, 2015, 88, 20150100.	1.0	49
17	Benchmark IMRT evaluation of a Co-60 MRI-guided radiation therapy system. Radiotherapy and Oncology, 2015, 114, 402-405.	0.3	53
18	Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study. International Journal of Radiation Oncology Biology Physics, 2015, 91, 840-848.	0.4	41
19	Evaluating organ delineation, dose calculation and daily localization in an open-MRI simulation workflow for prostate cancer patients. Radiation Oncology, 2015, 10, 37.	1.2	26

# 20	ARTICLE Protection and Measurement in Radiation Therapy. Health Physics, 2015, 108, 224-241.	IF 0.3	CITATIONS
21	Technical Note: A Monte Carlo study of magneticâ€fieldâ€induced radiation dose effects in mice. Medical Physics, 2015, 42, 5510-5516.	1.6	13
22	Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncológica, 2015, 54, 1474-1482.	0.8	127
23	Proton beam deflection in MRI fields: Implications for MRIâ€guided proton therapy. Medical Physics, 2015, 42, 2113-2124.	1.6	63
24	Plan Optimization for a Lung Patient on a Parallel Linac-MR System. IFMBE Proceedings, 2015, , 801-804.	0.2	0
25	Dosimetric feasibility of magnetic resonance imagingâ€guided tri-cobalt 60 preoperative intensity modulated radiation therapy for soft tissue sarcomas of the extremity. Practical Radiation Oncology, 2015, 5, 350-356.	1.1	8
26	Feasibility of magnetic resonance imaging–guided liver stereotactic body radiation therapy: A comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based intensity modulated radiation therapy. Practical Radiation Oncology, 2015, 5, 330-337.	1.1	28
27	Patient-Specific Quality Assurance for the Delivery of 60Co Intensity Modulated Radiation Therapy Subject to a 0.35-T Lateral Magnetic Field. International Journal of Radiation Oncology Biology Physics, 2015, 91, 65-72.	0.4	61
28	Treatment Plan Delivery Accuracy of the ViewRay System in Two-Headed Mode. Progress in Medical Physics, 2016, 27, 169.	0.4	1
29	Technical advances in external radiotherapy for hepatocellular carcinoma. World Journal of Gastroenterology, 2016, 22, 7311.	1.4	23
30	Quality Assurance and Commissioning of New Radiotherapy Technology. , 2016, , 40-60.		0
31	MRI-based IMRT planning for MR-linac: comparison between CT- and MRI-based plans for pancreatic and prostate cancers. Physics in Medicine and Biology, 2016, 61, 3819-3842.	1.6	38
32	A particle filter based autocontouring algorithm for lung tumor tracking using dynamic magnetic resonance imaging. Medical Physics, 2016, 43, 5161-5169.	1.6	14
33	A comparative study of automatic image segmentation algorithms for target tracking in MRâ€IGRT. Journal of Applied Clinical Medical Physics, 2016, 17, 441-460.	0.8	25
34	Longitudinal diffusion MRI for treatment response assessment: Preliminary experience using an MRIâ€guided triâ€cobalt 60 radiotherapy system. Medical Physics, 2016, 43, 1369-1373.	1.6	95
35	A software tool to automatically assure and report daily treatment deliveries by a cobaltâ€60 radiation therapy device. Journal of Applied Clinical Medical Physics, 2016, 17, 492-501.	0.8	11
36	Methods to model and predict the ViewRay treatment deliveries to aid patient scheduling and treatment planning. Journal of Applied Clinical Medical Physics, 2016, 17, 50-62.	0.8	6
37	Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with <scp>geant</scp> 4. Medical Physics, 2016, 43, 894-907.	1.6	82

#	Article	IF	CITATIONS
38	Online 4D ultrasound guidance for realâ€ŧime motion compensation by MLC tracking. Medical Physics, 2016, 43, 5695-5704.	1.6	33
39	Quantifying the accuracy of the tumor motion and area as a function of acceleration factor for the simulation of the dynamic keyhole magnetic resonance imaging method. Medical Physics, 2016, 43, 2639-2648.	1.6	6
40	Simulated Online Adaptive Magnetic Resonance–Guided Stereotactic Body Radiation Therapy for the Treatment of Oligometastatic Disease of the Abdomen and Central Thorax: Characterization of Potential Advantages. International Journal of Radiation Oncology Biology Physics, 2016, 96, 1078-1086.	0.4	113
41	Towards real-time MRI-guided 3D localization of deforming targets for non-invasive cardiac radiosurgery. Physics in Medicine and Biology, 2016, 61, 7848-7863.	1.6	21
42	An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy. Medical Physics, 2016, 43, 4700-4710.	1.6	14
43	Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MRâ€linac?. Medical Physics, 2016, 43, 3961-3968.	1.6	56
44	Technical Note: Dosimetric effects of couch position variability on treatment plan quality with an MRI-guided Co-60 radiation therapy machine. Medical Physics, 2016, 43, 4514-4519.	1.6	0
45	Technical Note: Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy. Medical Physics, 2016, 43, 4797-4802.	1.6	49
46	Computerized triplet beam orientation optimization for MRIâ€guided Coâ€60 radiotherapy. Medical Physics, 2016, 43, 5667-5675.	1.6	14
47	Real-Time 3D Image Guidance Using a Standard LINAC: Measured Motion, Accuracy, and Precision of the First Prospective Clinical Trial of Kilovoltage Intrafraction Monitoring–Guided Gating for Prostate Cancer Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2016, 94, 1015-1021.	0.4	48
48	The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiotherapy and Oncology, 2016, 118, 154-159.	0.3	49
49	Techniques for adaptive prostate radiotherapy. Physica Medica, 2016, 32, 492-498.	0.4	29
50	MRI-guided prostate adaptive radiotherapy – A systematic review. Radiotherapy and Oncology, 2016, 119, 371-380.	0.3	124
51	An analysis of planned versus delivered airway doses during stereotactic lung radiotherapy for central tumors. Acta Oncológica, 2016, 55, 934-937.	0.8	5
52	Subsecond and Submillimeter Resolution Positional Verification for Stereotactic Irradiation of Spinal Lesions. International Journal of Radiation Oncology Biology Physics, 2016, 94, 1154-1162.	0.4	28
53	Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI. Physics in Medicine and Biology, 2016, 61, 872-887.	1.6	66
54	Radiotherapy: technical aspects. Medicine, 2016, 44, 10-14.	0.2	9
55	Anatomic and dosimetric changes in patients with head and neck cancer treated with an integrated MRI-tri- ⁶⁰ Co teletherapy device. British Journal of Radiology, 2016, 89, 20160624.	1.0	18

#	Article	IF	CITATIONS
56	Functional Image-guided Radiotherapy Planning for Normal Lung Avoidance. Clinical Oncology, 2016, 28, 695-707.	0.6	47
57	The delineation of intraprostatic boost regions for radiotherapy using multimodality imaging. Future Oncology, 2016, 12, 2495-2511.	1.1	10
58	Magnetic Resonance Image Guided Radiation Therapy for External Beam Accelerated Partial-Breast Irradiation: Evaluation of Delivered Dose and Intrafractional Cavity Motion. International Journal of Radiation Oncology Biology Physics, 2016, 96, 785-792.	0.4	73
59	A comparative planning study for lung SABR between tri-Co-60 magnetic resonance image guided radiation therapy system and volumetric modulated arc therapy. Radiotherapy and Oncology, 2016, 120, 279-285.	0.3	37
60	Plan selection strategy for rectum cancer patients: An interobserver study to assess clinical feasibility. Radiotherapy and Oncology, 2016, 120, 207-211.	0.3	17
61	Initial experiments with gel-water: towards MRI-linac dosimetry and imaging. Australasian Physical and Engineering Sciences in Medicine, 2016, 39, 921-932.	1.4	7
62	Four-dimensional MRI using an internal respiratory surrogate derived by dimensionality reduction. Physics in Medicine and Biology, 2016, 61, 7812-7832.	1.6	18
63	Technical Note: Validation and implementation of a wireless transponder tracking system for gated stereotactic ablative radiotherapy of the liver. Medical Physics, 2016, 43, 2794-2801.	1.6	19
64	Gadoxetate for direct tumor therapy and tracking with real-time MRI-guided stereotactic body radiation therapy of the liver. Radiotherapy and Oncology, 2016, 118, 416-418.	0.3	59
65	Lung stereotactic body radiotherapy with an MR-linac – Quantifying the impact of the magnetic field and real-time tumor tracking. Radiotherapy and Oncology, 2016, 119, 461-466.	0.3	88
66	A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based stereotactic body radiotherapy for central early-stage nonâ^'small cell lung cancer. Medical Dosimetry, 2016, 41, 87-91.	0.4	31
67	Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlentherapie Und Onkologie, 2016, 192, 209-215.	1.0	13
68	Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications. International Journal of Radiation Oncology Biology Physics, 2016, 94, 394-403.	0.4	245
69	Sliding window prior data assisted compressed sensing for <scp>MRI</scp> tracking of lung tumors. Medical Physics, 2017, 44, 84-98.	1.6	20
70	Magnetic field effects on particle beams and their implications for dose calculation in <scp>MR</scp> â€guided particle therapy. Medical Physics, 2017, 44, 1149-1156.	1.6	47
71	Qualitative Evaluation of a Novel 3D Volumetric Radiotherapy Segmentation Tool. Journal of Medical Imaging and Radiation Sciences, 2017, 48, 178-183.	0.2	1
72	Respiratory motion prediction and prospective correction for freeâ€breathing arterial spinâ€labeled perfusion <scp>MRI</scp> of the kidneys. Medical Physics, 2017, 44, 962-973.	1.6	11
73	Quantification of static magnetic field effects on radiotherapy ionization chambers. Physics in Medicine and Biology, 2017, 62, 1731-1743.	1.6	33

#	ARTICLE	IF	CITATIONS
74	The feasibility of semi-automatically generated red bone marrow segmentations based on MR-only for patients with gynecologic cancer. Radiotherapy and Oncology, 2017, 123, 164-168.	0.3	8
75	Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer. Acta OncolÃ ³ gica, 2017, 56, 787-791.	0.8	24
76	The future of image-guided radiotherapy will be MR guided. British Journal of Radiology, 2017, 90, 20160667.	1.0	147
77	New concept on an integrated interior magnetic resonance imaging and medical linear accelerator system for radiation therapy. Journal of Medical Imaging, 2017, 4, 015004.	0.8	5
78	Technical Note: Is bulk electron density assignment appropriate for MRI-only based treatment planning for lung cancer?. Medical Physics, 2017, 44, 3437-3443.	1.6	20
79	The Ever-Evolving Role of the Academic Clinical Physicist. International Journal of Radiation Oncology Biology Physics, 2017, 98, 18-20.	0.4	8
80	Online Adaptive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, 994-1003.	0.4	145
82	Perforator Phase Contrast Angiography of Deep Inferior Epigastric Perforators. Investigative Radiology, 2017, 52, 334-342.	3.5	11
83	Characterization of spatial distortion in a 0.35 T MRI-guided radiotherapy system. Physics in Medicine and Biology, 2017, 62, 4525-4540.	1.6	50
84	The integration of <scp>MRI</scp> in radiation therapy: collaboration of radiographers and radiation therapists. Journal of Medical Radiation Sciences, 2017, 64, 61-68.	0.8	47
85	Low-Field Cardiac Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	31
86	A particle filter motion prediction algorithm based on an autoregressive model for real-time MRI-guided radiotherapy of lung cancer. Biomedical Physics and Engineering Express, 2017, 3, 035001.	0.6	15
87	Future of medical physics: Realâ€ŧime MRIâ€guided proton therapy. Medical Physics, 2017, 44, e77-e90.	1.6	99
88	Audiovisual biofeedback guided breath-hold improves lung tumor position reproducibility and volume consistency. Advances in Radiation Oncology, 2017, 2, 354-362.	0.6	14
89	Exploring the Margin Recipe for Online Adaptive Radiation Therapy for Intermediate-Risk Prostate Cancer: An Intrafractional Seminal Vesicles Motion Analysis. International Journal of Radiation Oncology Biology Physics, 2017, 98, 473-480.	0.4	26
90	A tool for validating MRI-guided strategies: a digital breathing CT/MRI phantom of the abdominal site. Medical and Biological Engineering and Computing, 2017, 55, 2001-2014.	1.6	29
91	An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: a feasibility study. Scientific Reports, 2017, 7, 45019.	1.6	8
92	Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System. International Journal of Radiation Oncology Biology Physics, 2017, 97, 1095-1104.	0.4	17

#	Article	IF	CITATIONS
93	Dosimetric Comparison of Real-Time MRI-Guided Tri-Cobalt-60 Versus Linear Accelerator-Based Stereotactic Body Radiation Therapy Lung Cancer Plans. Technology in Cancer Research and Treatment, 2017, 16, 366-372.	0.8	10
94	MRI-guided lung SBRT: Present and future developments. Physica Medica, 2017, 44, 139-149.	0.4	94
95	Feasibility of dosimetry with optically stimulated luminescence detectors in magnetic fields. Radiation Measurements, 2017, 106, 346-351.	0.7	18
96	Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy. Physics in Medicine and Biology, 2017, 62, 2910-2921.	1.6	45
97	Simultaneous orthogonal plane imaging. Magnetic Resonance in Medicine, 2017, 78, 1700-1710.	1.9	25
98	A novel method for interactive multi-objective dose-guided patient positioning. Physics in Medicine and Biology, 2017, 62, 165-185.	1.6	6
99	Using the Malthus programme to predict the recruitment of patients to MR-linac research trials in prostate and lung cancer. Radiotherapy and Oncology, 2017, 122, 159-162.	0.3	6
100	Effects of magnetic field orientation and strength on the treatment planning of nonsmall cell lung cancer. Medical Physics, 2017, 44, 6621-6631.	1.6	8
101	Investigation of magnetic field effects on the dose–response of 3D dosimeters for magnetic resonance – image guided radiation therapy applications. Radiotherapy and Oncology, 2017, 125, 426-432.	0.3	39
102	Experimental verification of dose enhancement effects in a lung phantom from inline magnetic fields. Radiotherapy and Oncology, 2017, 125, 433-438.	0.3	13
103	Treating locally advanced lung cancer with a 1.5 T MR-Linac – Effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy. Radiotherapy and Oncology, 2017, 125, 280-285.	0.3	52
104	Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study. Radiotherapy and Oncology, 2017, 125, 485-491.	0.3	30
105	A Monte-Carlo study to assess the effect of 1.5 T magnetic fields on the overall robustness of pencil-beam scanning proton radiotherapy plans for prostate cancer. Physics in Medicine and Biology, 2017, 62, 8470-8482.	1.6	15
106	Prospective analysis of in vivo landmark point-based MRI geometric distortion in head and neck cancer patients scanned in immobilized radiation treatment position: Results of a prospective quality assurance protocol. Clinical and Translational Radiation Oncology, 2017, 7, 13-19.	0.9	13
107	Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations. Physics in Medicine and Biology, 2017, 62, 6708-6728.	1.6	72
108	Performance of a multi leaf collimator system for <scp>MR</scp> â€guided radiation therapy. Medical Physics, 2017, 44, 6504-6514.	1.6	18
109	Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac. Physics in Medicine and Biology, 2017, 62, 7233-7248.	1.6	108
110	Magnetic field dose effects on different radiation beam geometries for hypofractionated partial breast irradiation. Journal of Applied Clinical Medical Physics, 2017, 18, 62-70.	0.8	23

