CITATION REPORT List of articles citing

High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy

DOI: 10.1021/nn501647j ACS Nano, 2014, 8, 6922-33.

Source: https://exaly.com/paper-pdf/59737971/citation-report.pdf

Version: 2024-04-20

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
763	Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications.		
762	Gold Nanoparticle-Decorated gC3N4 Nanosheets for Controlled Generation of Reactive Oxygen Species upon 670 nm Laser Illumination.		
761	Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. <i>ACS Nano</i> , 2014 , 8, 12250-8	16.7	182
760	Biomolecules-conjugated nanomaterials for targeted cancer therapy. 2014 , 2, 8452-8465		17
759	The growth scale and kinetics of WS2 monolayers under varying H2 concentration. 2015 , 5, 13205		62
758	Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. 2015 , 5, 17422		148
757	Intelligent MnO2 Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pH-/H2O2-Responsive UCL Imaging and Oxygen-Elevated Synergetic Therapy. 2015 , 27, 4155-61		503
756	Injectable 2D MoS2 -Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. 2015 , 27, 7117-22		196
755	Two-Dimensional Transition Metal Dichalcogenides in Biosystems. 2015 , 25, 5086-5099		256
754	Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. 2015 , 54, 1152	6-30	745
753	Cu7 S4 Nanosuperlattices with Greatly Enhanced Photothermal Efficiency. 2015 , 11, 4183-90		76
752	Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. 2015 , 127, 116	88-11	6 9 2 ₁
751	Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2 : Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. 2015 , 11, 5556-64		374
750	Hydrophilic Cu3BiS3 Nanoparticles for Computed Tomography Imaging and Photothermal Therapy. 2015 , 32, 668-679		45
749	Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. 2015 , 7, 15953-61		74
748	Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. 2015 , 51, 10054-7		45
747	Hydrous RuO2 nanoparticles as an efficient NIR-light induced photothermal agent for ablation of cancer cells in vitro and in vivo. 2015 , 7, 11962-70		41

(2015-2015)

746	Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. 2015 , 60, 62-71	226
745	Smart MoS2/Fe3O4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. 2015 , 5, 931-45	196
744	Fe3O4@MoS2 CoreBhell Composites: Preparation, Characterization, and Catalytic Application. 2015 , 119, 13658-13664	123
743	An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. 2015 , 3, 24112-24120	65
742	Multifunctional Fe2O3@PPy-PEG nanocomposite for combination cancer therapy with MR imaging. 2015 , 26, 425101	19
741	The sequential continuous-flow hydrothermal synthesis of molybdenum disulphide. 2015 , 51, 4048-50	26
740	Hollow Structured Y2O3:Yb/Er©uxS Nanospheres with Controllable Size for Simultaneous Chemo/Photothermal Therapy and Bioimaging. 2015 , 27, 483-496	95
739	Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. <i>ACS Nano</i> , 2015 , 9, 696-707	430
738	Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. 2015 , 60, 3-20	85
737	Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. 2015 , 5, 7495-7514	227
736	Two-dimensional TiSIhanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. 2015 , 7, 6380-7	165
735	Nanostructured magnetic nanocomposites as MRI contrast agents. 2015 , 3, 2241-2276	90
734	Functionalized ultrathin palladium nanosheets as patches for HepG2 cancer cells. 2015, 51, 14171-14174	17
733	Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. 2015 , 7, 14217-31	180
732	CVD synthesis of Mo($(1-x)$)W(x)S2 and MoS($2(1-x)$)Se($2x$) alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. 2015 , 7, 13554-60	72
731	BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. 2015 , 44, 13112-8	80
730	CuS@mSiO2-PEG core-shell nanoparticles as a NIR light responsive drug delivery nanoplatform for efficient chemo-photothermal therapy. 2015 , 44, 10343-51	64
729	Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries. 2015 , 7, 9919-26	61

728	Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. 2015 , 39, 4987-4993	23
727	Personalizing Biomaterials for Precision Nanomedicine Considering the Local Tissue Microenvironment. Advanced Healthcare Materials, 2015 , 4, 1584-99	36
726	Multi-stimuli responsive Cu2S nanocrystals as trimodal imaging and synergistic chemo-photothermal therapy agents. 2015 , 7, 8378-8388	53
725	A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. 2015 , 7, 10210-7	101
724	A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy. 2015 , 27, 2775-82	334
723	Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for In Vivo Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. <i>ACS Nano</i> , 2015 , 9, 12451-63	327
722	Shape-controlled gold nanoparticles supported on MoSIhanosheets: synergistic effect of thionine and MoSIhand their application for electrochemical label-free immunosensing. 2015 , 7, 19129-35	93
721	Self-assembled ZnS nanospheres with nanoscale porosity as an efficient carrier for the delivery of doxorubicin. 2015 , 5, 92499-92505	
720	Bottom-Up Synthesis of Metal-Ion-Doped WSINanoflakes for Cancer Theranostics. <i>ACS Nano</i> , 2015 , 9, 11090-101	226
719	Band gap control and transformation of monolayer-MoS2-based hetero-bilayers. 2015 , 3, 9403-9411	20
718	Self-Assembling Monomeric Nucleoside Molecular Nanoparticles Loaded with 5-FU Enhancing Therapeutic Efficacy against Oral Cancer. <i>ACS Nano</i> , 2015 , 9, 9638-51	36
717	Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy. 2015 , 7, 20757-68	39
716	Two-dimensional graphene analogues for biomedical applications. 2015 , 44, 2681-701	687
715	Recent advances in the development of organic photothermal nano-agents. <i>Nano Research</i> , 2015 , 8, 340 ₁ 354	334
714	Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. 2015 , 39, 206-17	240
713	Two-dimensional transition metal dichalcogenide nanosheet-based composites. 2015 , 44, 2713-31	1191
712	Advances on the Use of Biodegradable Proteins/Peptides in Photothermal Theranostics. 2016 , 2016, 1-10	5
711	Facile synthesis of soybean phospholipid-encapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal regression of breast tumor. 2016 , 11, 1819-33	25

710	Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment. 2016 , 6, 948-68	161
709	Tribological Performance of Green Lubricant Enhanced by Sulfidation IF-MoS□ 2016 , 9,	23
708	Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging. 2016 , 6,	79
707	Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy. 2016 , 11, 4327-38	24
706	Recent Advances in Photoacoustic Imaging for Deep-Tissue Biomedical Applications. 2016 , 6, 2394-2413	165
705	pH-Responsive Fe(III)-Gallic Acid Nanoparticles for In Vivo Photoacoustic-Imaging-Guided Photothermal Therapy. <i>Advanced Healthcare Materials</i> , 2016 , 5, 772-80	72
704	Mesoporous Bamboo Charcoal Nanoparticles as a New Near-Infrared Responsive Drug Carrier for Imaging-Guided Chemotherapy/Photothermal Synergistic Therapy of Tumor. <i>Advanced Healthcare Materials</i> , 2016 , 5, 1627-37	29
703	LBungsprozessierte MoS2-Nanopl E tchen: Herstellung, Hybridisierung und Anwendungen. 2016 , 128, 8960-8984	51
702	Cancer-Targeted Nanotheranostics: Recent Advances and Perspectives. 2016 , 12, 4936-4954	127
701	Thermoresponsive Nanogel-Encapsulated PEDOT and HSP70 Inhibitor for Improving the Depth of the Photothermal Therapeutic Effect. 2016 , 26, 4749-4759	83
700	Light-Responsive, Singlet-Oxygen-Triggered On-Demand Drug Release from Photosensitizer-Doped Mesoporous Silica Nanorods for Cancer Combination Therapy. 2016 , 26, 4722-4732	122
699	Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. 2016 , 28, 6052-74	266
698	Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. 2016 , 55, 8816-38	447
697	Metabolizable Ultrathin Bi2 Se3 Nanosheets in Imaging-Guided Photothermal Therapy. 2016 , 12, 4136-45	168
696	Functionalization of Two-Dimensional Transition-Metal Dichalcogenides. 2016 , 28, 5738-46	150
695	Recent Advances in Controlling Syntheses and Energy Related Applications of MX2 and MX2/Graphene Heterostructures. 2016 , 6, 1600459	35
694	Exploring biological effects of MoS2 nanosheets on native structures of Helical peptides. 2016 , 144, 175103	30
693	Structural Damage of a Esheet Protein upon Adsorption onto Molybdenum Disulfide Nanotubes. 2016 , 120, 6796-6803	32

692	Mussel inspired preparation of MoS2 based polymer nanocomposites: The case of polyPEGMA. 2016 , 387, 399-405		21
691	Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy. 2016 , 8, 12917-28		23
690	Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. <i>Coordination Chemistry Reviews</i> , 2016 , 320-321, 100-117	23.2	123
689	The polyvinylpyrrolidone functionalized rGO/Bi2S3 nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer. 2016 , 8, 11531-42		59
688	In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors. <i>ACS Applied Materials & District Research</i> , 8, 11881-91	9.5	19
687	Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. 2016 , 8, 11642-8		97
686	Controlled actuation of therapeutic nanoparticles: an update on recent progress. 2016 , 7, 335-52		12
685	Facile Preparation of Multifunctional WS /WO Nanodots for Chelator-Free Zr-Labeling and In Vivo PET Imaging. 2016 , 12, 5750-5758		27
684	MoS2 Quantum Dot@Polyaniline Inorganic-Organic Nanohybrids for in Vivo Dual-Modal Imaging Guided Synergistic Photothermal/Radiation Therapy. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 8, 24331-8	9.5	145
683	Multifunctional WS @Poly(ethylene imine) Nanoplatforms for Imaging Guided Gene-Photothermal Synergistic Therapy of Cancer. <i>Advanced Healthcare Materials</i> , 2016 , 5, 2776-2787	10.1	65
682	2D nanosheets-based novel architectures: Synthesis, assembly and applications. 2016 , 11, 483-520		76
681	Facile exfoliation of MoS2 nanosheets by protein as a photothermal-triggered drug delivery system for synergistic tumor therapy. 2016 , 6, 77083-77092		48
68o	Hybrid of gold nanostar and indocyanine green for targeted imaging-guided diagnosis and phototherapy using low-density laser irradiation. 2016 , 4, 5842-5849		23
679	Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. <i>Nano Research</i> , 2016 , 9, 3003-3017	10	109
678	Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. 2016 , 8, 15389-413		105
677	Targeted Intracellular Production of Reactive Oxygen Species by a 2D Molybdenum Disulfide Glycosheet. 2016 , 28, 9356-9363		86
676	Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. 2016 , 8, 16819-16840		421
675	Photothermally Controllable Cytosolic Drug Delivery Based On CoreBhell MoS2-Porous Silica Nanoplates. 2016 , 28, 6417-6424		65

(2016-2016)

674	High efficiency shear exfoliation for producing high-quality, few-layered MoS2 nanosheets in a green ethanol/water system. 2016 , 6, 82763-82773	27
673	Synthesis of PVP-functionalized ultra-small MoS2 nanoparticles with intrinsic peroxidase-like activity for H2O2 and glucose detection. 2016 , 6, 81174-81183	52
672	Enhanced Exfoliation Effect of Solid Auxiliary Agent On the Synthesis of Biofunctionalized MoS2 Using Grindstone Chemistry. 2016 , 33, 825-832	16
671	Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H2 generation. 2016 , 18, 1	16
670	Recent advances in different modal imaging-guided photothermal therapy. 2016 , 106, 144-66	190
669	Two-Dimensional Materials Beyond Graphene: Emerging Opportunities for Biomedicine. 2016 , 06, 1642008	4
668	Polydopamine Coated Selenide Molybdenum: A New Photothermal Nanocarrier for Highly Effective Chemo-Photothermal Synergistic Therapy. 2016 , 2, 2011-2017	68
667	Molybdenum Disulfide-Based Tubular Microengines: Toward Biomedical Applications. 2016 , 26, 6270-6278	60
666	Two-Dimensional Colloidal Nanocrystals. 2016 , 116, 10934-82	321
665	Functionalized Nano-MoS with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. <i>ACS Nano</i> , 2016 , 10, 11000-11011	572
664	Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 1885	66
663	Advances and challenges in chemistry of two-dimensional nanosheets. 2016 , 11, 793-816	124
662	Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. 2016 , 7, 12967	659
661	NIR photoresponsive drug delivery and synergistic chemo-photothermal therapy by monodispersed-MoS-nanosheets wrapped periodic mesoporous organosilicas. 2016 , 4, 7708-7717	38
660	Exfoliated sheets of MoS trigger formation of aqueous gels with acute NIR light responsiveness. 2016 , 52, 14043-14046	10
659	Robust Denaturation of Villin Headpiece by MoS2 Nanosheet: Potential Molecular Origin of the Nanotoxicity. 2016 , 6, 28252	27
658	Good Biocompatibility and Sintering Properties of Zirconia Nanoparticles Synthesized via Vapor-phase Hydrolysis. 2016 , 6, 35020	24
657	Layered MoS2 Hollow Spheres for Highly-Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. 2016 , 12, 2046-55	77

656	Efficient MoS2 Exfoliation by Cross-EAmyloid Nanotubes for Multistimuli-Responsive and Biodegradable Aqueous Dispersions. 2016 , 55, 7772-6	39
655	Enhanced oxidase/peroxidase-like activities of aptamer conjugated MoS2/PtCu nanocomposites and their biosensing application. 2016 , 6, 54949-54955	27
654	Improving the tribological performance of biopolymer coating with MoS 2 additive. 2016 , 303, 250-255	35
653	Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. 2016 , 11, 292-308	169
652	Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. 2016 , 27, 225403	70
651	Efficient MoS2 Exfoliation by Cross-EAmyloid Nanotubes for Multistimuli-Responsive and Biodegradable Aqueous Dispersions. 2016 , 128, 7903-7907	16
650	Facile synthesis of novel albumin-functionalized flower-like MoS2 nanoparticles for in vitro chemo-photothermal synergistic therapy. 2016 , 6, 13040-13049	46
649	A 3D electrochemical immunodevice based on an Au paper electrode and using Au nanoflowers for amplification. 2016 , 40, 2835-2842	19
648	Photothermal therapy by using titanium oxide nanoparticles. <i>Nano Research</i> , 2016 , 9, 1236-1243	70
647	Highly Catalytic Nanodots with Renal Clearance for Radiation Protection. <i>ACS Nano</i> , 2016 , 10, 4511-9 16.7	85
646	Facile-synthesized ultrasmall CuS nanocrystals as drug nanocarriers for highly effective chemophotothermal combination therapy of cancer. 2016 , 6, 20949-20960	15
645	Molybdenum disulfide nanoflakes through Li-AHA assisted exfoliation in an aqueous medium. 2016 , 6, 22026-22033	15
644	Polycatechol nanosheet: a superior nanocarrier for highly effective chemo-photothermal synergistic therapy in vivo. 2016 , 8, 5260-7	16
643	Fluorescent supramolecular micelles for imaging-guided cancer therapy. 2016 , 8, 5302-12	28
642	Layered MoS nanoflowers for microwave thermal therapy. 2016 , 4, 2133-2141	44
641	A sensitive electrochemiluminescent immunosensor based on 3D-flower-like MoS2 microspheres and using AuPt nanoparticles for signal amplification. 2016 , 6, 23411-23419	9
640	Nano-photo-thermal energy drive MoS_2/ZnO nanoheterojunctions growing. 2016 , 6, 876	13
639	Synthesis of Long Gold Nanorods as an Efficient Photothermal Agent in the Second Near-Infrared Window. 2016 , 40, 180-189	6

(2017-2016)

638	cancer therapy. 2016 , 6, 31031-31036		21
637	Aggregation Induced Emission Mediated Controlled Release by Using a Built-In Functionalized Nanocluster with Theranostic Features. 2016 , 59, 410-8		22
636	Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells. 2016 , 8, 2720-6		118
635	Hollow ZrO/PPy nanoplatform for improved drug delivery and real-time CT monitoring in synergistic photothermal-chemo cancer therapy. 2016 , 4, 859-866		29
634	Synergistic nanomedicine by combined gene and photothermal therapy. <i>Advanced Drug Delivery Reviews</i> , 2016 , 98, 99-112	18.5	173
633	MoS2-Gd Chelate Magnetic Nanomaterials with Core-Shell Structure Used as Contrast Agents in in Vivo Magnetic Resonance Imaging. <i>ACS Applied Materials & Discrete Materials & Dis</i>	9.5	33
632	One-pot synthesis of PEGylated plasmonic MoO(3-x) hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. 2016 , 76, 11-24		149
631	Functionalization of 2D transition metal dichalcogenides for biomedical applications. <i>Materials Science and Engineering C</i> , 2017 , 70, 1095-1106	8.3	105
630	Photoactivated drug delivery and bioimaging. 2017 , 9, e1408		45
629	Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. 2017 , 89, 43-55		182
628	Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. 2017 , 89, 212-223		89
627	A multi-functional nanoplatform for efficacy tumor theranostic applications. 2017 , 12, 235-249		13
626	Poly(ionic liquid)-Promoted Solvent-Borne Efficient Exfoliation of MoS2/MoSe2 Nanosheets for Dual-Responsive Dispersion and Polymer Nanocomposites. 2017 , 121, 4747-4759		26
625	Application of two-dimensional MoS 2 nanosheets in the property improvement of polyimide matrix: Mechanical and thermal aspects. 2017 , 95, 220-228		47
624	Renal Clearable Ag Nanodots for in Vivo Computer Tomography Imaging and Photothermal Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 5900-5906	9.5	45
623	Synthesis of sandwich-like molybdenum sulfide/mesoporous organosilica nanosheets for photo-thermal conversion and stimuli-responsive drug release. 2017 , 496, 261-266		21
622	Nanostructures for NIR light-controlled therapies. 2017 , 9, 3698-3718		72
621	Photosensitizer loaded PEG-MoS-Au hybrids for CT/NIRF imaging-guided stepwise photothermal and photodynamic therapy. 2017 , 5, 2286-2296		39

620	Comparative toxicity of Cd, Mo, and W sulphide nanomaterials toward E. Loli under UV irradiation. 2017 , 224, 606-614		28
619	Ultrafine transition metal dichalcogenide nanodots prepared by polyvinylpyrrolidone-assisted liquid phase exfoliation. 2017 , 5, 2609-2615		14
618	Fabricating Aptamer-Conjugated PEGylated-MoS2/Cu1.8S Theranostic Nanoplatform for Multiplexed Imaging Diagnosis and Chemo-Photothermal Therapy of Cancer. 2017 , 27, 1605592		80
617	Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light. 2017 , 9, 4759-4769		31
616	Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS-Based Nanocomposite. 2017 , 28, 1059-1067		25
615	Two-dimensional Pd-based nanomaterials for bioapplications. 2017 , 62, 579-588		36
614	Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. 2017 , 5, 1873-1895		87
613	Protein-Stabilized Gadolinium Oxide-Gold Nanoclusters Hybrid for Multimodal Imaging and Drug Delivery. <i>ACS Applied Materials & Delivery. ACS Applied Materials & Delivery. ACS Applied Materials & Delivery. ACS Applied Materials & Delivery. Delivery. ACS Applied Materials & Delivery. De</i>	9.5	56
612	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. 2017 , 13, 1604139		63
611	Nanomaterials made of non-toxic metallic sulfides: A systematic review of their potential biomedical applications. <i>Materials Science and Engineering C</i> , 2017 , 76, 1305-1315	8.3	37
610	ACPI Conjugated Gold Nanorods as Nanoplatform for Dual Image Guided Activatable Photodynamic and Photothermal Combined Therapy In Vivo. 2017 , 13, 1603956		53
609	Biocompatible D-A Semiconducting Polymer Nanoparticle with Light-Harvesting Unit for Highly Effective Photoacoustic Imaging Guided Photothermal Therapy. 2017 , 27, 1605094		152
608	Multifunctional Nanosystem for Synergistic Tumor Therapy Delivered by Two-Dimensional MoS. <i>ACS Applied Materials & Delivered Synergistic Tumor</i> 7, 9, 13965-13975	9.5	64
607	Albumin-mediated platinum nanocrystals for in vivo enhanced computed tomography imaging. 2017 , 5, 3498-3510		26
606	CpG loaded MoS nanosheets as multifunctional agents for photothermal enhanced cancer immunotherapy. 2017 , 9, 5927-5934		84
605	Synthesis and Optimization of MoS@FeO-ICG/Pt(IV) Nanoflowers for MR/IR/PA Bioimaging and Combined PTT/PDT/Chemotherapy Triggered by 808 nm Laser. 2017 , 4, 1600540		189
604	GPCR Activation and Endocytosis Induced by a 2D Material Agonist. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 14709-14715	9.5	9
603	Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. 2017 , 117, 6160-6224		533