#	ARTICLE	IF	CITATIONS
111	A back-projection algorithm in the presence of an extra attenuating medium: towards EPID dosimetry for the MR-Linac. Physics in Medicine and Biology, 2017, 62, 6322-6340.	1.6	10
112	Modulation of lateral positions of Bragg peaks via magnetic fields inside cancer patients: Toward magnetic field modulated proton therapy. Medical Physics, 2017, 44, 5325-5338.	1.6	5
113	Two-and-a-half-year clinical experience with the world's first magnetic resonance image guided radiation therapy system. Advances in Radiation Oncology, 2017, 2, 485-493.	0.6	128
114	Development of patientâ€controlled respiratory gating system based on visual guidance for magneticâ€resonance imageâ€guided radiation therapy. Medical Physics, 2017, 44, 4838-4846.	1.6	18
115	A comparison of treatment plan quality between Tri-Co-60 intensity modulated radiation therapy and volumetric modulated arc therapy for cervical cancer. Physica Medica, 2017, 40, 11-16.	0.4	18
116	Dosimetric feasibility of magnetic resonance (MR)-based dose calculation of prostate radiotherapy using multilevel threshold algorithm. Journal of Radiotherapy in Practice, 2017, 16, 415-422.	0.2	0
117	An analysis of the Arc <scp>CHECK</scp> â€ <scp>MR</scp> diode array's performance for ViewRay quality assurance. Journal of Applied Clinical Medical Physics, 2017, 18, 161-171.	0.8	12
118	Radiation Therapy for Liver Tumors: Future Directions. , 2017, , 269-281.		0
119	Effect of intra-fraction motion on the accumulated dose for free-breathing MR-guided stereotactic body radiation therapy of renal-cell carcinoma. Physics in Medicine and Biology, 2017, 62, 7407-7424.	1.6	32
120	Development of a Computerized 4-D MRI Phantom for Liver Motion Study. Technology in Cancer Research and Treatment, 2017, 16, 1051-1059.	0.8	6
121	Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiotherapy and Oncology, 2017, 125, 439-444.	0.3	254
122	Alternate Fractionation for Hepatic Tumors. Medical Radiology, 2017, , 173-201.	0.0	0
123	First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Physics in Medicine and Biology, 2017, 62, L41-L50.	1.6	400
124	An Introduction to Medical Physics. Biological and Medical Physics Series, 2017, , .	0.3	5
125	Sensitive volume effects on Monte Carlo calculated ion chamber response in magnetic fields. Medical Physics, 2017, 44, 4854-4858.	1.6	38
127	T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance–Guided Radiotherapy Treatment Planning. Investigative Radiology, 2017, 52, 563-573.	3.5	29
128	Estimation of lung tumor position from multiple anatomical features on 4D―CT using multiple regression analysis. Journal of Applied Clinical Medical Physics, 2017, 18, 36-42.	0.8	4
129	MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro-Oncology, 2017, 19, ii16-ii29.	0.6	49

#	Article	IF	CITATIONS
130	Magnetic resonance image guided radiation therapy for primary splenic diffuse large B-cell lymphoma: A teaching case. Practical Radiation Oncology, 2017, 7, e23-e26.	1.1	2
131	The impact of a 1.5â€ [−] T MRI linac fringe field on neighbouring linear accelerators. Physics and Imaging in Radiation Oncology, 2017, 4, 12-16.	1.2	8
132	Implementation of AAPM's TG-51 Protocol on Co-60 MRI-Guided Radiation Therapy System. Progress in Medical Physics, 2017, 28, 190.	0.5	2
133	Adaptive radiation dose escalation in rectal adenocarcinoma: a review. Journal of Gastrointestinal Oncology, 2017, 8, 902-914.	0.6	18
134	Magnetic resonance imaging in precision radiation therapy for lung cancer. Translational Lung Cancer Research, 2017, 6, 689-707.	1.3	56
135	Feasibility study on 3D image reconstruction from 2D orthogonal cineâ€ <scp>MRI</scp> for <scp>MRI</scp> â€guided radiotherapy. Journal of Medical Imaging and Radiation Oncology, 2018, 62, 389-400.	0.9	44
136	Prototype volumetric ultrasound tomography image guidance system for prone stereotactic partial breast irradiation: proof-of-concept. Physics in Medicine and Biology, 2018, 63, 055004.	1.6	3
137	Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac. Physics in Medicine and Biology, 2018, 63, 05NT04.	1.6	21
138	Technical Note: Feasibility of MRIâ€based estimation of waterâ€equivalent path length to detect changes in proton range during treatment courses. Medical Physics, 2018, 45, 1677-1683.	1.6	7
140	Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field. Physics in Medicine and Biology, 2018, 63, 095001.	1.6	42
141	The need for, and implementation of, image guidance in radiation therapy. Annals of the ICRP, 2018, 47, 160-176.	3.0	6
142	<scp>MR</scp> and <scp>CT</scp> data with multiobserver delineations of organs in the pelvic area—Part of the Gold Atlas project. Medical Physics, 2018, 45, 1295-1300.	1.6	45
143	Review of Real-Time 3-Dimensional Image Guided Radiation Therapy on Standard-Equipped Cancer Radiation Therapy Systems: Are We at the Tipping Point for the Era of Real-Time Radiation Therapy?. International Journal of Radiation Oncology Biology Physics, 2018, 102, 922-931.	0.4	45
144	A high resolution 2D array detector system for small-field MRI-linac applications. Biomedical Physics and Engineering Express, 2018, 4, 035041.	0.6	6
145	Real-time volumetric relative dosimetry for magnetic resonance—image-guided radiation therapy (MR-IGRT). Physics in Medicine and Biology, 2018, 63, 045021.	1.6	17
146	Investigating the effect of a magnetic field on dose distributions at phantom-air interfaces using PRESAGE [®] 3D dosimeter and Monte Carlo simulations. Physics in Medicine and Biology, 2018, 63, 05NT01.	1.6	21
147	Audiovisual biofeedback improves the correlation between internal/external surrogate motion and lung tumor motion. Medical Physics, 2018, 45, 1009-1017.	1.6	21
148	Prospective feasibility analysis of aÂnovel off-line approach for MR-guided radiotherapy. Strahlentherapie Und Onkologie, 2018, 194, 425-434.	1.0	23

#	Article	IF	CITATIONS
149	A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields. Physics in Medicine and Biology, 2018, 63, 035018.	1.6	2
150	Real-Time Whole-Brain Radiation Therapy: AÂSingle-Institution Experience. International Journal of Radiation Oncology Biology Physics, 2018, 100, 1280-1288.	0.4	6
151	Pancreatic gross tumor volume contouring on computed tomography (CT) compared with magnetic resonance imaging (MRI): Results of an international contouring conference. Practical Radiation Oncology, 2018, 8, 107-115.	1.1	19
152	Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen. Radiotherapy and Oncology, 2018, 126, 519-526.	0.3	320
153	Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality. Medical Physics, 2018, 45, 908-925.	1.6	65
154	Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms. Physics in Medicine and Biology, 2018, 63, 035024.	1.6	12
155	A rapid, computational approach for assessing interfraction esophageal motion for use in stereotactic body radiation therapy planning. Advances in Radiation Oncology, 2018, 3, 209-215.	0.6	4
156	A treatment planning comparison between a novel rotating gamma system and robotic linear accelerator based intracranial stereotactic radiosurgery/radiotherapy. Physics in Medicine and Biology, 2018, 63, 035029.	1.6	6
157	First Experience With Markerless Online 3D Spine Position Monitoring During SBRT Delivery Using a Conventional LINAC. International Journal of Radiation Oncology Biology Physics, 2018, 101, 1253-1258.	0.4	15
158	Remote Cherenkov imagingâ€based quality assurance of a magnetic resonance imageâ€guided radiotherapy system. Medical Physics, 2018, 45, 2647-2659.	1.6	20
159	Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer using MR-guided Tri-60Co unit, MR-guided LINAC, and conventional LINAC-based plans. Practical Radiation Oncology, 2018, 8, e312-e321.	1.1	16
160	Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT. British Journal of Radiology, 2018, 91, 20170522.	1.0	44
161	A practical implementation of physics quality assurance for photon adaptive radiotherapy. Zeitschrift Fur Medizinische Physik, 2018, 28, 211-223.	0.6	29
162	A Hybrid Image Registration and Matching Framework for Real-Time Motion Tracking in MRI-Guided Radiotherapy. IEEE Transactions on Biomedical Engineering, 2018, 65, 131-139.	2.5	27
163	Respiratory motion model based on the noise covariance matrix of a receive array. Magnetic Resonance in Medicine, 2018, 79, 1730-1735.	1.9	6
164	Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A "Game Changer―for Prostate Treatment?. International Journal of Radiation Oncology Biology Physics, 2018, 100, 361-373.	0.4	132
165	Technical Note: Penumbral width trimming in solid lung dose profiles for 0.9 and 1.5 T <scp>MRI</scp> â€Linac prototypes. Medical Physics, 2018, 45, 479-487.	1.6	8
166	The development of a 4D treatment planning methodology to simulate the tracking of central lung tumors in an <scp>MRI</scp> â€linac. Journal of Applied Clinical Medical Physics, 2018, 19, 145-155.	0.8	11

#	Article	IF	Citations
	ARTICLE Developing and characterizing <scp>MR</scp> / <scp>CT</scp> â€visible materials used in <scp>QA</scp>	IF	CHATIONS
167	phantoms for <scp>MR</scp> g <scp>RT</scp> systems. Medical Physics, 2018, 45, 773-782.	1.6	27
168	The role of imaging in the clinical practice of radiation oncology for pancreatic cancer. Abdominal Radiology, 2018, 43, 393-403.	1.0	6
169	Evaluating performance of a userâ€ŧrained MR lung tumor autocontouring algorithm in the context of intra―and interobserver variations. Medical Physics, 2018, 45, 307-313.	1.6	8
170	Air–electron stream interactions during magnetic resonance IGRT. Strahlentherapie Und Onkologie, 2018, 194, 50-59.	1.0	44
171	Radiation-induced lung toxicity in mice irradiated in a strong magnetic field. PLoS ONE, 2018, 13, e0205803.	1.1	3
172	Assessment of positional reproducibility in the head and neck on a 1.5-T MR simulator for an offline MR-guided radiotherapy solution. Quantitative Imaging in Medicine and Surgery, 2018, 8, 925-935.	1.1	4
173	The effect of density overrides on magnetic resonance-guided radiation therapy planning for lung cancer. Physics and Imaging in Radiation Oncology, 2018, 8, 23-27.	1.2	4
174	Effect of Low Magnetic Field on Dose Distribution in the SABR Plans for Liver Cancer. Progress in Medical Physics, 2018, 29, 47.	0.5	2
175	A New Era of Image Guidance with Magnetic Resonance-guided Radiation Therapy for Abdominal and Thoracic Malignancies. Cureus, 2018, 10, e2422.	0.2	50
176	The characterization of a large multi-axis ionization chamber array in a 1.5 T MRI linac. Physics in Medicine and Biology, 2018, 63, 225007.	1.6	4
177	SBRT targets that move with respiration. Physica Medica, 2018, 56, 19-24.	0.4	34
178	Dosimetric Implications of Computerised Tomography-Only versus Magnetic Resonance-Fusion Contouring in Stereotactic Body Radiotherapy for Prostate Cancer. Medicines (Basel, Switzerland), 2018, 5, 32.	0.7	5
179	The impact of 2D cine MR imaging parameters on automated tumor and organ localization for MR-guided real-time adaptive radiotherapy. Physics in Medicine and Biology, 2018, 63, 235005.	1.6	10
180	Magnetic Resonance-guided Radiotherapy — Can We Justify More Expensive Technology?. Clinical Oncology, 2018, 30, 677-679.	0.6	11
181	A novel <scp>MRI</scp> segmentation method using <scp>CNN</scp> â€based correction network for <scp>MRI</scp> â€guided adaptive radiotherapy. Medical Physics, 2018, 45, 5129-5137.	1.6	109
182	Fano cavity test for electron Monte Carlo transport algorithms in magnetic fields: comparison between EGSnrc, PENELOPE, MCNP6 and Geant4. Physics in Medicine and Biology, 2018, 63, 195013.	1.6	22
183	Nuts and bolts of 4D-MRI for radiotherapy. Physics in Medicine and Biology, 2018, 63, 21TR01.	1.6	99
184	Magnetic Resonance Imaging only Workflow for Radiotherapy Simulation and Planning in Prostate Cancer. Clinical Oncology, 2018, 30, 692-701.	0.6	47

#	Article	IF	CITATIONS
185	Simulated dosimetric impact of online replanning for stereotactic body radiation therapy of lymph node oligometastases on the 1.5T MR-linac. Acta Oncológica, 2018, 57, 1705-1712.	0.8	24
186	In Silico Trial of MR-Guided Midtreatment Adaptive Planning for Hypofractionated Stereotactic Radiation Therapy in Centrally Located Thoracic Tumors. International Journal of Radiation Oncology Biology Physics, 2018, 102, 987-995.	0.4	32
187	MRI-guidance for motion management in external beam radiotherapy: current status and future challenges. Physics in Medicine and Biology, 2018, 63, 22TR03.	1.6	94
188	Simultaneous motion monitoring and truth-in-delivery analysis imaging framework for MR-guided radiotherapy. Physics in Medicine and Biology, 2018, 63, 235014.	1.6	11
189	Retrospective evaluation of decision-making for pancreatic stereotactic MR-guided adaptive radiotherapy. Radiotherapy and Oncology, 2018, 129, 319-325.	0.3	43
190	Emerging role of MRI in radiation therapy. Journal of Magnetic Resonance Imaging, 2018, 48, 1468-1478.	1.9	89
191	MRI-Linear Accelerator Radiotherapy Systems. Clinical Oncology, 2018, 30, 686-691.	0.6	89
192	Magnetic Resonance Image-Guided Radiotherapy (MRIgRT): A 4.5-Year Clinical Experience. Clinical Oncology, 2018, 30, 720-727.	0.6	106
193	Role of Daily Plan Adaptation in MR-Guided Stereotactic Ablative Radiation Therapy for Adrenal Metastases. International Journal of Radiation Oncology Biology Physics, 2018, 102, 426-433.	0.4	66
194	Technical Note: Experimental verification of magnetic fieldâ€induced beam deflection and Bragg peak displacement for MRâ€integrated proton therapy. Medical Physics, 2018, 45, 3429-3434.	1.6	30
195	Imageâ€based retrospective 4D <scp>MRI</scp> in external beam radiotherapy: A comparative study with a digital phantom. Medical Physics, 2018, 45, 3161-3172.	1.6	21
196	SBRT for pancreatic cancer: In regard of Bohoudi et al Radiotherapy and Oncology, 2018, 127, 511-512.	0.3	1
197	Accelerated 3D <scp>bSSFP</scp> imaging for treatment planning on an <scp>MRI</scp> â€guided radiotherapy system. Medical Physics, 2018, 45, 2595-2602.	1.6	10
198	First clinical implementation of realâ€ŧime, real anatomy tracking and radiation beam control. Medical Physics, 2018, 45, 3728-3740.	1.6	115
199	A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Physics in Medicine and Biology, 2018, 63, 125008.	1.6	55
200	Lung density change after SABR: A comparative study between tri-Co-60 magnetic resonance-guided system and linear accelerator. PLoS ONE, 2018, 13, e0195196.	1.1	4
201	Estimation and validation of patient-specific liver elasticity distributions derived from 4DMR for radiotherapy purposes. Biomedical Physics and Engineering Express, 2018, 4, 045038.	0.6	1
202	Stereotactic ablative radiotherapy (SABR) for early-stage central lung tumors: New insights and approaches. Lung Cancer, 2018, 123, 142-148.	0.9	18