602	A 3D-printed scaffold with MoS2 nanosheets for tumor therapy and tissue regeneration. 2017 , 9, e376-6	e376	84
601	Cell-borne 2D nanomaterials for efficient cancer targeting and photothermal therapy. 2017 , 133, 37-48		54
600	Marriage of Albumin-Gadolinium Complexes and MoS Nanoflakes as Cancer Theranostics for Dual-Modality Magnetic Resonance/Photoacoustic Imaging and Photothermal Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 17786-17798	9.5	72
599	Hydrogen Addition for Centimeter-Sized Monolayer Tungsten Disulfide Continuous Films by Ambient Pressure Chemical Vapor Deposition. 2017 , 29, 4904-4911		36
598	A facile fabrication of silk/MoS hybrids for Photothermal therapy. <i>Materials Science and Engineering C</i> , 2017 , 79, 123-129	8.3	23
597	One-pot synthesis of MoSe2 hetero-dimensional hybrid self-assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy. <i>Nano Research</i> , 2017 , 10, 2667-2682	10	34
596	Vertical 1T-MoS nanosheets with expanded interlayer spacing edged on a graphene frame for high rate lithium-ion batteries. 2017 , 9, 6975-6983		115
595	A biomimetic Au@BSA-DTA nanocomposites-based contrast agent for computed tomography imaging. <i>Materials Science and Engineering C</i> , 2017 , 78, 565-570	8.3	9
594	One-Pot Synthesis of MoS Nanoflakes with Desirable Degradability for Photothermal Cancer Therapy. <i>ACS Applied Materials & Desirable 2017</i> , 9, 17347-17358	9.5	87
593	Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. 2017 ,		22
	5, 6451-6470		32
592	Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular	10	29
	Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. <i>Nano Research</i> ,	10 9.5	
592	Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. <i>Nano Research</i> , 2017 , 10, 2280-2295 Directing Assembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS</i>		29
592 591	Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. <i>Nano Research</i> , 2017 , 10, 2280-2295 Directing Assembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Disassembly and Disassembly and Disassembly and Disassembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Disassembly and Disassembly and Disassembly and Disassembly and Disassembly and Disassembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Disassembly and Disass</i></i></i>		29
592 591 590	Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. <i>Nano Research</i> , 2017 , 10, 2280-2295 Directing Assembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Delivery interfaces</i> , 2017 , 9, 15286-15296 Colloidal 2D nanosheets of MoS and other transition metal dichalcogenides through liquid-phase exfoliation. 2017 , 245, 40-61 Size effect on near infrared photothermal conversion properties of liquid-exfoliated MoS 2 and		29 199 115
592 591 590 589	Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. <i>Nano Research</i> , 2017 , 10, 2280-2295 Directing Assembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Drug MoS and Other transition metal dichalcogenides through liquid-phase exfoliation. 2017, 245, 40-61 Size effect on near infrared photothermal conversion properties of liquid-exfoliated MoS 2 and MoSe 2. 2017, 105, 22-27 Bottom-Up Preparation of Uniform Ultrathin Rhenium Disulfide Nanosheets for Image-Guided</i>		29 199 115
592 591 590 589 588	Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. <i>Nano Research</i> , 2017 , 10, 2280-2295 Directing Assembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Mamp; Interfaces</i> , 2017 , 9, 15286-15296 Colloidal 2D nanosheets of MoS and other transition metal dichalcogenides through liquid-phase exfoliation. 2017 , 245, 40-61 Size effect on near infrared photothermal conversion properties of liquid-exfoliated MoS 2 and MoSe 2. 2017 , 105, 22-27 Bottom-Up Preparation of Uniform Ultrathin Rhenium Disulfide Nanosheets for Image-Guided Photothermal Radiotherapy. 2017 , 27, 1700250	9.5	29 199 115 13 80

584	A sensitive Pb2+ testing method based on aptamer-functionalized peroxidase-like 3D-flower MoS2 microspheres. 2017 , 41, 7052-7060		12
583	Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells. 2017 , 157, 398-406		26
582	A Nanostructured Molybdenum Disulfide Film for Promoting Neural Stem Cell Neuronal Differentiation: toward a Nerve Tissue-Engineered 3D Scaffold. 2017 , 1, e1600042		32
581	Bottom-up synthesis of WS nanosheets with synchronous surface modification for imaging guided tumor regression. 2017 , 58, 442-454		66
580	Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. 2017 , 132, 37-47		98
579	In situ formation of pH-responsive Prussian blue for photoacoustic imaging and photothermal therapy of cancer. 2017 , 7, 18270-18276		12
578	A fluorogenic 2D glycosheet for the simultaneous identification of human- and avian-receptor specificity in influenza viruses. 2017 , 4, 431-436		22
577	Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Cancer Therapy. <i>ACS Nano</i> , 2017 , 11, 3797-3805	16.7	192
576	Versatile graphene-based photothermal nanocomposites for effectively capturing and killing bacteria, and for destroying bacterial biofilms. 2017 , 5, 2459-2467		78
575	Near infrared light-controlled therapeutic molecules release of nanocarriers in cancer therapy. 2017 , 47, 297-316		23
574	Strategies to Improve Cancer Photothermal Therapy Mediated by Nanomaterials. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700073	10.1	142
573	Safety profile of two-dimensional Pd nanosheets for photothermal therapy and photoacoustic imaging. <i>Nano Research</i> , 2017 , 10, 1234-1248	10	50
572	BSA-exfoliated WSe nanosheets as a photoregulated carrier for synergistic photodynamic/photothermal therapy. 2017 , 5, 269-278		56
571	Electric field controlled CO capture and CO/N separation on MoS monolayers. 2017 , 9, 19-24		61
570	Structural influence of proteins upon adsorption to MoS nanomaterials: comparison of MoS force field parameters. 2017 , 19, 3039-3045		36
569	Fluorescent Block Copolymer-MoS2 Nanocomposites for Real-Time Photothermal Heating and Imaging. 2017 , 27, 1604403		33
568	Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. 2017 , 17, 384-391		623
567	Engineering Phototheranostic Nanoscale Metal-Organic Frameworks for Multimodal Imaging-Guided Cancer Therapy. <i>ACS Applied Materials & Description of the Physics of the Ph</i>	9.5	210

(2017-2017)

566	Stepwise growth of gold coated cancer targeting carbon nanotubes for the precise delivery of doxorubicin combined with photothermal therapy. 2017 , 5, 1380-1387	24
565	Recent Advances in Synthesis and Biomedical Applications of Two-Dimensional Transition Metal Dichalcogenide Nanosheets. 2017 , 13, 1602660	167
564	Hollow Copper Sulfide Nanosphere-Doxorubicin/Graphene Oxide Core-Shell Nanocomposite for Photothermo-chemotherapy. 2017 , 3, 3230-3235	29
563	Facile Preparation of Doxorubicin-Loaded and Folic Acid-Conjugated Carbon Nanotubes@Poly(N-vinyl pyrrole) for Targeted Synergistic Chemo-Photothermal Cancer Treatment. 2017 , 28, 2815-2822	37
562	cis-Platinum pro-drug-attached CuFeS nanoplates for in vivo photothermal/photoacoustic imaging and chemotherapy/photothermal therapy of cancer. 2017 , 9, 16937-16949	60
561	Functional tumor imaging based on inorganic nanomaterials. 2017 , 60, 1425-1438	15
560	Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings. 2017 , 9, 17193-17198	48
559	A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. 2017 , 139, 16235-16247	656
558	Tantalum Sulfide Nanosheets as a Theranostic Nanoplatform for Computed Tomography Imaging-Guided Combinatorial Chemo-Photothermal Therapy. 2017 , 27, 1703261	69
557	Enhancing the colloidal stability and surface functionality of molybdenum disulfide (MoS) nanosheets with hyperbranched polyglycerol for photothermal therapy. 2017 , 508, 214-221	33
556	New Application of Old Material: Chinese Traditional Ink for Photothermal Therapy of Metastatic Lymph Nodes. 2017 , 2, 5170-5178	16
555	Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. 2017 , 29, 8637-8652	193
554	Probing Single-Molecule Adhesion of a Stimuli Responsive Oligo(ethylene glycol) Methacrylate Copolymer on a Molecularly Smooth Hydrophobic MoS Basal Plane Surface. 2017 , 33, 10429-10438	9
553	In Vivo Imaging-Guided Photothermal/Photoacoustic Synergistic Therapy with Bioorthogonal Metabolic Glycoengineering-Activated Tumor Targeting Nanoparticles. <i>ACS Nano</i> , 2017 , 11, 8930-8943 ^{16.7}	125
552	RGD-QD-MoS nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. 2017 , 9, 15835-15845	70
551	Combined Chemo-photothermal Antitumor Therapy Using Molybdenum Disulfide Modified with Hyperbranched Polyglycidyl. 2017 , 3, 2325-2335	28
550	Molybdenum disulfide quantum dot based highly sensitive impedimetric immunoassay for prostate specific antigen. 2017 , 184, 4647-4654	19
549	Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. 2017 , 146, 40-48	80

548	Dual Functionalization of Liquid-Exfoliated Semiconducting 2H-MoS2 with Lanthanide Complexes Bearing Magnetic and Luminescence Properties. 2017 , 27, 1703646	20
547	Environmental impact and potential health risks of 2D nanomaterials. 2017 , 4, 1617-1633	54
546	Phase and morphological control of MoO nanostructures for efficient cancer theragnosis therapy. 2017 , 9, 11012-11016	39
545	Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway. 2017 , 11, 781-793	8
544	Core-Satellite Polydopamine-Gadolinium-Metallofullerene Nanotheranostics for Multimodal Imaging Guided Combination Cancer Therapy. 2017 , 29, 1701013	146
543	Stable and Multifunctional Dye-Modified Black Phosphorus Nanosheets for Near-Infrared Imaging-Guided Photothermal Therapy. 2017 , 29, 7131-7139	125
542	PEGMa modified molybdenum oxide as a NIR photothermal agent for composite thermal/pH-responsive p(NIPAM-co-MAA) microgels. 2017 , 5, 8788-8795	13
541	Polyaniline-loaded Epolyglutamic acid nanogels as a platform for photoacoustic imaging-guided tumor photothermal therapy. 2017 , 9, 12746-12754	53
540	Review of the progress toward achieving heat confinement-the holy grail of photothermal therapy. 2017 , 22, 80901	34
539	Hierarchical Polyphosphazene@Molybdenum Disulfide Hybrid Structure for Enhancing the Flame Retardancy and Mechanical Property of Epoxy Resins. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9.5 9, 29147-29156	105
538	Transferrin-decorated, MoS-capped hollow mesoporous silica nanospheres as a self-guided chemo-photothermal nanoplatform for controlled drug release and thermotherapy. 2017 , 5, 7403-7414	33
537	6-Mercaptopurine-Induced Fluorescence Quenching of Monolayer MoS2 Nanodots: Applications to Glutathione Sensing, Cellular Imaging, and Glutathione-Stimulated Drug Delivery. 2017 , 27, 1702452	43
536	Hybrid nanomaterials of WS or MoS nanosheets with liposomes: biointerfaces and multiplexed drug delivery. 2017 , 9, 13187-13194	33
535	MoS nanosheets encapsulated in sodium alginate microcapsules as microwave embolization agents for large orthotopic transplantation tumor therapy. 2017 , 9, 14846-14853	25
534	Design, Synthesis, and Surface Modification of Materials Based on Transition-Metal Dichalcogenides for Biomedical Applications. 2017 , 1, 1700220	64
533	Dispersible MoS Nanosheets Activated TGF-//Smad Pathway and Perturbed the Metabolome of Human Dermal Fibroblasts. 2017 , 3, 3261-3272	12
532	Enhanced lubrication and photocatalytic degradation of liquid paraffin by coral-like MoS2. 2017 , 41, 7674-76	80 10
531	A Target-Directed Chemo-Photothermal System Based on Transferrin and Copolymer-Modified MoS Nanoplates with pH-Activated Drug Release. 2017 , 23, 11346-11356	28

(2018-2017)

530	Functionalization of MoS2 with 1,2-dithiolanes: toward donor-acceptor nanohybrids for energy conversion. 2017 , 1,		65	
529	Bifunctional Carbon-Dot-WS Nanorods for Photothermal Therapy and Cell Imaging. 2017 , 23, 963-969		19	
528	Fluorogenic 2D Peptidosheet Unravels CD47 as a Potential Biomarker for Profiling Hepatocellular Carcinoma and Cholangiocarcinoma Tissues. 2017 , 29, 1604253		31	
527	The orangeEed persistent luminescence of Ba1⊠CaxS: Yb2+. 2017 , 181, 427-432		8	
526	Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. 2017 , 29, 1603864		635	•
525	In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS (M = Mo, W, Ti) Nanosheets. 2017 , 4, 1600160		147	
524	Copper Manganese Sulfide Nanoplates: A New Two-Dimensional Theranostic Nanoplatform for MRI/MSOT Dual-Modal Imaging-Guided Photothermal Therapy in the Second Near-Infrared Window. 2017 , 7, 4763-4776		72	
523	Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy. 2017 , 7, 4605-4617		57	
522	Highly effective photothermal chemotherapy with pH-responsive polymer-coated drug-loaded melanin-like nanoparticles. 2017 , 12, 1827-1840		24	
521	Degradable Hollow Mesoporous Silicon/Carbon Nanoparticles for Photoacoustic Imaging-Guided Highly Effective Chemo-Thermal Tumor Therapy and. 2017 , 7, 3007-3020		67	
520	Inorganic analogues of graphene. 2017 , 75-101		2	
519	A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. <i>Nano Research</i> , 2018 , 11, 4149-4168	10	75	
518	Effects of dispersible MoS nanosheets and Nano-silver coexistence on the metabolome of yeast. 2018 , 198, 216-225		9	
517	Structural Ordering of Molybdenum Disulfide Studied via Reactive Molecular Dynamics Simulations. <i>ACS Applied Materials & Dynamics Simulations</i> , 10, 8937-8946	9.5	20	
516	In vitro cytotoxicity of covalently protected layered molybdenum disulfide. 2018, 11, 200-206		15	
515	Liquid Exfoliation of Colloidal Rhenium Disulfide Nanosheets as a Multifunctional Theranostic Agent for In Vivo Photoacoustic/CT Imaging and Photothermal Therapy. 2018 , 14, e1703789		45	
514	Comparative Photothermal Performance among Various Sub-Stoichiometric 2D Oxygen-Deficient Molybdenum Oxide Nanoflakes and In Vivo Toxicity. 2018 , 24, 7417-7427		14	
513	Direct Covalent Chemical Functionalization of Unmodified Two-Dimensional Molybdenum Disulfide. 2018 , 30, 2112-2128		65	

512	Black-Phosphorus-Incorporated Hydrogel as a Sprayable and Biodegradable Photothermal Platform for Postsurgical Treatment of Cancer. 2018 , 5, 1700848	199
511	2D magnetic titanium carbide MXene for cancer theranostics. 2018 , 6, 3541-3548	63
510	Ultrasensitive and selective electrochemical sensing of Hg(II) ions in normal and sea water using solvent exfoliated MoS2: affinity matters. 2018 , 6, 14602-14613	48
509	Significant Enhancement of Photothermal and Photoacoustic Efficiencies for Semiconducting Polymer Nanoparticles through Simply Molecular Engineering. 2018 , 28, 1800135	49
508	3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. 2018 , 73, 531-546	70
507	Graphdiyne Nanosheet-Based Drug Delivery Platform for Photothermal/Chemotherapy Combination Treatment of Cancer. <i>ACS Applied Materials & Delivery Platform for Photothermal (Chemotherapy 9.5)</i>	96
506	Exploration of photothermal sensors based on photothermally responsive materials: a brief review. 2018 , 5, 751-759	22
505	Highly stable molybdenum dioxide nanoparticles with strong plasmon resonance are promising in photothermal cancer therapy. 2018 , 163, 43-54	44
504	Albumin-assisted exfoliated ultrathin rhenium disulfide nanosheets as a tumor targeting and dual-stimuli-responsive drug delivery system for a combination chemo-photothermal treatment 2018 , 8, 4624-4633	18
503	Multifunctional Nanoflowers for Simultaneous Multimodal Imaging and High-Sensitivity Chemo-Photothermal Treatment. 2018 , 29, 559-570	31
502	Semiconducting Photothermal Nanoagonist for Remote-Controlled Specific Cancer Therapy. 2018 , 18, 1498-1505	138
501	Multifunctional Porous Iron Oxide Nanoagents for MRI and Photothermal/Chemo Synergistic Therapy. 2018 , 29, 1283-1290	37
500	Intracellular Mechanistic Understanding of 2D MoS Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. <i>ACS Nano</i> , 2018 , 12, 2922-2938	145
499	An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent. 2018 , 20, 1	7
498	Recent advances in cell-mediated nanomaterial delivery systems for photothermal therapy. 2018 , 6, 1296-1311	17
497	Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. 2018 , 30, 1701460	99
496	Nanostructured molybdenum disulfide biointerface for adhesion and osteogenic differentiation of mesenchymal stem cells. 2018 , 10, 164-172	24
495	2D MoS Nanostructures for Biomedical Applications. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701158 10.1	89