#	Article	IF	Citations
203	Quantification of variations in intra-fraction motion of esophageal tumors over the course of neoadjuvant chemoradiotherapy based on cine-MRI. Physics in Medicine and Biology, 2018, 63, 145019.	1.6	12
204	Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy. Seminars in Radiation Oncology, 2018, 28, 238-247.	1.0	21
205	MR-guided Gated Stereotactic Radiation Therapy Delivery for Lung, Adrenal, and Pancreatic Tumors: A Geometric Analysis. International Journal of Radiation Oncology Biology Physics, 2018, 102, 858-866.	0.4	118
206	Hypofractionated and Stereotactic Radiation Therapy. , 2018, , .		2
207	Variability of Gross Tumor Volume Delineation for Stereotactic Body Radiotherapy of the Lung With Tri- ⁶⁰ Co Magnetic Resonance Image-Guided Radiotherapy System (ViewRay): A Comparative Study With Magnetic Resonance- and Computed Tomography-Based Target Delineation. Technology in Cancer Research and Treatment, 2018, 17, 153303381878738.	0.8	13
208	Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach. Artificial Intelligence in Medicine, 2018, 90, 34-41.	3.8	47
209	Automation in intensity modulated radiotherapy treatment planning—a review of recent innovations. British Journal of Radiology, 2018, 91, 20180270.	1.0	150
210	On the direct acquisition of beam's-eye-view images in MRI for integration with external beam radiotherapy. Physics in Medicine and Biology, 2018, 63, 125002.	1.6	6
211	A Novel method to generate onâ€board 4D MRI using prior 4D MRI and onâ€board kV projections from a conventional LINAC for target localization in liver SBRT. Medical Physics, 2018, 45, 3238-3245.	1.6	11
212	Model-Interpolated Gating for Magnetic Resonance Image–Guided Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 102, 885-894.	0.4	7
214	Optimization of treatment planning workflow and tumor coverage during daily adaptive magnetic resonance image guided radiation therapy (MR-IGRT) of pancreatic cancer. Radiation Oncology, 2018, 13, 51.	1.2	30
215	Hybrid Tri-Co-60 MRI radiotherapy for locally advanced rectal cancer: An in silico evaluation. Technical Innovations and Patient Support in Radiation Oncology, 2018, 6, 5-10.	0.6	12
216	Feasibility of polymer gel-based measurements of radiation isocenter accuracy in magnetic fields. Physics in Medicine and Biology, 2018, 63, 11NT02.	1.6	18
217	Assessment of electron density effects on dose calculation and optimisation accuracy for nasopharynx, for MRI only treatment planning. Australasian Physical and Engineering Sciences in Medicine, 2018, 41, 811-820.	1.4	4
218	A mixed-integer optimization approach for homogeneous magnet design. Technology, 2018, 06, 49-58.	1.4	2
219	Suitability of EBT3 GafChromic film for quality assurance in MR-guided radiotherapy at 0.35 T with and without real-time MR imaging. Physics in Medicine and Biology, 2018, 63, 165014.	1.6	20
220	Plan quality for high-risk prostate cancer treated with high field magnetic resonance imaging guided radiotherapy. Physics and Imaging in Radiation Oncology, 2018, 7, 1-8.	1.2	14
221	Predicting tumour motion during the whole radiotherapy treatment: a systematic approach for thoracic and abdominal lesions based on real time MR. Radiotherapy and Oncology, 2018, 129, 456-462.	0.3	56

#	Article	IF	CITATIONS
222	Electron–electron interactions of the multi-Cooper-pairs in the 1D limit and their role in the formation of global phase coherence in quasi-one-dimensional superconducting nanowire arrays. Physica C: Superconductivity and Its Applications, 2018, 553, 33-37.	0.6	1
223	Experimental evaluation of the impact of low tesla transverse magnetic field on dose distribution in presence of tissue interfaces. Physica Medica, 2018, 53, 80-85.	0.4	22
224	Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region. Physics in Medicine and Biology, 2018, 63, 145007.	1.6	28
225	Super-resolution T2-weighted 4D MRI for image guided radiotherapy. Radiotherapy and Oncology, 2018, 129, 486-493.	0.3	16
226	Novel use of ViewRay MRI guidance for high-dose-rate brachytherapy in the treatment of cervical cancer. Brachytherapy, 2018, 17, 680-688.	0.2	9
227	InÂVivo Validation of Elekta's Clarity Autoscan for Ultrasound-based Intrafraction Motion Estimation of the Prostate During Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 102, 912-921.	0.4	34
228	Technical Note: Experimental characterization of the dose deposition in parallel MRIâ€linacs at various magnetic field strengths. Medical Physics, 2019, 46, 5152-5158.	1.6	7
229	Retrospective study comparing MR-guided radiation therapy (MRgRT) setup strategies for prostate treatment: repositioning vs. replanning. Radiation Oncology, 2019, 14, 139.	1.2	18
230	Design and feasibility of a flexible, on-body, high impedance coil receive array for a 1.5 T MR-linac. Physics in Medicine and Biology, 2019, 64, 185004.	1.6	22
231	Planning feasibility of extremely hypofractionated prostate radiotherapy on a 1.5â€⊤ magnetic resonance imaging guided linear accelerator. Physics and Imaging in Radiation Oncology, 2019, 11, 16-20.	1.2	10
232	Technical Note: Realâ€ŧime 3D MRI in the presence of motion for MRIâ€guided radiotherapy: 3D Dynamic keyhole imaging with superâ€resolution. Medical Physics, 2019, 46, 4631-4638.	1.6	8
233	Intra-fraction motion prediction in MRI-guided radiation therapy using Markov processes. Physics in Medicine and Biology, 2019, 64, 195006.	1.6	1
234	EPR imaging of magnetic field effects on radiation dose distributions around millimeter-size air cavities. Physics in Medicine and Biology, 2019, 64, 175013.	1.6	2
235	Technical design and concept of a 0.35 T MR-Linac. Clinical and Translational Radiation Oncology, 2019, 18, 98-101.	0.9	210
236	Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MRâ€only breast radiotherapy. Medical Physics, 2019, 46, 4135-4147.	1.6	37
237	MR-guided radiotherapy in rectal cancer: First clinical experience of an innovative technology. Clinical and Translational Radiation Oncology, 2019, 18, 80-86.	0.9	48
238	Time-resolved volumetric MRI in MRI-guided radiotherapy: an <i>in silico</i> comparative analysis. Physics in Medicine and Biology, 2019, 64, 185013.	1.6	23
239	Motion Management in Stereotactic Body Radiation Therapy. , 2019, , 195-215.		1

#	Article	IF	CITATIONS
240	Measurement validation of treatment planning for a MR‣inac. Journal of Applied Clinical Medical Physics, 2019, 20, 28-38.	0.8	18
241	Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans. Acta Oncológica, 2019, 58, 1429-1434.	0.8	33
242	Prospective quantitative quality assurance and deformation estimation of MRI-CT image registration in simulation of head and neck radiotherapy patients. Clinical and Translational Radiation Oncology, 2019, 18, 120-127.	0.9	24
243	A novel transport sweep architecture for efficient deterministic patient dose calculations in MRI-guided radiotherapy. Physics in Medicine and Biology, 2019, 64, 185012.	1.6	5
244	Deformable abdominal phantom for the validation of realâ€ŧime image guidance and deformable dose accumulation. Journal of Applied Clinical Medical Physics, 2019, 20, 122-133.	0.8	10
245	Beyond T2 and 3T: New MRI techniques for clinicians. Clinical and Translational Radiation Oncology, 2019, 18, 87-97.	0.9	10
246	ReconSocket: a low-latency raw data streaming interface for real-time MRI-guided radiotherapy. Physics in Medicine and Biology, 2019, 64, 185008.	1.6	7
247	Single patient convolutional neural networks for real-time MR reconstruction: a proof of concept application in lung tumor segmentation for adaptive radiotherapy. Physics in Medicine and Biology, 2019, 64, 195002.	1.6	9
248	Measurement of isocenter alignment accuracy and image distortion of an 0.35 T MR-Linac system. Physics in Medicine and Biology, 2019, 64, 205011.	1.6	32
249	Dosimetry needs for MRI-linacs. Journal of Physics: Conference Series, 2019, 1305, 012010.	0.3	12
250	The transformation of radiation oncology using real-time magnetic resonance guidance: A review. European Journal of Cancer, 2019, 122, 42-52.	1.3	136
251	End-to-end test of an online adaptive treatment procedure in MR-guided radiotherapy using a phantom with anthropomorphic structures. Physics in Medicine and Biology, 2019, 64, 225003.	1.6	25
252	Polymer gel-based measurements of the isocenter accuracy in an MR-LINAC. Journal of Physics: Conference Series, 2019, 1305, 012007.	0.3	5
253	The MD Anderson experience with 3D dosimetry and an MR-linac. Journal of Physics: Conference Series, 2019, 1305, 012011.	0.3	5
254	Polymer gel dosimetry in the presence of a strong magnetic field. Journal of Physics: Conference Series, 2019, 1305, 012014.	0.3	2
255	Experimental characterization of magnetically focused electron contamination at the surface of a highâ€field inline MRIâ€linac. Medical Physics, 2019, 46, 5780-5789.	1.6	16
256	Assessing localized dosimetric effects due to unplanned gas cavities during pelvic MRâ€guided radiotherapy using Monte Carlo simulations. Medical Physics, 2019, 46, 5807-5815.	1.6	13
257	Soft-tissue prostate intrafraction motion tracking in 3D cine-MR for MR-guided radiotherapy. Physics in Medicine and Biology, 2019, 64, 235008.	1.6	26

#	Article	IF	CITATIONS
258	Dosimetric performance of the Elekta Unity MR-linac system: 2D and 3D dosimetry in anthropomorphic inhomogeneous geometry. Physics in Medicine and Biology, 2019, 64, 225009.	1.6	35
259	STAT-ART: The Promise and Practice of a Rapid Palliative Single Session of MR-Guided Online Adaptive Radiotherapy (ART). Frontiers in Oncology, 2019, 9, 1013.	1.3	18
260	Modern Radiation Therapy Planning and Delivery. Hematology/Oncology Clinics of North America, 2019, 33, 947-962.	0.9	15
261	MRI quality control for lowâ€field MR″GRT systems: Lessons learned. Journal of Applied Clinical Medical Physics, 2019, 20, 53-66.	0.8	26
262	"Après Mois, Le Délugeâ€: Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era. Frontiers in Oncology, 2019, 9, 983.	1.3	14
263	Characteristics of the Exradin W1 scintillator in the magnetic field. Journal of Applied Clinical Medical Physics, 2019, 20, 149-156.	0.8	8
264	MRIgRT dynamic lung motion thorax anthropomorphic QA phantom: Design, development, reproducibility, and feasibility study. Medical Physics, 2019, 46, 5124-5133.	1.6	14
265	Evaluation of a simplified optimizer for MRâ€guided adaptive RT in case of pancreatic cancer. Journal of Applied Clinical Medical Physics, 2019, 20, 20-30.	0.8	8
266	A conceptual study on real-time adaptive radiation therapy optimization through ultra-fast beamlet control. Biomedical Physics and Engineering Express, 2019, 5, 055016.	0.6	2
267	IPEM Topical Report: A 2018 IPEM survey of MRI use for external beam radiotherapy treatment planning in the UK. Physics in Medicine and Biology, 2019, 64, 175021.	1.6	21
268	Do all the linear accelerators comply with the ICRU 91's constraints for stereotactic body radiation therapy treatments?. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2019, 23, 625-629.	0.6	2
269	A fast volumetric 4D-MRI with sub-second frame rate for abdominal motion monitoring and characterization in MRI-guided radiotherapy. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1303-1314.	1.1	16
270	A Method to Determine the Coincidence of MRI-Guided Linac Radiation and Magnetic Isocenters. Technology in Cancer Research and Treatment, 2019, 18, 153303381987798.	0.8	14
271	MRI commissioning of 1.5T MR-linac systems – a multi-institutional study. Radiotherapy and Oncology, 2019, 132, 114-120.	0.3	111
272	Monte Carlo modeling of a 60Co MRI-guided radiotherapy system on Geant4 and experimental verification of dose calculation under a magnetic field of 0.35 T. Journal of Radiation Research, 2019, 60, 116-123.	0.8	8
273	Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiotherapy and Oncology, 2019, 133, 156-162.	0.3	80
274	Monte Carlo simulations of outâ€ofâ€field skin dose due to spiralling contaminant electrons in a perpendicular magnetic field. Medical Physics, 2019, 46, 1467-1477.	1.6	14
275	Multiresolution radial MRI to reduce IDLE time in pre-beam imaging on an MR-Linac (MR-RIDDLE). Physics in Medicine and Biology, 2019, 64, 055011.	1.6	13