494	Disintegrable NIR Light Triggered Gold Nanorods Supported Liposomal Nanohybrids for Cancer Theranostics. 2018 , 29, 1510-1518		30
493	Gd-Doped MoSe nanosheets used as a theranostic agent for bimodal imaging and highly efficient photothermal cancer therapy. 2018 , 6, 372-387		34
492	Peroxidase-like activity of MoS nanoflakes with different modifications and their application for HO and glucose detection. 2018 , 6, 487-498		103
491	ROS-Sensitive Polymeric Nanocarriers with Red Light-Activated Size Shrinkage for Remotely Controlled Drug Release. 2018 , 30, 517-525		82
490	Natural Humic-Acid-Based Phototheranostic Agent. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701202	10.1	20
489	Smart Drug Delivery System-Inspired Enzyme-Linked Immunosorbent Assay Based on Fluorescence Resonance Energy Transfer and Allochroic Effect Induced Dual-Modal Colorimetric and Fluorescent Detection. 2018 , 90, 1976-1982		58
488	Molybdenum disulfide/graphene oxide nanocomposites show favorable lung targeting and enhanced drug loading/tumor-killing efficacy with improved biocompatibility. 2018 , 10, e458-e458		51
487	Design of Phase-Changeable and Injectable Alginate Hydrogel for Imaging-Guided Tumor Hyperthermia and Chemotherapy. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 3392-3404	9.5	35
486	Single layer molybdenum disulfide as an optical nanoprobe for 2 photon luminescence and second harmonic generation cell imaging. 2018 , 11, e201700354		1
485	Intelligent MoS Nanotheranostic for Targeted and Enzyme-/pH-/NIR-Responsive Drug Delivery To Overcome Cancer Chemotherapy Resistance Guided by PET Imaging. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 4271-4284	9.5	93
484	Aqueous Phase Exfoliation of Two-Dimensional Materials Assisted by Thermoresponsive Polymeric Ionic Liquid and Their Applications in Stimuli-Responsive Hydrogels and Highly Thermally Conductive Films. <i>ACS Applied Materials & Discrete States</i> , 2018, 10, 2504-2514	9.5	47
483	Near-Infrared Cyanine-Loaded Liposome-like Nanocapsules of Camptothecin-Floxuridine Conjugate for Enhanced Chemophotothermal Combination Cancer Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3219-3228	9.5	38
482	Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures. 2018 , 10, 11760-11774		16
481	Electrophoretic Deposited Stable Chitosan@MoS Coating with Rapid In Situ Bacteria-Killing Ability under Dual-Light Irradiation. 2018 , 14, e1704347		125
480	CuS Nanocrystals Cross-Linked with Chlorin e6-Functionalized Polyethylenimine for Synergistic Photodynamic and Photothermal Therapy of Cancer. <i>ACS Applied Materials & Description</i> (2018), 10, 16344-16351	9.5	40
479	Bismuth Nanoparticles with LightlProperty Served as a Multifunctional Probe for X-ray Computed Tomography and Fluorescence Imaging. 2018 , 30, 3301-3307		48
478	Monolayer Nanosheets with an Extremely High Drug Loading toward Controlled Delivery and Cancer Theranostics. 2018 , 30, e1707389		100
477	Recent advances in functional nanomaterials for light B riggered cancer therapy. 2018 , 19, 146-187		325

476	Controlled drug delivery vehicles for cancer treatment and their performance. 2018 , 3, 7		804
475	Single-Molecule MoS2 P olymer Interaction and Efficient Aqueous Exfoliation of MoS2 into Single Layer. 2018 , 122, 8262-8269		9
474	Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. 2018 , 30, e1706320		287
473	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. 2018 , 4, 1284-13	13	111
472	An efficient and self-guided chemo-photothermal drug loading system based on copolymer and transferrin decorated MoS 2 nanodots for dually controlled drug release. 2018 , 342, 120-132		39
471	Synergistic effect of iron diselenide decorated multi-walled carbon nanotubes for enhanced heterogeneous electron transfer and electrochemical hydrogen evolution. 2018 , 270, 138-146		12
470	Ultrathin Polypyrrole Nanosheets via Space-Confined Synthesis for Efficient Photothermal Therapy in the Second Near-Infrared Window. 2018 , 18, 2217-2225		161
469	Recent Advances in Functional Polymer Decorated Two-Dimensional Transition-Metal Dichalcogenides Nanomaterials for Chemo-Photothermal Therapy. 2018 , 24, 4215-4227		41
468	Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. <i>Nano Research</i> , 2018 , 11, 247	7 0 -248	7 ³⁹
467	Design of injectable agar-based composite hydrogel for multi-mode tumor therapy. 2018 , 180, 112-121		44
466	PEGylated magnetic Prussian blue nanoparticles as a multifunctional therapeutic agent for combined targeted photothermal ablation and pH-triggered chemotherapy of tumour cells. 2018 , 509, 384-394		29
465	2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. <i>Nanoscale Horizons</i> , 2018 , 3, 74-89	10.8	98
464	2D Material-Based Nanofibrous Membrane for Photothermal Cancer Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 1155-1163	9.5	22
463	Exploring the Nanotoxicology of MoS: A Study on the Interaction of MoS Nanoflakes and K Channels. <i>ACS Nano</i> , 2018 , 12, 705-717	16.7	34
462	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. <i>Nanoscale Horizons</i> , 2018 , 3, 90-204	10.8	203
461	An Ultrathin Flexible 2D Membrane Based on Single-Walled Nanotube MoS2 Hybrid Film for High-Performance Solar Steam Generation. 2018 , 28, 1704505		196
460	Manganese Dioxide Coated WS @Fe O /sSiO Nanocomposites for pH-Responsive MR Imaging and Oxygen-Elevated Synergetic Therapy. 2018 , 14, 1702664		87

(2018-2018)

458	Construction of flower-like MoS/FeO/rGO composite with enhanced photo-Fenton like catalyst performance 2018 , 8, 36625-36631		17	
457	Transition metal dichalcogenide quantum dots: synthesis, photoluminescence and biological applications. 2018 , 6, 8011-8036		28	
456	Interlayer expansion of 2D MoS nanosheets for highly improved photothermal therapy of tumors in vitro and in vivo. 2018 , 54, 13989-13992		26	
455	NIR-responsive carbon-based nanocarriers for switchable on/off drug release and synergistic cancer therapy. 2018 , 6, 7794-7799		9	
454	Fe-Induced Synchronous Formation of Composite Hydrogels for Effective Synergistic Tumor Therapy in NIR-I/II Biowindows. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 41947-41955	9.5	12	
453	Indocyanine Green-Conjugated Magnetic Prussian Blue Nanoparticles for Synchronous Photothermal/Photodynamic Tumor Therapy. 2018 , 10, 74		48	
452	Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. 2018 , 21, 164-177		104	
451	Functionalized Two-Dimensional MoS2 with Tunable Charges for Selective Enzyme Inhibition. 2018 , 3, 17532-17539		10	
450	Nanosonosensitizers for Highly Efficient Sonodynamic Cancer Theranostics. 2018 , 8, 6178-6194		63	
449	Polyphenol-Assisted Exfoliation of Transition Metal Dichalcogenides into Nanosheets as Photothermal Nanocarriers for Enhanced Antibiofilm Activity. <i>ACS Nano</i> , 2018 , 12, 12347-12356	16.7	82	
448	Injectable and Natural Humic Acid/Agarose Hybrid Hydrogel for Localized Light-Driven Photothermal Ablation and Chemotherapy of Cancer. 2018 , 4, 4266-4277		28	
447	Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. 2018 , 290, 56-74		93	
446	Bi S -Tween 20 Nanodots Loading PI3K Inhibitor, LY294002, for Mild Photothermal Therapy of LoVo Cells In Vitro and In Vivo. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800830	10.1	24	
445	Enhanced Exfoliation of Biocompatible MoS2 Nanosheets by Wool Keratin. 2018 , 1, 5460-5469		17	
444	Dual-Stimuli Responsive Bismuth Nanoraspberries for Multimodal Imaging and Combined Cancer Therapy. 2018 , 18, 6778-6788		84	
443	Functionalized MoS Nanovehicle with Near-Infrared Laser-Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteria-Infected Wound Therapy. 2018 , 14, e1802290		158	
442	Metal-Organic Framework as a Microreactor for in Situ Fabrication of Multifunctional Nanocomposites for Photothermal-Chemotherapy of Tumors in Vivo. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 38729-38738	9.5	23	
441	Mass spectrometry imaging of the in situ drug release from nanocarriers. 2018 , 4, eaat9039		46	

440	Anisotropic Polymer Adsorption on Molybdenite Basal and Edge Surfaces and Interaction Mechanism With Air Bubbles. 2018 , 6, 361	21
439	Microwave-assisted preparation of paramagnetic zwitterionic amphiphilic copolymer hybrid molybdenum disulfide for T-weighted magnetic resonance imaging-guided photothermal therapy. 2018 , 6, 6391-6398	3
438	Environmental Stimuli-Irresponsive Long-Term Radical Scavenging of 2D Transition Metal Dichalcogenides through Defect-Mediated Hydrogen Atom Transfer in Aqueous Media. 2018 , 28, 1802737	7
437	Recent Advances in Functional-Polymer-Decorated Transition-Metal Nanomaterials for Bioimaging and Cancer Therapy. 2018 , 13, 2134-2149	14
436	NIRF/PA/CT multi-modality imaging guided combined photothermal and photodynamic therapy based on tumor microenvironment-responsive nanocomposites. 2018 , 6, 4239-4250	23
435	Dispersible MoS micro-sheets induced a proinflammatory response and apoptosis in the gills and liver of adult zebrafish 2018 , 8, 17826-17836	9
434	Two-dimensional molybdenum disulphide nanoflakes synthesized by liquid-solid phase reaction method: regenerative photocatalytic performance under UV-visible light irradiation by advance oxidation process. 2018 , 5, 056206	5
433	In-Situ Growth of NiFe2O4/2D MoS2 p-n Heterojunction Immobilizing Palladium Nanoparticles for Enhanced Visible-Light Photocatalytic Activities. 2018 , 6, 8935-8944	32
432	Construction and synergistic anticancer efficacy of magnetic targeting cabbage-like FeO@MoS@ZnO drug carriers. 2018 , 6, 3792-3799	16
431	Functionalized Transition Metal Dichalcogenide-Based Nanomaterials for Biomedical Applications. 2018 , 289-314	2
430	Single bismuth tungstate nanosheets for simultaneous chemo-, photothermal, and photodynamic therapies mediated by near-infrared light. 2018 , 351, 1147-1158	34
429	Cobalt Phosphide Nanoparticles Applied as a Theranostic Agent for Multimodal Imaging and Anticancer Photothermal Therapy. 2018 , 35, 1800127	16
428	Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. 2018 , 5, 1800518	245
427	Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics. <i>ACS Nano</i> , 2018 , 12, 8520-8530	215
426	Near-Infrared II Dye-Protein Complex for Biomedical Imaging and Imaging-Guided Photothermal Therapy. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800589	80
425	All-in-One Theranostic Nanoplatform Based on Hollow MoS for Photothermally-maneuvered Oxygen Self-enriched Photodynamic Therapy. 2018 , 8, 955-971	73
424	Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. 2018 , 47, 6845-6888	139
423	2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. 2018 , 8, 1648-1664	116