#	Article	IF	CITATIONS
276	Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy. British Journal of Radiology, 2019, 92, 20180948.	1.0	48
277	First Reported Case of Pediatric Radiation Treatment With Magnetic Resonance Image Guided Radiation Therapy. Advances in Radiation Oncology, 2019, 4, 233-236.	0.6	15
278	A dual-purpose MRI acquisition to combine 4D-MRI and dynamic contrast-enhanced imaging for abdominal radiotherapy planning. Physics in Medicine and Biology, 2019, 64, 06NT02.	1.6	7
279	Accessible magnetic resonance imaging: A review. Journal of Magnetic Resonance Imaging, 2019, 49, e65-e77.	1.9	115
280	A finite element method for the determination of the relative response of ionization chambers in MR-linacs: simulation and experimental validation up to 1.5 T. Physics in Medicine and Biology, 2019, 64, 135011.	1.6	30
281	MRI for Radiotherapy. , 2019, , .		4
282	Real-time intrafraction motion monitoring in external beam radiotherapy. Physics in Medicine and Biology, 2019, 64, 15TR01.	1.6	130
283	MRIâ€linac systems will replace conventional IGRT systems within 15Âyears. Medical Physics, 2019, 46, 3753-3756.	1.6	15
284	A feasibility study for highâ€resolution silicon array detector performance in the magnetic field of a permanent magnet system. Medical Physics, 2019, 46, 4224-4232.	1.6	1
285	MRI Linac Systems. , 2019, , 155-168.		6
286	MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiation Oncology, 2019, 14, 92.	1.2	252
287	Technical note: MLC-tracking performance on the Elekta unity MRI-linac. Physics in Medicine and Biology, 2019, 64, 15NT02.	1.6	39
288	Parallel imaging and convolutional neural network combined fast MR image reconstruction: Applications in lowâ€latency accelerated realâ€time imaging. Medical Physics, 2019, 46, 3399-3413.	1.6	25
289	Multi-object tracking in MRI-guided radiotherapy using the tracking-learning-detection framework. Radiotherapy and Oncology, 2019, 138, 25-29.	0.3	11
290	MRI <i>B</i> _O homogeneity and geometric distortion with continuous linac gantry rotation on an Elekta Unity MR-linac. Physics in Medicine and Biology, 2019, 64, 12NT01.	1.6	27
290 291	MRI <i>B</i> ₀ homogeneity and geometric distortion with continuous linac gantry	1.6 0.8	27 18
	 MRI <i>B</i> _O homogeneity and geometric distortion with continuous linac gantry rotation on an Elekta Unity MR-linac. Physics in Medicine and Biology, 2019, 64, 12NT01. A new frontier of image guidance: Organs at risk avoidance with <scp>MRI</scp>â€guided respiratoryâ€gated intensity modulated radiotherapy: Technical note and report of a case. Journal of 		

#	Article	IF	CITATIONS
294	Electron streams in air during magnetic-resonance image-guided radiation therapy. PLoS ONE, 2019, 14, e0216965.	1.1	3
295	Evaluation of plan adaptation strategies for stereotactic radiotherapy of lymph node oligometastases using online magnetic resonance image guidance. Physics and Imaging in Radiation Oncology, 2019, 9, 58-64.	1.2	28
296	Practical Clinical Workflows for Online and Offline Adaptive Radiation Therapy. Seminars in Radiation Oncology, 2019, 29, 219-227.	1.0	95
297	See, Think, and Act: Real-Time Adaptive Radiotherapy. Seminars in Radiation Oncology, 2019, 29, 228-235.	1.0	37
298	Impact of inline magnetic fields on dose distributions for VMAT in lung tumor. Physica Medica, 2019, 59, 100-106.	0.4	4
299	Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiation Oncology, 2019, 14, 71.	1.2	100
300	A six-degree-of-freedom robotic motion system for quality assurance of real-time image-guided radiotherapy. Physics in Medicine and Biology, 2019, 64, 105021.	1.6	9
301	Simultaneous acquisition of orthogonal plane cine imaging and isotropic 4D-MRI using super-resolution. Radiotherapy and Oncology, 2019, 136, 121-129.	0.3	15
302	Evaluation of plan quality in radiotherapy planning with an MR-linac. Physics and Imaging in Radiation Oncology, 2019, 10, 19-24.	1.2	21
303	Comparing the effectiveness and efficiency of various gating approaches for PBS proton therapy of pancreatic cancer using 4D-MRI datasets. Physics in Medicine and Biology, 2019, 64, 085011.	1.6	10
304	Synthetic 4D-CT of the thorax for treatment plan adaptation on MR-guided radiotherapy systems. Physics in Medicine and Biology, 2019, 64, 115005.	1.6	10
305	Monte Carlo simulations of out-of-field surface doses due to the electron streaming effect in orthogonal magnetic fields. Physics in Medicine and Biology, 2019, 64, 115029.	1.6	27
307	<scp>MR</scp> â€based treatment planning in radiation therapy using a deep learning approach. Journal of Applied Clinical Medical Physics, 2019, 20, 105-114.	0.8	47
308	4DMRI-based investigation on the interplay effect for pencil beam scanning proton therapy of pancreatic cancer patients. Radiation Oncology, 2019, 14, 30.	1.2	21
310	Direct measurement of ion chamber correction factors, k _Q and k _B , in a 7 MV MRI-linac. Physics in Medicine and Biology, 2019, 64, 105025.	1.6	29
311	Characterization of a high spatiotemporal resolution monolithic silicon strip detector for MRI-linac dosimetry. Journal of Physics: Conference Series, 2019, 1154, 012006.	0.3	0
312	A retrospective 4Dâ€ <scp>MRI</scp> based on 2D diaphragm profiles for lung cancer patients. Journal of Medical Imaging and Radiation Oncology, 2019, 63, 360-369.	0.9	10
313	Realizing the potential of magnetic resonance image guided radiotherapy in gynaecological and rectal cancer. British Journal of Radiology, 2019, 92, 20180670.	1.0	15

#	Article	IF	CITATIONS
314	Assessment of 3D motion modeling performance for dose accumulation mapping on the MR-linac by simultaneous multislice MRI. Physics in Medicine and Biology, 2019, 64, 095004.	1.6	9
315	Fiducial marker based intra-fraction motion assessment on cine-MR for MR-linac treatment of prostate cancer. Physics in Medicine and Biology, 2019, 64, 07NT02.	1.6	41
316	Automatic diaphragm segmentation for real-time lung tumor tracking on cone-beam CT projections: a convolutional neural network approach. Biomedical Physics and Engineering Express, 2019, 5, 035005.	0.6	8
317	A pilot study of highly accelerated 3D MRI in the head and neck position verification for MR-guided radiotherapy. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1255-1269.	1.1	5
318	Commissioning and performance evaluation of RadCalc for the Elekta unity MRIâ€linac. Journal of Applied Clinical Medical Physics, 2019, 20, 54-62.	0.8	30
319	Geant4 Monte Carlo investigation of the magnetic field effect on dose distributions in low-density regions in magnetic resonance image-guided radiation therapy. Physica Medica, 2019, 68, 17-34.	0.4	3
320	The Influence of Magnetic Fields (0.05 T ≤8 ≤7 T) on the Response of Personal Thermoluminescent Dosimeters to Ionizing Radiation. Health Physics, 2019, 117, 345-352.	0.3	1
321	The Dosimetric Impact of Interfractional Organ-at-Risk Movement During Liver Stereotactic Body Radiation Therapy. Practical Radiation Oncology, 2019, 9, e549-e558.	1.1	6
322	Multislice motion modeling for <scp>MRI</scp> â€guided radiotherapy gating. Medical Physics, 2019, 46, 465-474.	1.6	13
323	Proton beam electron return effect: Monte Carlo simulations and experimental verification. Physics in Medicine and Biology, 2019, 64, 035012.	1.6	14
324	Potential benefit of MRI-guided IMRT for flank irradiation in pediatric patients with Wilms' tumor. Acta Oncológica, 2019, 58, 243-250.	0.8	15
325	Commissioning of a water calorimeter as a primary standard for absorbed dose to water in magnetic fields. Physics in Medicine and Biology, 2019, 64, 035013.	1.6	15
326	The Role of Standard and Advanced Imaging for the Management of Brain Malignancies From a Radiation Oncology Standpoint. Neurosurgery, 2019, 85, 165-179.	0.6	6
327	Stereotactic MR-Guided Online Adaptive Radiation Therapy (SMART) for Ultracentral Thorax Malignancies: Results of a Phase 1 Trial. Advances in Radiation Oncology, 2019, 4, 201-209.	0.6	133
328	Calculation of absorbed dose in radiotherapy by solution of the linear Boltzmann transport equations. Physics in Medicine and Biology, 2019, 64, 02TR01.	1.6	17
329	A ROI-based global motion model established on 4DCT and 2D cine-MRI data for MRI-guidance in radiation therapy. Physics in Medicine and Biology, 2019, 64, 045002.	1.6	28
330	Biological effects of static magnetic field exposure in the context of MR-guided radiotherapy. British Journal of Radiology, 2019, 92, 20180484.	1.0	16
331	Adopting Advanced Radiotherapy Techniques in the Treatment of Paediatric Extracranial Malignancies: Challenges and Future Directions. Clinical Oncology, 2019, 31, 50-57.	0.6	2

#	Article	IF	CITATIONS
332	Dosimetric Benefits and Practical Pitfalls of Daily Online Adaptive MRI-Guided Stereotactic Radiation Therapy for Pancreatic Cancer. Practical Radiation Oncology, 2019, 9, e46-e54.	1.1	63
333	Commissioning of a 4D MRI phantom for use in MRâ€guided radiotherapy. Medical Physics, 2019, 46, 25-33.	1.6	3
334	Role and future of MRI in radiation oncology. British Journal of Radiology, 2019, 92, 20180505.	1.0	52
335	Delta radiomics for rectal cancer response prediction with hybrid 0.35ÂT magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiologia Medica, 2019, 124, 145-153.	4.7	112
336	Clinical Outcomes Using Magnetic Resonance–Guided Stereotactic Body Radiation Therapy in Patients With Locally Advanced Cholangiocarcinoma. Advances in Radiation Oncology, 2020, 5, 189-195.	0.6	31
337	Magnetic resonanceâ€guided radiation therapy: A review. Journal of Medical Imaging and Radiation Oncology, 2020, 64, 163-177.	0.9	104
338	Lewis Acid and Base Catalysis of YNbO 4 Toward Aqueousâ€Phase Conversion of Hexose and Triose Sugars to Lactic Acid in Water. ChemCatChem, 2020, 12, 350-359.	1.8	18
339	On the accuracy of bulk synthetic CT for MR-guided online adaptive radiotherapy. Radiologia Medica, 2020, 125, 157-164.	4.7	24
340	First application of a highâ€resolution silicon detector for proton beam Bragg peak detection in a 0.95 T magnetic field. Medical Physics, 2020, 47, 181-189.	1.6	4
341	MRI-guided stereotactic ablative radiation therapy of spinal bone metastases: a preliminary experience. British Journal of Radiology, 2020, 93, 20190655.	1.0	9
342	Stereotactic MR-guided adaptive radiation therapy for peripheral lung tumors. Radiotherapy and Oncology, 2020, 144, 46-52.	0.3	64
343	Deep DoseNet: a deep neural network for accurate dosimetric transformation between different spatial resolutions and/or different dose calculation algorithms for precision radiation therapy. Physics in Medicine and Biology, 2020, 65, 035010.	1.6	30
344	Advantages of Radiation Therapy Simulation with 0.35 Tesla Magnetic Resonance Imaging for Stereotactic Ablation of Spinal Metastases. Practical Radiation Oncology, 2020, 10, 339-344.	1.1	8
345	MRIgRT head and neck anthropomorphic QA phantom: Design, development, reproducibility, and feasibility study. Medical Physics, 2020, 47, 604-613.	1.6	13
346	Generalized simultaneous multiâ€orientation 2D imaging. Magnetic Resonance in Medicine, 2020, 84, 847-856.	1.9	1
347	Dosimetric impact of soft-tissue based intrafraction motion from 3D cine-MR in prostate SBRT. Physics in Medicine and Biology, 2020, 65, 025012.	1.6	13
348	Characterization of positional accuracy of a doubleâ€focused and doubleâ€stack multileaf collimator on an MRâ€guided radiotherapy (MRgRT) Linac using an ICâ€profiler array. Medical Physics, 2020, 47, 317-330.	1.6	16
349	Lateral head flexion as a noncoplanar solution for ring gantry stereotactic radiosurgery. Medical Physics, 2020, 47, 1181-1188.	1.6	1

ARTICLE IF CITATIONS A daily endâ€toâ€end quality assurance workflow for MRâ€guided online adaptive radiation therapy on 350 0.8 22 MRâ€Linac. Journal of Applied Clinical Medical Physics, 2020, 21, 205-212. Absolute dosimetry of a 1.5 T MRâ€guided acceleratorâ€based highâ€energy photon beam in water and solid 1.6 9 phantoms using Aerrow. Medical Physics, 2020, 47, 1291-1304. An image regression motion prediction technique for MRIâ€guided radiotherapy evaluated in singleâ€plane 352 1.6 10 cine imaging. Medical Physics, 2020, 47, 404-413. Optical imaging method to quantify spatial dose variation due to the electron return effect in an MRâ€linac. Medical Physics, 2020, 47, 1258-1267. The noise navigator: a surrogate for respiratory-correlated 4D-MRI for motion characterization in 354 7 1.6 radiotherapy. Physics in Medicine and Biology, 2020, 65, 01NT02. Comparison of dose distributions between transverse magnetic fields of 0.35ÅT and 1.5ÅT for 0.4 radiotherapy in lung tumor using Monte Carlo calculation. Medical Dosimetry, 2020, 45, 179-185. Water calorimetry in MRâ€linac: Direct measurement of absorbed dose and determination of chamber. 356 1.6 9 Medical Physics, 2020, 47, 6458-6469. Impact of Magnetic Field on Dose Distribution in MR-Guided Radiotherapy of Head and Neck Cancer. 1.3 10 Frontiers in Oncology, 2020, 10, 1739. ADC measurements on the Unity MR-linac – A recommendation on behalf of the Elekta Unity MR-linac 358 0.3 60 consortium. Radiotherapy and Óncology, 2020, 153, 106-113. Exploring MR regression patterns in rectal cancer during neoadjuvant radiochemotherapy with daily 1.2 T2- and diffusion-weighted MRI. Radiation Oncology, 2020, 15, 171. The gimbaled-head radiotherapy system: Rise and downfall of a dedicated system for dynamic tumor tracking with real-time monitoring and dynamic WaveArc. Radiotherapy and Oncology, 2020, 153, 360 0.3 11 311-318. Impact of varying air cavity on planning dosimetry for rectum patients treated on a 1.5ÂT hybrid MRâ€linac system. Journal of Applied Clinical Medical Physics, 2020, 21, 144-152. 0.8 Impact of quantization algorithm and number of gray level intensities on variability and repeatability of low field strength magnetic resonance image-based radiomics texture features. Physica Medica, 362 0.4 8 2020, 80, 209-220. Dosimetric feasibility of brain stereotactic radiosurgery with a 0.35 T MRIâ \in guided linac and comparison 1.6 vs a Câ€armâ€mounted linac. Medical Physics, 2020, 47, 5455-5466. Feasibility of using a commercial collapsed cone dose engine for 1.5T MR-LINAC online independent 364 0.4 16 dose verification. Physica Medica, 2020, 80, 288-296. Dosimetric evaluation of MR-derived synthetic-CTs for MR-only proton treatment planning. Medical Dosimetry, 2020, 45, 264-270. Advances in Radiobiology of Stereotactic Ablative Radiotherapy. Frontiers in Oncology, 2020, 10, 1165. 366 1.334 Technical Note: Synthesizing of lung tumors in computed tomography images. Medical Physics, 2020, 1.6 47, 5070-5076.