(2018-2018)

422	agents revealing the effects of chemical structure on high photothermal conversion efficiency. 2018, 181, 92-102	55
421	Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. 2018 , 182, 114-126	30
420	Bio-transformation of Graphene Oxide in Lung Fluids Significantly Enhances Its Photothermal Efficacy. 2018 , 2, 222-232	15
419	Butyl Rubber Nanocomposites with Monolayer MoS[Additives: Structural Characteristics, Enhanced Mechanical, and Gas Barrier Properties. 2018 , 10,	5
418	Uniform small-sized MoS from novel solution-based microwave-assisted method with exceptional reversible lithium storage properties. 2018 , 10, 15222-15228	13
417	Platinum nanoworms for imaging-guided combined cancer therapy in the second near-infrared window. 2018 , 6, 5069-5079	23
416	Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via microwave irradiation. 2018 , 459, 588-595	145
415	Bottom-up synthesis of MoS nanospheres for photothermal treatment of tumors. 2018 , 17, 1337-1345	12
414	In vitro and in vivo studies of a chlorin-based carbon nanocarrier with photodynamic therapy features. 2018 , 17, 1329-1336	3
413	Glypican-3-targeted precision diagnosis of hepatocellular carcinoma on clinical sections with a supramolecular 2D imaging probe. 2018 , 8, 3268-3274	31
412	Novel GPC3-binding WS-Ga-PEG-peptide nanosheets for bimodal imaging-guided photothermal therapy. 2018 , 13, 1681-1693	11
411	Stimuli-Responsive 2D Materials Beyond Graphene. 2018 , 28, 1802500	39
410	Photosensitizer-Conjugated BiTe Nanosheets as Theranostic Agent for Synergistic Photothermal and Photodynamic Therapy. 2018 , 57, 10180-10188	30
409	Recent advances in the field of transition metal dichalcogenides for biomedical applications. 2018 , 10, 16365-16397	95
408	Synthesis of Surface-Modification-Oriented Nanosized Molybdenum Disulfide with High Peroxidase-Like Catalytic Activity for H O and Cholesterol Detection. 2018 , 24, 15868-15878	28
407	In Situ Growth of CuS/SiO-Based Multifunctional Nanotherapeutic Agents for Combined Photodynamic/Photothermal Cancer Therapy. <i>ACS Applied Materials & District Research</i> 10, 31008-31618	35
406	Atom economy and green elimination of nitric oxide using ZrN powders. 2018 , 5, 171516	
405	Multivalent Interactions between 2D Nanomaterials and Biointerfaces. 2018 , 30, e1706709	78

404	Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 6360-6877	56
403	Outside-in synthesis of mesoporous silica/molybdenum disulfide nanoparticles for antitumor application. 2018 , 351, 157-168	58
402	Bmart[materials-based near-infrared light-responsive drug delivery systems for cancer treatment: A review. 2019 , 8, 1497-1509	96
401	Selective modification of two-dimensional MoS2 nanosheets by polymer grafting. 2019 , 30, 311-313	6
400	Biomedical and bioimaging applications of 2D pnictogens and transition metal dichalcogenides. 2019 , 11, 15770-15782	17
399	Photosensitizer and anticancer drug-loaded 2D nanosheet: Preparation, stability and anticancer property. 2019 , 6, 045035	6
398	Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. 2019 , 23, 729-765	22
397	Parameterization of Molybdenum Disulfide Interacting with Water Using the Free Energy Perturbation Method. 2019 , 123, 7243-7252	3
396	Biodegradable Black Phosphorus-based Nanomaterials in Biomedicine: Theranostic Applications. 2019 , 26, 1788-1805	24
395	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. 2019 , 131, 13539-13544	29
394	Electrical Tuning of the SERS Enhancement by Precise Defect Density Control. <i>ACS Applied Materials & Defect Density Control ACS Applied Processes</i> (2019, 11, 34091-34099)	26
393	Two Dimensional Transition Metal Dichalcogenides. 2019,	3
392	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. 2019 , 58, 13405-13410	75
391	Transition Metal Dichalcogenides for Biomedical Applications. 2019 , 241-292	1
390	Molybdenum oxide nano-dumplings with excellent stability for photothermal cancer therapy and as a controlled release hydrogel. 2019 , 43, 14281-14290	8
389	A magnetic graphene-like MoS nanocomposite for simultaneous preconcentration of multi-residue herbicides prior to UHPLC with ion trap mass spectrometric detection. 2019 , 186, 486	5
388	WS2 quantum dots/MoS2@WO3-x core-shell hierarchical dual Z-scheme tandem heterojunctions	_
	with wide-spectrum response and enhanced photocatalytic performance. 2019 , 257, 117913	69

386	Redox/NIR dual-responsive MoS for synergetic chemo-photothermal therapy of cancer. 2019 , 17, 78	19
385	Functionalized Hybridization of 2D Nanomaterials. 2019 , 6, 1901837	40
384	Functional Layered Double Hydroxide Nanohybrids for Biomedical Imaging. 2019 , 9,	16
383	Multifunctional MoS nanosheets with Au NPs grown in situ for synergistic chemo-photothermal therapy. 2019 , 184, 110551	14
382	Novel Oxygen-Deficient Zirconia (ZrO) for Fluorescence/Photoacoustic Imaging-Guided Photothermal/Photodynamic Therapy for Cancer. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 41127-541	13 ¹⁹
381	Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy. <i>ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Description of the Synergistic Nanocatalytic N</i>	44
380	A study on a near-shore cantilevered sea wave energy harvester with a variable cross section. 2019 , 7, 3174-3185	10
379	2D Metal Carbides and Nitrides (MXenes). 2019 ,	130
378	Bio-Nano Interfacial Interactions for Drug Delivery Systems. 2019 , 53-73	
377	Nanofibrous Composites Reinforced by MoS2 Nanosheets as a Conductive Scaffold for Cardiac Tissue Engineering. 2019 , 4, 11557-11563	13
376	Fluorescence life-time imaging microscopy (FLIM) monitors tumor cell death triggered by photothermal therapy with MoS2 nanosheets. 2019 , 12, 1940002	6
375	Co-delivery of chlorin e6 and doxorubicin using PEGylated hollow nanocapsules for 'all-in-one' tumor theranostics. 2019 , 14, 2273-2292	4
374	Black phosphorus nanosheets and gemcitabine encapsulated thermo-sensitive hydrogel for synergistic photothermal-chemotherapy. 2019 , 556, 232-238	28
373	Pluronic F127 self-assembled MoS nanocomposites as an effective glutathione responsive anticancer drug delivery system 2019 , 9, 25592-25601	7
372	Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. <i>Coordination Chemistry Reviews</i> , 2019 , 400, 213041	54
371	Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. 2019 , 99, 101164	93
370	Theoretical Insights into CO2 Adsorption by MoS2 Nanomaterials. 2019 , 123, 26338-26350	9
369	Two-way rewritable and stable photonic patterns enabled by near-infrared laser-responsive shape memory photonic crystals. 2019 , 7, 1896-1903	16

368	MoS2-based nanostructures: synthesis and applications in medicine. 2019 , 52, 183001		30
367	MoS2-based biomaterials for cancer therapy. 2019 , 141-161		1
366	Enhancing the antibacterial efficacy of low-dose gentamicin with 5 minute assistance of photothermy at 50 LC. 2019 , 7, 1437-1447		44
365	Mechanistic Insight into the Antibacterial Activity of Chitosan Exfoliated MoS Nanosheets: Membrane Damage, Metabolic Inactivation, and Oxidative Stress 2019 , 2, 2738-2755		76
364	Rod-shape MSN@MoS Nanoplatform for FL/MSOT/CT Imaging-Guided Photothermal and Photodynamic Therapy. 2019 , 9, 3992-4005		35
363	Interactions of Transition Metal Dichalcogenide Nanosheets With Mucin: Quartz Crystal Microbalance With Dissipation, Surface Plasmon Resonance, and Spectroscopic Probing. 2019 , 7, 166		
362	Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy. 2019 , 553, 567-580		20
361	Mass Production of High-Quality Transition Metal Dichalcogenides Nanosheets via a Molten Salt Method. 2019 , 29, 1900649		39
360	Biocompatible MoS/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. 2019 , 217, 119290		102
359	Nanobiomaterials: from 0D to 3D for tumor therapy and tissue regeneration. 2019 , 11, 13678-13708		37
358	Graphene family nanomaterials for application in cancer combination photothermal therapy. 2019 , 7, 3534-3551		65
357	Lentinan in-situ coated tungsten oxide nanorods as a nanotherapeutic agent for low power density photothermal cancer therapy. 2019 , 137, 904-911		18
356	Superhydrophobic states of 2D nanomaterials controlled by atomic defects can modulate cell adhesion. 2019 , 55, 8772-8775		15
355	Bis-diketopyrrolopyrrole conjugated polymer nanoparticles as photothermic nanoagonist for specific and synergistic glioblastoma therapy. 2019 , 216, 119252		38
354	Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 26529-26558	9.5	108
353	Biocompatible Two-Dimensional Titanium Nanosheets for Multimodal Imaging-Guided Cancer Theranostics. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 22129-22140	9.5	96
352	Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection. 2019 , 374, 596-604		45
351	Silica-Coated TiN Particles for Killing Cancer Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 225	- 590 <u>=</u> 22:	5601

350	2-Dicyanomethylenethiazole based NIR absorbing organic nanoparticles for photothermal therapy and photoacoustic imaging. 2019 , 7, 3950-3957	7
349	Stimuli responsive PEGylated bismuth selenide hollow nanocapsules for fluorescence/CT imaging and light-driven multimodal tumor therapy. 2019 , 7, 3025-3040	17
348	Controlled drug release from PNIPAM-incorporated melanin nanovesicles by photo-stimulation. 2019 , 34, 639-644	4
347	Tris-Stabilized MoS2 Nanosheets with Robust Dispersibility and Facile Surface Functionalization. 2019 , 6, 1900585	7
346	Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment. 2019 , 11, 335-352	62
345	2D Material-Based Hybrid Nanostructure for Diagnosis and Therapy. 2019 , 143-164	4
344	Tumour microenvironment responsive nanoconstructs for cancer theranostic. 2019 , 26, 16-56	73
343	A Versatile Carbon Monoxide Nanogenerator for Enhanced Tumor Therapy and Anti-Inflammation. <i>ACS Nano</i> , 2019 , 13, 5523-5532	53
342	Two-Dimensional Nanomaterials in Cancer Theranostics. 2019 , 263-288	6
341	Potential blockade of the human voltage-dependent anion channel by MoS nanoflakes. 2019 , 21, 9520-9530	1
340	Designing Bioinspired 2D MoSe2 Nanosheet for Efficient Photothermal-Triggered Cancer Immunotherapy with Reprogramming Tumor-Associated Macrophages. 2019 , 29, 1901240	107
339	A General In Situ Growth Strategy of Designing Theranostic NaLnF4@Cu2⊠S Nanoplatform for In Vivo NIR-II Optical Imaging Beyond 1500 nm and Photothermal Therapy. 2019 , 2, 1800153	18
338	Multifunctional Polypyrrole-Coated Mesoporous TiO Nanocomposites for Photothermal, Sonodynamic, and Chemotherapeutic Treatments and Dual-Modal Ultrasound/Photoacoustic 10.1 Imaging of Tumors. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801254	49
337	Indocyanine green-modified hollow mesoporous Prussian blue nanoparticles loading doxorubicin for fluorescence-guided tri-modal combination therapy of cancer. 2019 , 11, 5717-5731	37
336	Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. 2019 , 7, 2588-2607	21
335	Carbon dot-sensitized MoS nanosheet heterojunctions as highly efficient NIR photothermal agents for complete tumor ablation at an ultralow laser exposure. 2019 , 11, 7209-7220	28
334	Drug Delivery System Based on Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets Controls the High-Efficiency Release of Dexamethasone To Inhibit Inflammation and Treat 9.5 Osteoarthritis. ACS Applied Materials & Company (Interfaces, 2019, 11, 11587-11601)	56
333	pH-Operated Triplex DNA Device on MoS Nanosheets. 2019 , 35, 5050-5053	9

332	A facile preparation of FePt-loaded few-layer MoS nanosheets nanocomposites (F-MoS-FePt NCs) and their application for colorimetric detection of HO in living cells. 2019 , 17, 38	15
331	The theranostic nanoagent MoC for multi-modal imaging-guided cancer synergistic phototherapy. 2019 , 7, 2729-2739	23
330	Molybdenum disulfide-based hyaluronic acid-guided multifunctional theranostic nanoplatform for magnetic resonance imaging and synergetic chemo-photothermal therapy. 2019 , 548, 131-144	18
329	Reactive Oxygen Species (ROS)-Based Nanomedicine. 2019 , 119, 4881-4985	776
328	Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. 2019 , 370, 387-399	54
327	NIR light-responsive short peptide/2D NbSe2 nanosheets composite hydrogel with controlled-release capacity. 2019 , 7, 3134-3142	15
326	Fabrication of nanoheterostructures of boron doped ZnO-MoS2 with enhanced photostability and photocatalytic activity for environmental remediation applications. 2019 , 163, 88-98	25
325	Nanogold Flower-Inspired Nanoarchitectonics Enables Enhanced Light-to-Heat Conversion Ability for Rapid and Targeted Chemo-Photothermal Therapy of a Tumor. <i>Advanced Healthcare Materials</i> , 10.1 2019 , 8, e1801300	13
324	Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. 2019 , 119, 4357-4412	1010
323	Translocation, biotransformation-related degradation, and toxicity assessment of polyvinylpyrrolidone-modified 2H-phase nano-MoS. 2019 , 11, 4767-4780	28
322	Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. 2019 , 299, 1-20	92
321	MoS flakes stabilized with DNA/RNA nucleotides: In vitro cell response. <i>Materials Science and Engineering C</i> , 2019 , 100, 11-22	2
320	TWO-PHOTON LUMINESCENCE AND SECOND HARMONIC GENERATION OF SINGLE LAYER MOLYBDENUM DISULPHIDE NANOPROBE FOR NONBLEACHING AND NONBLINKING OPTICAL BIOIMAGING. 2019 , 166, 107-117	6
319	Benefits of Nanomedicine for Therapeutic Intervention in Malignant Diseases. 2019 , 9, 628	11
318	"All-in-One" Theranostic Agent with Seven Functions Based on Bi-Doped Metal Chalcogenide Nanoflowers. <i>ACS Applied Materials & ACS Applied Materials &</i>	14
317	High-activity Mo, S co-doped carbon quantum dot nanozyme-based cascade colorimetric biosensor for sensitive detection of cholesterol. 2019 , 7, 7042-7051	49
316	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. 2019 , 7, 320	31
315	The molecular mechanism of robust macrophage immune responses induced by PEGylated molybdenum disulfide. 2019 , 11, 22293-22304	18

314	In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles: A three-dimensional heterostructure for high-performance flexible lithium-ion batteries. 2019 , 356, 483-49	91	67
313	Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Advanced Drug Delivery Reviews, 2019 , 138, 211-232	18.5	39
312	Polymer Amphiphiles for Photoregulated Anticancer Drug Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 2814-2820	9.5	13
311	The effects of different surfactants on the morphologies and electrochemical properties of MoS2/reduce graphene oxide composites. 2019 , 716, 6-10		10
310	Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Advanced Drug Delivery Reviews, 2019 , 138, 148-166	18.5	43
309	Solution-processed flexible paper-electrode for lithium-ion batteries based on MoS2 nanosheets exfoliated with cellulose nanofibrils. 2019 , 298, 22-30		19
308	Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. 2019 , 119, 1666-1762		208
307	Ultrasmall Au-Ag Alloy Nanoparticles: Protein-Directed Synthesis, Biocompatibility, and X-ray Computed Tomography Imaging. 2019 , 5, 1005-1015		16
306	Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. <i>Nano Research</i> , 2019 , 12, 1307-1312	10	50
305	2D MoS -Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. 2019 , 15, e1803	3706	159
305 304	2D MoS -Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. 2019 , 15, e1803 Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells. 2019 , 174, 324-332	3706	159 20
	Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence	3706	
304	Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells. 2019, 174, 324-332 Introduction. 2019, 1-36 Ultrasmall MoS Nanodots-Doped Biodegradable SiO Nanoparticles for Clearable FL/CT/MSOT	9.5	20
304	Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells. 2019 , 174, 324-332 Introduction. 2019 , 1-36 Ultrasmall MoS Nanodots-Doped Biodegradable SiO Nanoparticles for Clearable FL/CT/MSOT Imaging-Guided PTT/PDT Combination Tumor Therapy. <i>ACS Applied Materials & Company Interfaces</i> ,		20
304 303 302	Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells. 2019, 174, 324-332 Introduction. 2019, 1-36 Ultrasmall MoS Nanodots-Doped Biodegradable SiO Nanoparticles for Clearable FL/CT/MSOT Imaging-Guided PTT/PDT Combination Tumor Therapy. ACS Applied Materials & Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced		20 1 65
304 303 302 301	Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells. 2019, 174, 324-332 Introduction. 2019, 1-36 Ultrasmall MoS Nanodots-Doped Biodegradable SiO Nanoparticles for Clearable FL/CT/MSOT Imaging-Guided PTT/PDT Combination Tumor Therapy. ACS Applied Materials & Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy. 2019, 539, 433-441 Ultrathin Tellurium Oxide/Ammonium Tungsten Bronze Nanoribbon for Multimodality Imaging and		20 1 65
304 303 302 301 300	Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells. 2019, 174, 324-332 Introduction. 2019, 1-36 Ultrasmall MoS Nanodots-Doped Biodegradable SiO Nanoparticles for Clearable FL/CT/MSOT Imaging-Guided PTT/PDT Combination Tumor Therapy. ACS Applied Materials & Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy. 2019, 539, 433-441 Ultrathin Tellurium Oxide/Ammonium Tungsten Bronze Nanoribbon for Multimodality Imaging and Second Near-Infrared Region Photothermal Therapy. 2019, 19, 1179-1189 Synergistic effect of surface plasmon resonance, Ti and oxygen vacancy defects on Ag/MoS/TiO ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater		20 1 65 22 62