#	Article	IF	CITATIONS
368	On-line adaptive MR guided radiotherapy for locally advanced pancreatic cancer: Clinical and dosimetric considerations. Technical Innovations and Patient Support in Radiation Oncology, 2020, 15, 15-21.	0.6	48
369	Assessment of online adaptive MR-guided stereotactic body radiotherapy of liver cancers. Physica Medica, 2020, 77, 54-63.	0.4	21
370	Optimizing MR-Guided Radiotherapy for Breast Cancer Patients. Frontiers in Oncology, 2020, 10, 1107.	1.3	36
371	Artificial intelligence in radiotherapy: a technological review. Frontiers of Medicine, 2020, 14, 431-449.	1.5	17
372	Al2O3:C and Al2O3:C,Mg optically stimulated luminescence 2D dosimetry applied to magnetic resonance guided radiotherapy. Radiation Measurements, 2020, 138, 106439.	0.7	15
373	Towards MR-guided electron therapy: Measurement and simulation of clinical electron beams in magnetic fields. Physica Medica, 2020, 78, 83-92.	0.4	1
374	Current Status of Anatomical Magnetic Resonance Imaging in Brachytherapy and External Beam Radiotherapy Planning and Delivery. Clinical Oncology, 2020, 32, 817-827.	0.6	5
375	Impact of lung density on isolated lung tumor dose in VMAT using inline MR-Linac. Physica Medica, 2020, 80, 65-74.	0.4	0
376	Imaging and radiation isocentre determination for inline MR-guided radiotherapy systems – proof of principle using MR-phantom with embedded monolithic silicon detector. Journal of Physics: Conference Series, 2020, 1662, 012008.	0.3	0
377	Artificial intelligence in radiation oncology. Nature Reviews Clinical Oncology, 2020, 17, 771-781.	12.5	167
378	Characterization of an inorganic scintillator for smallâ€field dosimetry in MRâ€guided radiotherapy. Journal of Applied Clinical Medical Physics, 2020, 21, 244-251.	0.8	10
379	Evaluation of radixact motion synchrony for 3D respiratory motion: Modeling accuracy and dosimetric fidelity. Journal of Applied Clinical Medical Physics, 2020, 21, 96-106.	0.8	34
380	Toxicity reduction required for MRI-guided radiotherapy to be cost-effective in the treatment of localized prostate cancer. British Journal of Radiology, 2020, 93, 20200028.	1.0	16
381	Treatment plan quality during online adaptive re-planning. Radiation Oncology, 2020, 15, 203.	1.2	36
382	MR-guided stereotactic body radiation therapy for intracardiac and pericardial metastases. Clinical and Translational Radiation Oncology, 2020, 25, 102-106.	0.9	12
383	Tumor-site specific geometric distortions in high field integrated magnetic resonance linear accelerator radiotherapy. Physics and Imaging in Radiation Oncology, 2020, 15, 100-104.	1.2	10
384	Dosimetric and geometric end-to-end accuracy of a magnetic resonance guided linear accelerator. Physics and Imaging in Radiation Oncology, 2020, 16, 109-112.	1.2	13
385	Imaging performance of a high-field in-line magnetic resonance imaging linear accelerator with a patient rotation system for fixed-gantry radiotherapy. Physics and Imaging in Radiation Oncology,	1.2	3

#	Article	IF	CITATIONS
386	Quantitative analysis of MRIâ€guided radiotherapy treatment process time for tumor realâ€ŧime gating efficiency. Journal of Applied Clinical Medical Physics, 2020, 21, 70-79.	0.8	16
387	Development of an extended Macro Monte Carlo method for efficient and accurate dose calculation in magnetic fields. Medical Physics, 2020, 47, 6519-6530.	1.6	3
388	International survey; current practice in On-line adaptive radiotherapy (ART) delivered using Magnetic Resonance Image (MRI) guidance. Technical Innovations and Patient Support in Radiation Oncology, 2020, 16, 1-9.	0.6	14
389	Head and neck cancer patient images for determining autoâ€segmentation accuracy in T2â€weighted magnetic resonance imaging through expert manual segmentations. Medical Physics, 2020, 47, 2317-2322.	1.6	29
390	Gel dosimetry provides the optimal endâ€ŧoâ€end quality assurance dosimetry for MRâ€ŀinacs. Medical Physics, 2020, 47, 3259-3262.	1.6	12
391	Medical physics challenges in clinical MR-guided radiotherapy. Radiation Oncology, 2020, 15, 93.	1.2	101
392	Commissioning of a 1.5T Elekta Unity MRâ€linac: A single institution experience. Journal of Applied Clinical Medical Physics, 2020, 21, 160-172.	0.8	61
393	3D isotropic resolution diffusionâ€prepared magnitudeâ€stabilized bSSFP imaging with high geometric fidelity at 1.5 Tesla. Medical Physics, 2020, 47, 3511-3519.	1.6	3
394	Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy. Physics in Medicine and Biology, 2020, 65, 155015.	1.6	37
395	A motion prediction confidence estimation framework for predictionâ€based radiotherapy gating. Medical Physics, 2020, 47, 3297-3304.	1.6	3
396	A modular phantom and software to characterize 3D geometric distortion in MRI. Physics in Medicine and Biology, 2020, 65, 195008.	1.6	8
397	Reliability of ITV approach to varying treatment fraction time: a retrospective analysis based on 2D cine MR images. Radiation Oncology, 2020, 15, 152.	1.2	13
398	Image guidance in radiation therapy for better cure of cancer. Molecular Oncology, 2020, 14, 1470-1491.	2.1	63
399	Influence of 0.35ÂT magnetic field on the response of EBT3 and EBTâ€XD radiochromic films. Medical Physics, 2020, 47, 4543-4552.	1.6	7
400	Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy. Quantitative Imaging in Medicine and Surgery, 2020, 10, 1223-1236.	1.1	63
401	A review of the role of MRI in diagnosis and treatment of early stage lung cancer. Clinical and Translational Radiation Oncology, 2020, 24, 16-22.	0.9	37
402	Investigating conditional GAN performance with different generator architectures, an ensemble model, and different MR scanners for MR-sCT conversion. Physics in Medicine and Biology, 2020, 65, 105004.	1.6	20
403	Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling. Physics in Medicine and Biology, 2020, 65, 08NT03.	1.6	3

#	Article	IF	CITATIONS
404	Experimental verification the electron return effect around spherical air cavities for the MRâ€Linac using Monte Carlo calculation. Medical Physics, 2020, 47, 2506-2515.	1.6	14
405	Characterizing MR Imaging isocenter variation in MRgRT. Biomedical Physics and Engineering Express, 2020, 6, 035009.	0.6	10
406	Dosimetric evaluation of synthetic CT generated with GANs for MRIâ€only proton therapy treatment planning of brain tumors. Journal of Applied Clinical Medical Physics, 2020, 21, 76-86.	0.8	35
407	Dosimetric Optimization and Commissioning of a High Field Inline MRI-Linac. Frontiers in Oncology, 2020, 10, 136.	1.3	11
408	Feasibility of markerless fluoroscopic real-time tumor detection for adaptive radiotherapy: development and end-to-end testing. Physics in Medicine and Biology, 2020, 65, 115002.	1.6	5
409	Prostate intrafraction motion during the preparation and delivery of MR-guided radiotherapy sessions on a 1.5T MR-Linac. Radiotherapy and Oncology, 2020, 151, 88-94.	0.3	75
410	Stereotactic body radiotherapy (SBRT) for adrenal metastases of oligometastatic or oligoprogressive tumor patients. Radiation Oncology, 2020, 15, 30.	1.2	36
411	Accuracy of automatic deformable structure propagation for high-field MRI guided prostate radiotherapy. Radiation Oncology, 2020, 15, 32.	1.2	21
412	Feasibility of energy adaptive angular meshing for perpendicular and parallel magnetic fields in a grid based Boltzmann solver. Biomedical Physics and Engineering Express, 2020, 6, 025006.	0.6	2
413	MRSIGMA: Magnetic Resonance SIGnature MAtching for realâ€ŧime volumetric imaging. Magnetic Resonance in Medicine, 2020, 84, 1280-1292.	1.9	27
414	Reducing the Toxicity of Radiotherapy for Pancreatic Cancer With Magnetic Resonance-guided Radiotherapy. Toxicological Sciences, 2020, 175, 19-23.	1.4	14
415	Evaluation of intrafraction prostate motion tracking using the Clarity Autoscan system for safety margin validation. Zeitschrift Fur Medizinische Physik, 2020, 30, 135-141.	0.6	8
416	Fast contour propagation for MRâ€guided prostate radiotherapy using convolutional neural networks. Medical Physics, 2020, 47, 1238-1248.	1.6	34
417	A novel anthropomorphic multimodality phantom for MRIâ€based radiotherapy quality assurance testing. Medical Physics, 2020, 47, 1443-1451.	1.6	18
418	MOSFET dosimeter characterization in MRâ€guided radiation therapy (MRgRT) Linac. Journal of Applied Clinical Medical Physics, 2020, 21, 127-135.	0.8	7
419	MRI-Based Upper Abdominal Organs-at-Risk Atlas for Radiation Oncology. International Journal of Radiation Oncology Biology Physics, 2020, 106, 743-753.	0.4	21
420	Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging. Radiotherapy and Oncology, 2020, 145, 88-94.	0.3	52
421	3-Dimensional target coverage assessment for MRI guided esophageal cancer radiotherapy. Radiotherapy and Oncology, 2020, 147, 1-7.	0.3	11

#	Article	IF	CITATIONS
422	The noise navigator for MRI-guided radiotherapy: an independent method to detect physiological motion. Physics in Medicine and Biology, 2020, 65, 12NT01.	1.6	1
423	An end-to-end test for MR-guided online adaptive radiotherapy. Physics in Medicine and Biology, 2020, 65, 125012.	1.6	18
424	Magnetic resonance–guided radiotherapy feasibility in elderly cancer patients: proposal of the MASTER scoring system. Tumori, 2021, 107, 26-31.	0.6	9
425	Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a Code of Practice. Physics in Medicine and Biology, 2021, 66, 05TR02.	1.6	33
426	MRâ€guided simulation is superior than FDG/PETâ€guided simulation for local control in nasopharyngeal cancer patients treated with intensityâ€modulated radiotherapy. Asia-Pacific Journal of Clinical Oncology, 2021, 17, 43-51.	0.7	3
427	Quantitating Interfraction Target Dynamics During Concurrent Chemoradiation for Glioblastoma: A Prospective Serial Imaging Study. International Journal of Radiation Oncology Biology Physics, 2021, 109, 736-746.	0.4	36
428	Time Analysis of Online Adaptive Magnetic Resonance–Guided Radiation Therapy Workflow According to Anatomical Sites. Practical Radiation Oncology, 2021, 11, e11-e21.	1.1	52
430	Crossâ€modality deep learning: Contouring of MRI data from annotated CT data only. Medical Physics, 2021, 48, 1673-1684.	1.6	30
431	Dosimetric feasibility of hypofractionation for SBRT treatment of lymph node oligometastases on the 1.5T MR-linac. Radiotherapy and Oncology, 2021, 154, 243-248.	0.3	9
432	Technical Note: Cumulative dose modeling for organ motion management in MRIâ€guided radiation therapy. Medical Physics, 2021, 48, 597-604.	1.6	3
433	Technical Note: Design and commissioning of a water phantom for proton dosimetry in magnetic fields. Medical Physics, 2021, 48, 505-512.	1.6	3
434	MRI-guided Radiation Therapy: An Emerging Paradigm in Adaptive Radiation Oncology. Radiology, 2021, 298, 248-260.	3.6	83
435	Comparison and evaluation of distortion correction techniques on an MRâ€guided radiotherapy system. Medical Physics, 2021, 48, 691-702.	1.6	3
436	Stability of conventional and machine learningâ€based tumor autoâ€segmentation techniques using undersampled dynamic radial bSSFP acquisitions on a 0.35 T hybrid MRâ€linac system. Medical Physics, 2021, 48, 587-596.	1.6	14
437	Nonrigid 3D motion estimation at high temporal resolution from prospectively undersampled kâ€space data using lowâ€rank MRâ€MOTUS. Magnetic Resonance in Medicine, 2021, 85, 2309-2326.	1.9	18
438	Dosimetric evaluation of image-guided radiation therapy for prostate cancer. Medical Dosimetry, 2021, 46, 117-126.	0.4	3
439	Reduction of cardiac dose using respiratory-gated MR-linac plans for gastro-esophageal junction cancer. Medical Dosimetry, 2021, 46, 152-156.	0.4	10
441	Unlocking a closed system: dosimetric commissioning of a ring gantry linear accelerator in a multivendor environment. Journal of Applied Clinical Medical Physics, 2021, 22, 21-34.	0.8	5

#	Article	IF	CITATIONS
442	A narrative review of MRI acquisition for MR-guided-radiotherapy in prostate cancer. Quantitative Imaging in Medicine and Surgery, 2022, 12, 1585-1607.	1.1	17
443	Real-Time Non-Rigid 3D Respiratory Motion Estimation for MR-Guided Radiotherapy Using MR-MOTUS. IEEE Transactions on Medical Imaging, 2022, 41, 332-346.	5.4	15
444	Acute Toxicity in Hypofractionated/Stereotactic Prostate Radiotherapy of Elderly Patients: Use of the Image-guided Radio Therapy (IGRT) Clarity System. In Vivo, 2021, 35, 1849-1856.	0.6	8
445	Proof-of-concept delivery of intensity modulated arc therapy on the Elekta Unity 1.5 T MR-linac. Physics in Medicine and Biology, 2021, 66, 04LT01.	1.6	20
446	Longitudinal acquisition repeatability of MRI radiomics features: An ACR MRI phantom study on two MRI scanners using a 3D T1W TSE sequence. Medical Physics, 2021, 48, 1239-1249.	1.6	12
447	End-to-end validation of the geometric dose delivery performance of MR linac adaptive radiotherapy. Physics in Medicine and Biology, 2021, 66, 045034.	1.6	12
448	Dosimetric evaluation of synthetic CT image generated using a neural network for MRâ€only brain radiotherapy. Journal of Applied Clinical Medical Physics, 2021, 22, 55-62.	0.8	24
449	Porcine lung phantom-based validation of estimated 4D-MRI using orthogonal cine imaging for low-field MR-Linacs. Physics in Medicine and Biology, 2021, 66, 055006.	1.6	15
450	Roadmap: proton therapy physics and biology. Physics in Medicine and Biology, 2021, 66, 05RM01.	1.6	67
451	Magnetic modeling of actively shielded rotating MRI magnets in the presence of environmental steel. Physics in Medicine and Biology, 2021, 66, 045004.	1.6	1
452	In-line MRI-LINAC depth dose measurements using an in-house plastic scintillation dosimeter. Biomedical Physics and Engineering Express, 2021, 7, 025012.	0.6	1
453	Accuracy of automatic structure propagation for daily magnetic resonance image-guided head and neck radiotherapy. Acta Oncológica, 2021, 60, 589-597.	0.8	13
454	DeepDose: a robust deep learning-based dose engine for abdominal tumours in a 1.5 T MRI radiotherapy system. Physics in Medicine and Biology, 2021, 66, 065017.	1.6	17
455	Quantitative investigation of dose accumulation errors from intra-fraction motion in MRgRT for prostate cancer. Physics in Medicine and Biology, 2021, 66, 065002.	1.6	7
456	MR-Guided Radiotherapy for Head and Neck Cancer: Current Developments, Perspectives, and Challenges. Frontiers in Oncology, 2021, 11, 616156.	1.3	37
457	Technical Note: Validation of an automatic ACR phantom quality assurance tool for an MRâ€guided radiotherapy system. Medical Physics, 2021, 48, 1540-1545.	1.6	3
458	Gastrointestinal 4D MRI with respiratory motion correction. Medical Physics, 2021, 48, 2521-2527.	1.6	16
459	Head and neck radiotherapy on the MR linac: aÂmulticenter planning challenge amongst MRIdian platform users. Strahlentherapie Und Onkologie, 2021, 197, 1093-1103.	1.0	17

		CITATION REPO	RT	
#	Article	IF	-	Citations
460	MR-Guided Radiotherapy for Liver Malignancies. Frontiers in Oncology, 2021, 11, 616027.	1.	.3	43
461	Machine QA for the Elekta Unity system: A Report from the Elekta MRâ€linac consortium. Mec Physics, 2021, 48, e67-e85.	lical 1.	.6	52
462	Delivery of online adaptive magnetic resonance guided radiotherapy based on isodose bounda Physics and Imaging in Radiation Oncology, 2021, 18, 78-81.	ries. 1.	.2	5
463	Dosimetric accuracy of dual isocenter irradiation in low magnetic field resonance guided radiotherapy system for extended abdominal tumours. Physica Medica, 2021, 84, 149-158.	0	.4	3
464	MR-Guided Hypofractionated Radiotherapy: Current Emerging Data and Promising Perspective Localized Prostate Cancer. Cancers, 2021, 13, 1791.	s for 1.	.7	21
465	Effects of B ₀ eddy currents on imaging isocenter shifts in 0.35â€T MRIâ€guided i (MRâ€ŀGRT) system. Medical Physics, 2021, 48, 2929-2938.	radiotherapy 1.	.6	8
466	In Silico Single-Fraction Stereotactic Ablative Radiation Therapy for the Treatment of Thoracic Abdominal Oligometastatic Disease With Online Adaptive Magnetic Resonance Guidance. Adv Radiation Oncology, 2021, 6, 100652.		.6	3
467	VMAT-like plans for magnetic resonance guided radiotherapy: Addressing unmet needs. Physic 2021, 85, 72-78.	a Medica, o	.4	9
468	Developments in radiation techniques for thoracic malignancies. European Respiratory Review 30, 200224.	, 2021, 3,	.0	6
469	Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy: The Next Step in the Tr of Renal Cell Carcinoma. Frontiers in Oncology, 2021, 11, 634830.	eatment 1.	.3	10
470	MRI-Guided Radiation Therapy. Advances in Oncology, 2021, 1, 29-39.	0	.1	1
471	Magnetic Resonance Guided Radiation Therapy for Pancreatic Adenocarcinoma, Advantages, Challenges, Current Approaches, and Future Directions. Frontiers in Oncology, 2021, 11, 6281	.55. 1.	.3	27
472	Dosimetric Quality of Online Adapted Pancreatic Cancer Treatment Plans on an MRI-Guided Ra Therapy System. Advances in Radiation Oncology, 2021, 6, 100682.	diation 0	.6	3
473	Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives. Physica Medica, 2021, 85, 175-191.	0	.4	60
474	A Comparison of the Distortion in the Same Field MRI and MR-Linac System With a 3D Printed Frontiers in Oncology, 2021, 11, 579451.	Phantom. 1.	.3	2
475	Calculations of magnetic field correction factors for ionization chambers in a transverse magn field using Monte Carlo code TOPAS. Radiation Physics and Chemistry, 2021, 183, 109405.	etic 1.	.4	ο
476	Clinical utility of Gafchromic film in an MRI-guided linear accelerator. Radiation Oncology, 202 117.	l, 16, 1.	.2	8
477	Monte Carlo study of dosimetric impact of gadolinium contrast medium in transverse field MR system. Physica Medica, 2021, 86, 19-30.	-Linac O	.4	0

#	Article	IF	CITATIONS
478	Quantifications of Intensity-Modulated Radiation Therapy Plan Complexities in Magnetic Resonance Image Guided Radiotherapy Systems. Journal of Radiation Protection and Research, 2021, 46, 48-57.	0.3	0
479	Semi-Supervised Deep Learning-Based Image Registration Method with Volume Penalty for Real-Time Breast Tumor Bed Localization. Sensors, 2021, 21, 4085.	2.1	16
480	ESTRO-ACROP recommendations on the clinical implementation of hybrid MR-linac systems in radiation oncology. Radiotherapy and Oncology, 2021, 159, 146-154.	0.3	37
481	Variations in Demand across England for the Magnetic Resonance-Linac Technology, Simulated Utilising Local-level Demographic and Cancer Data in the Malthus Project. Clinical Oncology, 2021, 33, e285-e294.	0.6	5
482	The Role of MRI-Guided Radiation Therapy for Palliation of Mobile Abdominal Cancers: A Report of Two Cases. Advances in Radiation Oncology, 2021, 6, 100662.	0.6	1
483	Low-Field Magnetic Resonance Imaging. Investigative Radiology, 2021, 56, 669-679.	3.5	48
484	Magnetic Resonance–Guided Reirradiation for Local Recurrence Within the Prostate or in the Prostate Bed: Preliminary Results of a Prospective Registry Study. Advances in Radiation Oncology, 2021, 6, 100748.	0.6	8
485	Clinical experience and cost evaluation of magnetic resonance imaging -only workflow in radiation therapy planning of prostate cancer. Physics and Imaging in Radiation Oncology, 2021, 19, 66-71.	1.2	7
486	Evolution of the gross tumour volume extent during radiotherapy for glioblastomas. Radiotherapy and Oncology, 2021, 160, 40-46.	0.3	12
487	Traceable reference dosimetry in MRI guided radiotherapy using alanine: calibration and magnetic field correction factors of ionisation chambers. Physics in Medicine and Biology, 2021, 66, 165006.	1.6	8
488	Automatic contour segmentation of cervical cancer using artificial intelligence. Journal of Radiation Research, 2021, 62, 934-944.	0.8	10
489	Extension and validation of a GPUâ€Monte Carlo dose engine gDPM for 1.5 T MRâ€LINAC online independent dose verification. Medical Physics, 2021, 48, 6174-6183.	1.6	12
490	CTV-to-PTV margin assessment for esophageal cancer radiotherapy based on an accumulated dose analysis. Radiotherapy and Oncology, 2021, 161, 16-22.	0.3	5
491	The effect of the magnetic fields from three different configurations of the MRIgRT systems on the dose deposition from lateral opposing photon beams in a laryngeal geometry – A Monte Carlo study. Radiation Medicine and Protection, 2021, 2, 103-111.	0.4	3
492	Evaluating differences in respiratory motion estimates during radiotherapy: a single planning 4DMRI versus daily 4DMRI. Radiation Oncology, 2021, 16, 188.	1.2	6
493	Accuracy and precision of apparent diffusion coefficient measurements on a 1.5ÂT MR-Linac in central nervous system tumour patients. Radiotherapy and Oncology, 2021, 164, 155-162.	0.3	19
494	Chemical exchange saturation transfer MRI in central nervous system tumours on a 1.5ÂT MR-Linac. Radiotherapy and Oncology, 2021, 162, 140-149.	0.3	14
495	Realâ€ŧime 3D motion estimation from undersampled MRI using multiâ€ŧesolution neural networks. Medical Physics, 2021, 48, 6597-6613.	1.6	23

#	Article	IF	CITATIONS
496	Technical Note: Effects of rotating gantry on magnetic field and eddy currents in 0.35 T MRIâ€guided radiotherapy (MRâ€IGRT) system. Medical Physics, 2021, 48, 7228-7235.	1.6	6
497	Towards magnetic-field-modulated radiotherapy (MagMRT) with an MR-LINAC—a Monte Carlo study. Physics in Medicine and Biology, 2021, 66, 205014.	1.6	2
498	Deep learning based synthetic T generation in radiotherapy and PET: A review. Medical Physics, 2021, 48, 6537-6566.	1.6	90
499	Longitudinal assessment of quality assurance measurements in a 1.5T MRâ€linac: Part l—Linear accelerator. Journal of Applied Clinical Medical Physics, 2021, 22, 190-201.	0.8	10
500	Initial analysis of the dosimetric benefit and clinical resource cost of CBCTâ€based online adaptive radiotherapy for patients with cancers of the cervix or rectum. Journal of Applied Clinical Medical Physics, 2021, 22, 210-221.	0.8	27
501	Patient positioning and immobilization procedures for hybrid MR-Linac systems. Radiation Oncology, 2021, 16, 183.	1.2	26
502	Volumetric prediction of breathing and slow drifting motion in the abdomen using radial MRI and multi-temporal resolution modeling. Physics in Medicine and Biology, 2021, 66, 175028.	1.6	8
503	Intra-fractional per-beam adaptive workflow to mitigate the need for a rotating gantry during MRI-guided proton therapy. Physics in Medicine and Biology, 2021, 66, 18NT01.	1.6	2
504	Reliability of MRI radiomics features in MRâ€guided radiotherapy for prostate cancer: Repeatability, reproducibility, and withinâ€subject agreement. Medical Physics, 2021, 48, 6976-6986.	1.6	23
505	1.5T Magnetic Resonance-Guided Stereotactic Body Radiotherapy for Localized Prostate Cancer: Preliminary Clinical Results of Clinician- and Patient-Reported Outcomes. Cancers, 2021, 13, 4866.	1.7	11
506	An in-silico assessment of the dosimetric benefits of MR-guided radiotherapy for esophageal cancer patients. Radiotherapy and Oncology, 2021, 162, 76-84.	0.3	2
507	Abdominal synthetic CT reconstruction with intensity projection prior for MRI-only adaptive radiotherapy. Physics in Medicine and Biology, 2021, 66, 204001.	1.6	10
508	Real-time dose-guidance in radiotherapy: proof of principle. Radiotherapy and Oncology, 2021, 164, 175-182.	0.3	8
509	An international survey of imaging practices in radiotherapy. Physica Medica, 2021, 90, 53-65.	0.4	12
510	MR-Linac Radiotherapy – The Beam Angle Selection Problem. Frontiers in Oncology, 2021, 11, 717681.	1.3	7
511	Analysis of data to Advance Personalised Therapy with MR-Linac (ADAPT-MRL). Clinical and Translational Radiation Oncology, 2021, 31, 64-70.	0.9	3
512	Assessment of dose accuracy for online MR-guided radiotherapy for cervical carcinoma. Journal of Radiation Research and Applied Sciences, 2021, 14, 159-170.	0.7	3
513	Evaluation of diffusionâ€weighted MRI and geometric distortion on a 0.35T MRâ€LINAC at multiple gantry angles. Journal of Applied Clinical Medical Physics, 2021, 22, 118-125.	0.8	17

#	Article	IF	CITATIONS
514	Quantitative Magnetic Resonance Imaging for Biological Image-Guided Adaptive Radiotherapy. Frontiers in Oncology, 2020, 10, 615643.	1.3	37
515	Artificial intelligence in image-guided radiotherapy: a review of treatment target localization. Quantitative Imaging in Medicine and Surgery, 2021, 11, 4881-4894.	1.1	13
516	First prospective clinical evaluation of feasibility and patient acceptance of magnetic resonance-guided radiotherapy in Germany. Strahlentherapie Und Onkologie, 2020, 196, 691-698.	1.0	44
517	Magnetic Resonance Imaging for Target Delineation and Daily Treatment Modification. Seminars in Radiation Oncology, 2018, 28, 178-184.	1.0	34
518	On the feasibility of absolute 3D dosimetry using LiF thermoluminescence detectors and polymer gels on a 0.35T MR-LINAC. Physics in Medicine and Biology, 2020, 65, 215002.	1.6	5
519	Technical feasibility of magnetic resonance fingerprinting on a 1.5T MRI-linac. Physics in Medicine and Biology, 2020, 65, 22NT01.	1.6	18
521	Low Tesla magnetic resonance guided radiotherapy for locally advanced cervical cancer: first clinical experience. Tumori, 2020, 106, 497-505.	0.6	19
522	Miniaturized fiber dosimeter of medical ionizing radiations on a narrow optical fiber. Optics Express, 2019, 27, 35588.	1.7	11
523	Evaluation of Dosimetric Robustness of Carbon Ion Boost Therapy for Anal Carcinoma. International Journal of Particle Therapy, 2016, 3, 382-391.	0.9	1
524	Discrepancies in Dose-volume Histograms Generated from Different Treatment Planning Systems. Journal of Radiation Protection and Research, 2018, 43, 59-65.	0.3	7
525	Assessment of Dose Distributions According to Low Magnetic Field Effect for Prostate SABR. Journal of Radiation Protection and Research, 2019, 44, 26-31.	0.3	3
526	MRI-based radiotherapy planning method using rigid image registration technique combined with outer body correction scheme: a feasibility study. Oncotarget, 2017, 8, 54497-54505.	0.8	2
527	Treatment plan comparison between Tri-Co-60 magnetic-resonance image-guided radiation therapy and volumetric modulated arc therapy for prostate cancer. Oncotarget, 2017, 8, 91174-91184.	0.8	8
528	A comparative dosimetric study of cervical cancer patients with para-aortic lymph node metastasis treated with volumetric modulated arc therapy vs. 9-field intensity-modulated radiation therapy. Annals of Translational Medicine, 2019, 7, :675-:675.	0.7	13
529	Problems and Promises of Introducing the Magnetic Resonance Imaging Linear Accelerator Into Routine Care: The Case of Prostate Cancer. Frontiers in Oncology, 2020, 10, 1741.	1.3	22
530	Investigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy. Journal of Cancer Research and Therapeutics, 2018, 14, 184-195.	0.3	7
531	Patient-reported Outcome Measurements on the Tolerance of Magnetic Resonance Imaging-guided Radiation Therapy. Cureus, 2018, 10, e2236.	0.2	29
532	Use of Indirect Target Gating in Magnetic Resonance-guided Liver Stereotactic Body Radiotherapy: Case Report of an Oligometastatic Patient. Cureus, 2018, 10, e2292.	0.2	14

#	Article	IF	CITATIONS
533	Stereotactic Magnetic Resonance-guided Online Adaptive Radiotherapy for Oligometastatic Breast Cancer: A Case Report. Cureus, 2018, 10, e2368.	0.2	8
534	Analysis of Magnetic Resonance Image Signal Fluctuations Acquired During MR-Guided Radiotherapy. Cureus, 2018, 10, e2385.	0.2	1
535	Feasibility of Adaptive MR-guided Stereotactic Body Radiotherapy (SBRT) of Lung Tumors. Cureus, 2018, 10, e2423.	0.2	20
536	Evaluation of Online Plan Adaptation Strategies for the 1.5T MR-linac Based on "First-In-Man― Treatments. Cureus, 2018, 10, e2431.	0.2	25
537	Dosimetric Feasibility of Utilizing the ViewRay Magnetic Resonance Guided Linac System for Image-guided Spine Stereotactic Body Radiation Therapy. Cureus, 2019, 11, e6364.	0.2	8
538	First 500 Fractions Delivered with a Magnetic Resonance-guided Radiotherapy System: Initial Experience. Cureus, 2019, 11, e6457.	0.2	25
539	Applications of Low Energy Megavoltage X-ray Beams in Cancer Radiotherapy. British Journal of Medicine and Medical Research, 2015, 6, 661-674.	0.2	2
540	Implementing stereotactic accelerated partial breast irradiation using magnetic resonance guided radiation therapy. Radiotherapy and Oncology, 2021, 164, 275-281.	0.3	10
541	Intermittent radiotherapy as alternative treatment for recurrent high grade glioma: a modeling study based on longitudinal tumor measurements. Scientific Reports, 2021, 11, 20219.	1.6	17
542	MR SIGnature MAtching (MRSIGMA) with retrospective self-evaluation for real-time volumetric motion imaging. Physics in Medicine and Biology, 2021, 66, 215009.	1.6	5
545	A practical methodology to improve the dosimetric accuracy of MR-based radiotherapy simulation for brain tumors. Physica Medica, 2021, 91, 1-12.	0.4	2
546	Photon Monte Carlo Dose Calculation. Series in Medical Physics and Biomedical Engineering, 2015, , 243-257.	0.1	0
547	GPU-Based Unimodal Deformable Image Registration in Radiation Therapy. Series in Medical Physics and Biomedical Engineering, 2015, , 129-148.	0.1	0
549	Advances in verification and delivery techniques. Imaging in Medical Diagnosis and Therapy, 2017, , 321-336.	0.0	0
550	Adaptive anatomical preservation optimal denoising for radiation therapy daily MRI. Journal of Medical Imaging, 2017, 4, 1.	0.8	0
551	MRI-based IGRT for lung cancer. Imaging in Medical Diagnosis and Therapy, 2017, , 369-384.	0.0	0
552	Investigation of the Nuclear Structure Properties of 60Co via Phenomenological Approach. Cumhuriyet Science Journal, 0, , 98-104.	0.1	0
553	The Physics of Hypofractionation and SRS/SBRT. , 2018, , 33-59.		0

щ		IF	CITATIONS
#	ARTICLE Practical Implications of Ferromagnetic Artifacts in Low-field MRI-guided Radiotherapy. Cureus, 2018,		CITATIONS
554	10, e2359.	0.2	4
555	Motion Management. , 2019, , 107-116.		2
556	Radiation Treatment Planning in Pediatric Oncology. Pediatric Oncology, 2019, , 323-333.	0.5	0
557	Low Magnetic Field MRI Visibility of Rubber-Based Markers. Progress in Medical Physics, 2019, 30, 89.	0.5	1
558	MRI at the Time of External Beam Treatment. , 2019, , 169-188.		1
559	6 Specifieke bestralingsapparatuur. Medische Beeldvorming En Radiotherapie, 2019, , 189-251.	0.0	0
560	Imaging Instrumentation and Techniques for Precision Radiotherapy. , 2020, , 1-35.		0
561	A Novel 3-D-CAD for Breast and Lesion Segmentation of Axial Breast DCE-MRI. Journal of Testing and Evaluation, 2021, 49, 3063-3080.	0.4	0
562	Multiâ€Contrast Fourâ€dimensional Magnetic Resonance Imaging (MCâ€4Dâ€MRI): development and initial evaluation in liver tumor patients. Medical Physics, 2021, 48, 7984.	1.6	5
563	Design and construction of a customizable phantom for the characterization of the threeâ€dimensional magnetic resonance imaging geometric distortion. Journal of Applied Clinical Medical Physics, 2021, 22, 149-157.	0.8	3
564	Cascaded deep learningâ€based autoâ€segmentation for head and neck cancer patients: Organs at risk on T2â€weighted magnetic resonance imaging. Medical Physics, 2021, 48, 7757-7772.	1.6	17
565	Interobserver variability in target volume delineation for CT/MRI simulation and MRI-guided adaptive radiotherapy in rectal cancer. British Journal of Radiology, 2021, 94, 20210350.	1.0	10
567	Low Tesla MRI in-Room Gating during Radiotherapy. Medical Radiology, 2020, , 129-136.	0.0	0
568	Multichannel Film Dosimetry for Quality Assurance of Intensity Modulated Radiotherapy Treatment Plans Under 0.35 T Magnetic Field. Cureus, 2020, 12, e7334.	0.2	5
569	Development and Benchmarking of a Monte Carlo Dose Engine for Proton Radiation Therapy. Frontiers in Physics, 2021, 9, .	1.0	11
570	When your MR linac is down: Can an automated pipeline bail you out of trouble?. Physica Medica, 2021, 91, 80-86.	0.4	1
571	The impact of gadoliniumâ€based MR contrast on radiotherapy planning for oropharyngeal treatment on the MR Linac. Medical Physics, 2022, 49, 510-520.	1.6	3
572	Improving the imaging performance of the 1.5 T MR-linac using a flexible, 32-channel, on-body receive array. Physics in Medicine and Biology, 2020, 65, 215008.	1.6	6

		CITATION RE	PORT	
#	Article		IF	Citations
573	World's First Application of MR-Guidance for Radiotherapy. Missouri Medicine, 2015, 112, 358	i-60.	0.3	6
574	Comparison of Library of Plans with two daily adaptive strategies for whole bladder radiothera Physics and Imaging in Radiation Oncology, 2021, 20, 82-87.	ру.	1.2	7
575	End-to-end test for fractionated online adaptive MR-guided radiotherapy using a deformable anthropomorphic pelvis phantom. Physics in Medicine and Biology, 2021, , .		1.6	9
576	Operating procedures, risk management and challenges during implementation of adaptive ar non-adaptive MR-guided radiotherapy: 1-year single-center experience. Radiation Oncology, 20		1.2	13
577	Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overviev clinicians. Ca-A Cancer Journal for Clinicians, 2022, 72, 34-56.	' for	157.7	45
578	Prone vs. supine accelerated partial breast irradiation on an MR-Linac: A planning study. Radio and Oncology, 2021, 165, 193-199.	herapy	0.3	6
579	Novel modified patient immobilisation device with an integrated coil support system for MR-g online adaptive radiotherapy in the management of brain and head-and-neck tumours. Technic Innovations and Patient Support in Radiation Oncology, 2021, 20, 35-40.		0.6	3
580	Imaging Instrumentation and Techniques forÂPrecision Radiotherapy. , 2021, , 1537-1571.			0
581	Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatme Radiotherapy and Oncology, 2022, 167, 165-171.	nt.	0.3	30
582	Efficient Online 4D Magnetic Resonance Imaging. , 2021, , .			1
583	MR-guided radiotherapy for prostate cancer: state of the art and future perspectives. British Jc of Radiology, 2022, 95, 20210800.	urnal	1.0	13
585	Evaluation of the electron transport algorithm in magnetic field in EGS5 Monte Carlo code. Ph Medica, 2022, 93, 46-51.	ysica	0.4	2
586	Phantom assessment of three-dimensional geometric distortion of a dedicated wide-bore MR-simulator for radiotherapy. Biomedical Physics and Engineering Express, 2022, 8, 025003.		0.6	0
587	Quality assurance for onâ€table adaptive magnetic resonance guided radiation therapy: A soft to complement secondary dose calculation and failure modes discovered in clinical routine. Job of Applied Clinical Medical Physics, 2022, 23, e13523.		0.8	14
588	MRI-Guided Online Adaptive Stereotactic Body Radiation Therapy of Liver and Pancreas Tumor MR-Linac System. Cancers, 2022, 14, 716.	s on an	1.7	18
589	Inter-fraction dynamics during post-operative 5 fraction cavity hypofractionated stereotactic radiotherapy with a MR LINAC: a prospective serial imaging study. Journal of Neuro-Oncology, 156, 569-577.	2022,	1.4	12
590	Application of Continuous Positive Airway Pressure for Thoracic Respiratory Motion Managem Assessment in a Magnetic Resonance Imaging–Guided Radiation Therapy Environment. Adv Radiation Oncology, 2022, 7, 100889.	ent: An ances in	0.6	3
591	An external perpendicular magnetic field does not influence survival and DNA damage after pr and carbon ion irradiation in human cancer cells. Zeitschrift Fur Medizinische Physik, 2022, , .	oton	0.6	Ο

#	Article	IF	CITATIONS
592	Abdominal motion tracking with free-breathing XD-GRASP acquisitions using spatio-temporal geodesic trajectories. Medical and Biological Engineering and Computing, 2022, 60, 583-598.	1.6	1
593	A portable magnet for radiation biology and dosimetry studies in magnetic fields. Medical Physics, 2022, 49, 1924-1931.	1.6	0
594	Technical note: Toward implementation of MRâ€guided radiation therapy for laryngeal cancer with healthy volunteer imaging and a custom MR T larynx phantom. Medical Physics, 2022, 49, 1814-1821.	1.6	4
595	Comprehensive Quantitative Evaluation of Variability in Magnetic Resonance-Guided Delineation of Oropharyngeal Gross Tumor Volumes and High-Risk Clinical Target Volumes: An R-IDEAL Stage 0 Prospective Study. International Journal of Radiation Oncology Biology Physics, 2022, 113, 426-436.	0.4	18
596	An initial systematic study of the linear energy transfer distributions of a proton beam under a transverse magnetic field. Medical Physics, 2022, , .	1.6	0
597	Dosimetry impact of gating latency in cine magnetic resonance image guided breath-hold pancreatic cancer radiotherapy. Physics in Medicine and Biology, 2022, 67, 055008.	1.6	9
598	MR-guided radiotherapy in node-positive non-small cell lung cancer and severely limited pulmonary reserve: a report proposing a new clinical pathway for the management of high-risk patients. Radiation Oncology, 2022, 17, 43.	1.2	9
599	Commissioning a secondary dose calculation software for a 0.35ÂT MRâ€linac. Journal of Applied Clinical Medical Physics, 2022, 23, e13452.	0.8	6
600	Longitudinal assessment of quality assurance measurements in a 1.5ÂT MRâ€linac: Part Il—Magnetic resonance imaging. Journal of Applied Clinical Medical Physics, 2022, 23, e13586.	0.8	4
601	Plan quality in radiotherapy treatment planning – Review of the factors and challenges. Journal of Medical Imaging and Radiation Oncology, 2022, 66, 267-278.	0.9	8
602	Deep learningâ€based auto segmentation using generative adversarial network on magnetic resonance images obtained for head and neck cancer patients. Journal of Applied Clinical Medical Physics, 2022, 23, e13579.	0.8	9
603	Stereotactic MR-Guided Radiotherapy for Pancreatic Tumors: Dosimetric Benefit of Adaptation and First Clinical Results in a Prospective Registry Study. Frontiers in Oncology, 2022, 12, 842402.	1.3	17
604	Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiotherapy and Oncology, 2022, 170, 37-47.	0.3	15
605	Dosimetric Accuracy of MR-Guided Online Adaptive Planning for Nasopharyngeal Carcinoma Radiotherapy on 1.5 T MR-Linac. Frontiers in Oncology, 2022, 12, 858076.	1.3	2
606	Model-based machine learning for the recovery of lateral dose profiles of small photon fields in magnetic field. Physics in Medicine and Biology, 2022, 67, 085006.	1.6	1
607	Robustness and reproducibility of radiomics in T2 weighted images from magnetic resonance image guided linear accelerator in a phantom study. Physica Medica, 2022, 96, 130-139.	0.4	7
608	Monte Carlo study of small-field dosimetry for an ELEKTA Unity MR-Linac system. Radiation Physics and Chemistry, 2022, 194, 110036.	1.4	2
609	Clinical implementation and feasibility of long-course fractionated MR-guided chemoradiotherapy for patients with esophageal cancer: An R-IDEAL stage 1b/2a evaluation of technical innovation. Clinical and Translational Radiation Oncology, 2022, 34, 82-89.	0.9	5

#	Article	IF	CITATIONS
610	Automatic Contour Refinement for Deep Learning Auto-segmentation of Complex Organs in MRI-guided Adaptive Radiation Therapy. Advances in Radiation Oncology, 2022, 7, 100968.	0.6	10
611	Magnetic Resonance-Guided Reirradiation for Local Recurrence within the Prostate or in the Prostate Bed: One-Year Clinical Results of a Prospective Registry Study. Cancers, 2022, 14, 1943.	1.7	8
612	Experimental characterisation of the magnetic field correction factor, <i>κ</i> → _{<i>B</i>} , for Roos chambers in a parallel MRI-linac. Physics in Medicine and Biology, 2022, , .	1.6	1
613	Stereotactic MRI-guided radiation therapy for localized prostate cancer (SMILE): a prospective, multicentric phase-II-trial. Radiation Oncology, 2022, 17, 75.	1.2	10
614	Case Report: MR-Guided Adaptive Radiotherapy, Some Room to Maneuver. Frontiers in Oncology, 2022, 12, 877452.	1.3	0
615	<scp>Lowâ€rank</scp> inversion reconstruction for <scp>throughâ€plane</scp> accelerated radial <scp>MR</scp> fingerprinting applied to relaxometry at 0. <scp>35 T</scp> . Magnetic Resonance in Medicine, 2022, 88, 840-848.	1.9	4
616	Integrated MRI-guided radiotherapy — opportunities and challenges. Nature Reviews Clinical Oncology, 2022, 19, 458-470.	12.5	47
620	Electron Streaming Effect Associated With the Elekta Unity Anterior Imaging Coil. Frontiers in Physics, 2022, 10, .	1.0	3
621	A pilot study of respiratory motion characterization in the abdomen using a fast volumetric 4Dâ€MRI for MRâ€guided radiotherapy. Precision Radiation Oncology, 0, , .	0.4	0
622	A mask-compatible, radiolucent, 8-channel head and neck receive array for MRI-guided radiotherapy treatments and pre-treatment simulation. Physics in Medicine and Biology, 2022, 67, 135006.	1.6	1
623	Adaptive Radiation Therapy Physician Guidelines: Recommendations From an Expert Users' Panel. Practical Radiation Oncology, 2022, 12, e355-e362.	1.1	8
624	Fibre-Optic Dosimetry for MRI-LINACs: A Mini-Review. Frontiers in Physics, 0, 10, .	1.0	3
625	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si7.svg"><mml:mo>âS¥</mml:mo></mml:math> -loss: A symmetric loss function for magnetic resonance imaging reconstruction and image registration with deep learning. Medical Image Analysis, 2022, 80, 102509.	7.0	3
626	AAPM task group report 303 endorsed by the ABS: MRI implementation in HDR brachytherapy—Considerations from simulation to treatment. Medical Physics, 2022, 49, .	1.6	6
627	Identifying risk characteristics using failure mode and effect analysis for risk management in online magnetic resonance-guided adaptive radiation therapy. Physics and Imaging in Radiation Oncology, 2022, 23, 1-7.	1.2	8
628	A Prior Knowledge-Guided, Deep Learning-Based Semiautomatic Segmentation for Complex Anatomy on Magnetic Resonance Imaging. International Journal of Radiation Oncology Biology Physics, 2022, 114, 349-359.	0.4	4
629	Single projection driven real-time multi-contrast (SPIDERM) MR imaging using pre-learned spatial subspace and linear transformation. Physics in Medicine and Biology, 2022, 67, 135008.	1.6	4
630	Using oxygen dose histograms to quantify voxelised ultra-high dose rate (FLASH) effects in multiple radiation modalities. Physics in Medicine and Biology, 2022, 67, 125001.	1.6	3

#	Article	IF	CITATIONS
631	Performance evaluation of a visual guidance patient-controlled respiratory gating system for respiratory-gated magnetic-resonance image-guided radiation therapy. Physical and Engineering Sciences in Medicine, 0, , .	1.3	1
632	A hybrid 2D/4Dâ€MRI methodology using simultaneous multislice imaging for radiotherapy guidance. Medical Physics, 2022, 49, 6068-6081.	1.6	13
633	Real-time MRI motion estimation through an unsupervised k-space-driven deformable registration network (KS-RegNet). Physics in Medicine and Biology, 2022, 67, 135012.	1.6	6
634	Association Between Internal Organ/Liver Tumor and External Surface Motion From Cine MR Images on an MRI-Linac. Frontiers in Oncology, 0, 12, .	1.3	3
635	Skin Dose Modeling and Measurement in a High Field In-Line MRI-Linac System. Frontiers in Physics, 0, 10, .	1.0	2
636	4. Treatment Planning in Magnetic Resonance Guided Radiotherapy. Japanese Journal of Radiological Technology, 2022, 78, 766-771.	0.0	0
637	MRI-guided Radiotherapy (MRgRT) for Treatment of Oligometastases: Review of Clinical Applications and Challenges. International Journal of Radiation Oncology Biology Physics, 2022, 114, 950-967.	0.4	10
638	Dosimetric evaluation of respiratory gating on a 0.35‶ magnetic resonance–guided radiotherapy linac. Journal of Applied Clinical Medical Physics, 2022, 23, .	0.8	5
639	Realâ€ŧime <i>B</i> ₀ compensation during gantry rotation in a 0.35â€T MRI–Linac. Medical Physics, 0, , .	1.6	1
640	An integrated ultrasound imaging and abdominal compression device for respiratory motion management in radiation therapy. Medical Physics, 2022, 49, 6334-6345.	1.6	1
641	Generation of synthetic megavoltage CT for MRIâ€only radiotherapy treatment planning using a 3D deep convolutional neural network. Medical Physics, 2022, 49, 6622-6634.	1.6	3
642	History of Technological Advancements towards MR-Linac: The Future of Image-Guided Radiotherapy. Journal of Clinical Medicine, 2022, 11, 4730.	1.0	16
643	Adaptive magnetic resonance image guided radiation for intact localized prostate cancer how to optimally test a rapidly emerging technology. Frontiers in Oncology, 0, 12, .	1.3	1
645	Image-Guided Radiotherapy in Lung Cancer. Medical Radiology, 2022, , .	0.0	0
646	Emergence of MR-Linac in Radiation Oncology: Successes and Challenges of Riding on the MRgRT Bandwagon. Journal of Clinical Medicine, 2022, 11, 5136.	1.0	8
647	Advances in Image-Guided Radiotherapy in the Treatment of Oral Cavity Cancer. Cancers, 2022, 14, 4630.	1.7	6
648	Lowâ€field MRI: Clinical promise and challenges. Journal of Magnetic Resonance Imaging, 2023, 57, 25-44.	1.9	53
649	Impact of the Lorentz force on electron track structure and early DNA damage yields in magnetic resonance-guided radiotherapy. Scientific Reports, 2022, 12, .	1.6	1

	Cr	ΤΑΤΙ	ON	Repo	RT
--	----	------	----	------	----

#	Article	IF	CITATIONS
650	Assessment of intrafractional prostate motion and its dosimetric impact in MRI-guided online adaptive radiotherapy with gating. Strahlentherapie Und Onkologie, 2023, 199, 544-553.	1.0	5
651	The future of MRI in radiation therapy: Challenges and opportunities for the MR community. Magnetic Resonance in Medicine, 2022, 88, 2592-2608.	1.9	13
652	Adaptive margins for online adaptive radiotherapy. Physics in Medicine and Biology, 2022, 67, 195016.	1.6	4
653	Robust deep learning-based forward dose calculations for VMAT on the 1.5T MR-linac. Physics in Medicine and Biology, 2022, 67, 225020.	1.6	2
654	Predicting necessity of daily online adaptive replanning based on wavelet image features for MRI guided adaptive radiation therapy. Radiotherapy and Oncology, 2022, 176, 165-171.	0.3	5
655	Magnetic Resonance-Guided Adaptive Radiotherapy: Technical Concepts. , 2022, , 135-158.		0
656	Ion chamber magnetic field correction factors measured via microDiamond cross-calibration from a conventional linac to MRI-linac. Frontiers in Physics, 0, 10, .	1.0	0
657	Autoâ€detection of necessity for MRIâ€guided online adaptive replanning using a machine learning classifier. Medical Physics, 0, , .	1.6	1
658	Evaluation of CBCT based dose calculation in the thorax and pelvis using two generic algorithms. Physica Medica, 2022, 103, 157-165.	0.4	9
659	A clinically relevant online patient QA solution with daily CT scans and EPID-based in vivo dosimetry: a feasibility study on rectal cancer. Physics in Medicine and Biology, 2022, 67, 225003.	1.6	2
660	Crossâ€engine transformation based fast dose calculation for MRI‣inac online treatment planning. Medical Physics, 0, , .	1.6	1
661	Ensemble learning and personalized training for the improvement of unsupervised deep learningâ€based synthetic CT reconstruction. Medical Physics, 2023, 50, 1436-1449.	1.6	2
662	The effect of respiration-induced target motion on 3D magnetic resonance images used to guide radiotherapy. Physics and Imaging in Radiation Oncology, 2022, 24, 167-172.	1.2	4
663	A multi-institutional comparison of acceptance testing data for a 0.35 T MRI scanner. Physics in Medicine and Biology, 2022, 67, 235005.	1.6	4
664	Linac dosimetry in a magnetic field. Advances in Magnetic Resonance Technology and Applications, 2022, , 63-80.	0.0	0
665	MR-guided radiotherapy for liver tumors: Hepatocarcinomas, cholangiocarcinomas, and liver metastases. Advances in Magnetic Resonance Technology and Applications, 2023, , 295-314.	0.0	1
666	Treatment planning and delivery workflow steps in MR-guided adaptive RT. Advances in Magnetic Resonance Technology and Applications, 2023, , 153-167.	0.0	0
667	Prospective imaging comparison of anatomic delineation with rapid kV cone beam CT on a novel ring gantry radiotherapy device. Radiotherapy and Oncology, 2023, 178, 109428.	0.3	6

#	Article	IF	CITATIONS
668	MR linac radiation therapy: A real-time personalized approach for prostate cancer. Advances in Magnetic Resonance Technology and Applications, 2023, , 341-365.	0.0	0
669	Changing role of radiation therapy technologists in magnetic resonance-guided radiotherapy. Advances in Magnetic Resonance Technology and Applications, 2023, , 193-210.	0.0	0
670	Radiomics for MR-Linacs: State of the art and future directions. Advances in Magnetic Resonance Technology and Applications, 2023, , 513-520.	0.0	0
671	Basics of MR imaging for the radiation oncologist. Advances in Magnetic Resonance Technology and Applications, 2023, , 5-32.	0.0	Ο
672	Technical concepts of MRI-Linac (MRL). Advances in Magnetic Resonance Technology and Applications, 2023, , 33-61.	0.0	0
673	The initial experience of MRI-guided precision prone breast irradiation with daily adaptive planning in treating early stage breast cancer patients. Frontiers in Oncology, 0, 12, .	1.3	4
674	Integrated MRI-linac systems: The new paradigm for precision adaptive radiotherapy and biological image-guidance?. Radiotherapy and Oncology, 2022, 176, 249-250.	0.3	1
675	Editorial: Personalized radiation therapy: Guided with imaging technologies. Frontiers in Oncology, 0, 12, .	1.3	1
676	ICRU REPORT 97: MRI-Guided Radiation Therapy Using MRI-Linear Accelerators. Journal of the ICRU, 2022, 22, 1-100.	6.0	12
677	Repeatability of MRI for radiotherapy planning for pelvic, brain, and head and neck malignancies. Frontiers in Physics, 0, 10, .	1.0	1
678	Dosimetric evaluation of magnetic resonance imaging-guided adaptive radiation therapy in pancreatic cancer by extent of re-contouring of organs-at-risk. Radiation Oncology Journal, 2022, 40, 242-250.	0.7	1
679	A pilot study of <scp>MRI</scp> radiomics for highâ€risk prostate cancer stratification in 1.5 T <scp>MR</scp> â€guided radiotherapy. Magnetic Resonance in Medicine, 2023, 89, 2088-2099.	1.9	5
680	Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac. Physics in Medicine and Biology, 2023, 68, 04NT01.	1.6	4
681	Usability of magnetic resonance images acquired at a novel low-field 0.55ÂT scanner for brain radiotherapy treatment planning. Physics and Imaging in Radiation Oncology, 2023, 25, 100412.	1.2	0
682	Prediction of adaptive strategies based on deformation vector field features for MRâ€guided adaptive radiotherapy of prostate cancer. Medical Physics, 0, , .	1.6	1
683	Evaluation of Treatment Plan Quality between Magnetic Resonance-Guided Radiotherapy and Volumetric Modulated Arc Therapy for Prostate Cancer. Progress in Medical Physics, 2022, 33, 121-128.	0.5	0
684	Image Guided Radiation Therapy. Progress in Medical Physics, 2022, 33, 37-52.	0.5	0
685	Stereotactic MR-Guided Radiotherapy for Adrenal Gland Metastases: First Clinical Results. Journal of Clinical Medicine, 2023, 12, 291.	1.0	10

#	Article	IF	CITATIONS
686	Dosimetric Evaluation of Synthetic Computed Tomography Technique on Position Variation of Air Cavity in Magnetic Resonance-Guided Radiotherapy. Progress in Medical Physics, 2022, 33, 142-149.	0.5	0
687	MRI-LINAC: A transformative technology in radiation oncology. Frontiers in Oncology, 0, 13, .	1.3	8
688	Deep learning based automatic contour refinement for inaccurate auto-segmentation in MR-guided adaptive radiotherapy. Physics in Medicine and Biology, 2023, 68, 055004.	1.6	2
689	Feasibility of delivered dose reconstruction for MR-guided SBRT of pancreatic tumors with fast, real-time 3D cine MRI. Radiotherapy and Oncology, 2023, 182, 109506.	0.3	5
690	Intrafraction motion analysis in online adaptive radiotherapy for esophageal cancer. Physics and Imaging in Radiation Oncology, 2023, 26, 100432.	1.2	0
691	Dose accumulation for MR-guided adaptive radiotherapy: From practical considerations to state-of-the-art clinical implementation. Frontiers in Oncology, 0, 12, .	1.3	8
692	MRâ€linac daily semiâ€automated endâ€ŧoâ€end quality control verification. Journal of Applied Clinical Medical Physics, 2023, 24, .	0.8	3
693	Commissioning, clinical implementation, and initial experience with a new brain tumor treatment package on a lowâ€field MRâ€linac. Journal of Applied Clinical Medical Physics, 2023, 24, .	0.8	2
694	A model for gastrointestinal tract motility in a 4D imaging phantom of human anatomy. Medical Physics, 2023, 50, 3066-3075.	1.6	2
695	Comparison of MRâ€guided radiotherapy accumulated doses for central lung tumors with nonâ€adaptive and online adaptive proton therapy. Medical Physics, 2023, 50, 2625-2636.	1.6	6
696	ACPSEM position paper: dosimetry for magnetic resonance imaging linear accelerators. Physical and Engineering Sciences in Medicine, 2023, 46, 1-17.	1.3	0
697	Built-in wavelet-induced smoothness to reduce plan complexity in intensity modulated radiation therapy (IMRT). Physics in Medicine and Biology, 2023, 68, 065013.	1.6	1
698	Simulated Adaptive Radiotherapy for Shrinking Glioblastoma Resection Cavities on a Hybrid MRI–Linear Accelerator. Cancers, 2023, 15, 1555.	1.7	5
699	Comparison of MRâ€soft tissue based versus biliary stent based alignment for image guidance in pancreatic SBRT. Journal of Applied Clinical Medical Physics, 0, , .	0.8	0
700	A stochastic control approach to intrafraction motion management in intensity-modulated radiotherapy. Physics in Medicine and Biology, 2023, 68, 085020.	1.6	0
701	Development of a collapsed cone convolution/superposition dose calculation algorithm with a mass density-specific water kernel for magnetic resonance-guided radiotherapy. Journal of Radiation Research, 2023, 64, 496-508.	0.8	1
702	Evaluation of an MRI linac magnetic isocenter walkout with gantry rotation in the presence of angle-specific corrections. Physics in Medicine and Biology, 2023, 68, 08NT01.	1.6	0
703	Dosimetric validation of the couch and coil model for high-field MR-linac treatment planning. Zeitschrift Fur Medizinische Physik, 2023, 33, 567-577.	0.6	1

	Сіта	TION REPORT	
#	Article	IF	Citations
704	Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers, 2023, 15, 2081.	1.7	5
705	Bench-to-bedside development of multifunctional flexible embolic agents. Theranostics, 2023, 13, 2114-2139.	4.6	Ο
706	Magnetic resonance-guided stereotactic body radiation therapy (MRgSBRT) for oligometastatic patients: a single-center experience. Radiologia Medica, 2023, 128, 619-627.	4.7	1
712	Respiratory motion management. , 2023, , 41-51.		1
729	Physics of Stereotactic Radiosurgery and Stereotactic Body Radiotherapy. , 2023, , 11-35.		0
739	ViewRay MR-Linac. , 2023, , 285-295.		Ο
751	Radiation Therapy: Intensity-Modulated Radiotherapy, Cyberknife, Gamma Knife, and Proton Beam. , 202 , 1-15.	23,	0
769	Treatment Planning Considerations for an MR-Linac. , 2024, , 123-147.		Ο
771	Image-Based Biomarkers in Magnetic Resonance-Guided Radiotherapy (MRgRT). , 2024, , 459-468.		0
772	Motion Management and Tracking. , 2024, , 69-87.		0
773	Education and Training in MR-Based Radiation Treatment. , 2024, , 35-43.		0
774	Introduction to MR-Linac. , 2024, , 1-3.		0
775	MRI-Guided Radiation Therapy for Prostate Cancer: Less Is More When Technology and Evidence Intersect. , 2024, , 285-305.		0
776	The First Low-Field MRI-Guided Radiation Therapy Hybrid Integrated System: MRIdian. , 2024, , 149-173.		0