296	External stimulus responsive inorganic nanomaterials for cancer theranostics. <i>Advanced Drug Delivery Reviews</i> , 2019 , 138, 18-40	18.5	47
295	Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant. 2019 , 193, 1-11		97
294	Advanced Near-Infrared Light-Responsive Nanomaterials as Therapeutic Platforms for Cancer Therapy. 2019 , 2, 1800090		20
293	Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. 2019 , 188, 12-23		23
292	Co-delivery of erlotinib and doxorubicin by MoS2 nanosheets for synergetic photothermal chemotherapy of cancer. 2020 , 381, 122541		19
291	Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections. 2020 , 382, 122990		81
290	A multifunctional nanoplatform based on MoS-nanosheets for targeted drug delivery and chemo-photothermal therapy. 2020 , 185, 110585		19
289	MoS2 nanosheet initiated smart polymeric hydrogel for NIR-driven Ag(I) enrichment. 2020 , 382, 123018		14
288	Two-dimensional nanostructure colloids in novel nano drug delivery systems. 2020 , 585, 124077		9
287	2D Nanomaterials for Cancer Theranostic Applications. 2020 , 32, e1902333		193
287 286	2D Nanomaterials for Cancer Theranostic Applications. 2020 , 32, e1902333 UCNP-Bi Se Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and Photothermal Therapy. 2020 , 26, 1127-1135		193
ĺ	UCNP-Bi Se Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and		
286	UCNP-Bi Se Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and Photothermal Therapy. 2020 , 26, 1127-1135 PEGylated MoS quantum dots for traceable and pH-responsive chemotherapeutic drug delivery.		17
286	UCNP-Bi Se Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and Photothermal Therapy. 2020, 26, 1127-1135 PEGylated MoS quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. 2020, 185, 110590 Graphene oxide / BaHoF5 / PEG nanocomposite for dual-modal imaging and heat shock protein		17
286 285 284	UCNP-Bi Se Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and Photothermal Therapy. 2020, 26, 1127-1135 PEGylated MoS quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. 2020, 185, 110590 Graphene oxide / BaHoF5 / PEG nanocomposite for dual-modal imaging and heat shock protein inhibitor-sensitized tumor photothermal therapy. 2020, 158, 372-385		17 22 30
286 285 284 283	UCNP-Bi Se Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and Photothermal Therapy. 2020, 26, 1127-1135 PEGylated MoS quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. 2020, 185, 110590 Graphene oxide / BaHoF5 / PEG nanocomposite for dual-modal imaging and heat shock protein inhibitor-sensitized tumor photothermal therapy. 2020, 158, 372-385 Photoactive Nanocarriers for Controlled Delivery. 2020, 30, 1903896 Incorporation of two-dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue		17 22 30 24
286 285 284 283	UCNP-Bi Se Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and Photothermal Therapy. 2020, 26, 1127-1135 PEGylated MoS quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. 2020, 185, 110590 Graphene oxide / BaHoF5 / PEG nanocomposite for dual-modal imaging and heat shock protein inhibitor-sensitized tumor photothermal therapy. 2020, 158, 372-385 Photoactive Nanocarriers for Controlled Delivery. 2020, 30, 1903896 Incorporation of two-dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering. 2020, 31, 248-259 Catalytic chemistry of iron-free Fenton nanocatalysts for versatile radical nanotherapeutics. 2020,		17 22 30 24 20

(2020-2020)

278	Electrocatalytic synthesis of black tin oxide nanomaterial as photothermal agent for cancer therapy. <i>Materials Science and Engineering C</i> , 2020 , 108, 110350	8.3	2
277	Layered MoS nanosheets modified by biomimetic phospholipids: Enhanced stability and its synergistic treatment of cancer with chemo-photothermal therapy. 2020 , 187, 110631		18
276	Eco-friendly Hybrids of Carbon Quantum Dots Modified MoS2 for Rapid Microbial Inactivation by Strengthened Photocatalysis. 2020 , 8, 534-542		32
275	Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. 2020 , 10, 757-781		72
274	Functional black phosphorus nanosheets for cancer therapy. 2020 , 318, 50-66		40
273	2D materials for bio-photonic applications. 2020 , 253-280		1
272	Self-Growth of MoS2 Sponge for Highly Efficient Photothermal Cleanup of High-Viscosity Crude Oil Spills. 2020 , 7, 1901671		28
271	Single-atom nanozymes for biological applications. 2020 , 8, 6428-6441		15
270	Surface Modification of Monolayer MoS by Baking for Biomedical Applications. 2020 , 8, 741		3
269	From Octahedron Crystals to 2D Silicon Nanosheets: Facet-Selective Cleavage and Biophotonic Applications. 2020 , 16, e2003594		5
268	Black Bioceramics: Combining Regeneration with Therapy. 2020 , 32, e2005140		26
267	Ultrathin Transition Metal Chalcogenide Nanosheets Synthesized Topotactic Transformation for Effective Cancer Theranostics. <i>ACS Applied Materials & Description of Communication Synthesized</i> (12, 48310-48320)	9.5	6
266	Metallic 1T Phase Enabling MoS Nanodots as an Efficient Agent for Photoacoustic Imaging Guided Photothermal Therapy in the Near-Infrared-II Window. 2020 , 16, e2004173		76
265	Polyethylenimine modified MoS2 nanocomposite with high stability and enhanced photothermal antibacterial activity. 2020 , 401, 112762		11
264	Manganese-Doped Layered Double Hydroxide: A Biodegradable Theranostic Nanoplatform with Tumor Microenvironment Response for Magnetic Resonance Imaging-Guided Photothermal Therapy 2020 , 3, 5845-5855		12
263	Design and synthesis of two-dimensional materials and their heterostructures. 2020 , 13-54		1
262	A Comparative Performance Evaluation of 2D Nanomaterials for Applications in Plasmonic Biosensing. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2000255	1.6	1
261	Exploring the interactions between flawed materials and YAP65 to reveal the role of vacancy defects in MoS2 sheet nanotoxicity. 2020 , 22, 1		1

260	Biodegradable Fe-Doped Vanadium Disulfide Theranostic Nanosheets for Enhanced Sonodynamic/Chemodynamic Therapy. <i>ACS Applied Materials & Discourse Materia</i>	9.5	31	
259	Adjusting Channel Size within PVA-Based Hydrogels via Ice Templating for Enhanced Solar Steam Generation. 2020 , 3, 9216-9225		11	
258	Safe-by-Design Exfoliation of Niobium Diselenide Atomic Crystals as a Theory-Oriented 2D Nanoagent from Anti-Inflammation to Antitumor. 2020 , 30, 2001593		13	
257	Nanotoxicity of ZrS Probed in a Bioluminescence Test on Bacteria: The Effect of Evolving HS. 2020 , 10,		5	
256	Controllable Growth and Assembling Strategies Based on Nanomaterials for Targeted and Precise Therapy of Malignant Cancers. 2020 , 38, 1489-1496		3	
255	Light activated shape memory polymers and composites: A review. 2020 , 136, 109912		28	
254	Potential toxicity mechanism of MoS nanotube in the interaction between YAP65 WW domain and PRM. 2020 , 196, 111317		2	
253	Facile synthesis of biocompatible L-cysteine-modified MoS nanospheres with high photothermal conversion efficiency for photothermal therapy of tumor. <i>Materials Science and Engineering C</i> , 2020 , 117, 111371	8.3	15	
252	Mesoporous silica nanoparticles combined with MoS2 and FITC for fluorescence imaging and photothermal therapy of cancer cells. 2020 , 55, 15263-15274		8	
251	Bilayer MSe2 and MS2 (M⊈IMo, W) as a novel drug delivery system for 且apachone anticancer drug: Quantum chemical study. 2020 , 1190, 112999		5	
250	Recent advancement in biomedical applications on the surface of two-dimensional materials: from biosensing to tissue engineering. 2020 , 12, 19043-19067		27	
249	All-Dry Transferred ReS Nanosheets for Ultrasensitive Room-Temperature NO Sensing under Visible Light Illumination. 2020 , 5, 3172-3181		17	
248	Near-Infrared Plasmon-Boosted Heat/Oxygen Enrichment for Reversing Rheumatoid Arthritis with Metal/Semiconductor Composites. <i>ACS Applied Materials & District Reversing Rheumatoid Arthritis with Metal/Semiconductor Composites (New York)</i>	9.5	18	
247	Combinatorial discovery of Mo-based polyoxometalate clusters for tumor photothermal therapy and normal cell protection. 2020 , 8, 6017-6024		6	
246	Light: A Magical Tool for Controlled Drug Delivery. 2020 , 30, 2005029		57	
245	The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. 2020 , 14, 1137-1155		7	
244	Poly(Acrylic Acid)-Modified MoS Nanoparticle-Based Transdermal Delivery of Atenolol. 2020 , 15, 5517-5	526	8	
243	Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms. 2020 , 11, 1134-1146		15	

242	Activation Strategies in Image-Guided Nanotherapeutic Delivery. 2020 , 1, 78-104	4
241	Two-Dimensional Nanomaterials With Enzyme-Like Properties for Biomedical Applications. 2020 , 8, 565940	13
240	Manipulation of mechanical properties of monolayer molybdenum disulfide: Kirigami and hetero-structure based approach. 2020 , 252, 123280	2
239	Molybdenum disulfide nanosheets: From exfoliation preparation to biosensing and cancer therapy applications. 2020 , 194, 111162	20
238	Albumin-induced exfoliation of molybdenum disulfide nanosheets incorporated polycaprolactone/zein composite nanofibers for bone tissue regeneration. <i>Materials Science and Engineering C</i> , 2020 , 116, 111162	12
237	Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. <i>Nano Research</i> , 2020 , 13, 2340-2350	32
236	Two-dimensional nanoparticles for the delivery of anticancer drugs and cancer therapy. 2020 , 16, 151-199	4
235	Recent advances in MoS-based photothermal therapy for cancer and infectious disease treatment. 2020 , 8, 5793-5807	38
234	A critical review on the applications and potential risks of emerging MoS nanomaterials. 2020 , 399, 123057	32
233	Recent Advances of Magnetic Nanomaterials in the Field of Oncology. 2020 , 13, 4825-4832	1
232	Surface modification engineering of two-dimensional titanium carbide for efficient synergistic multitherapy of breast cancer. 2020 , 8, 6402-6417	27
231	Transition metal dichalcogenides for biomedical applications. 2020 , 211-247	1
230	Photoelectrochemical Biosensor for DNA Formylation Detection in Genomic DNA of Maize Seedlings Based on Black Tio-Enhanced Photoactivity of MoS/WS Heterojunction. 2020 , 5, 1092-1101	29
229	A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. 2020 , 12, 8415-8424	18
228	NIR-triggered doxorubicin photorelease using CuS@Albumin composites and in-vitro effect over HeLa cells. 2020 , 57, 101642	1
227	2D nanostructures beyond graphene: preparation, biocompatibility and biodegradation behaviors. 2020 , 8, 2974-2989	26
226	A biodegradable nanodrug of molybdenum silicide for photothermal oncotherapy. 2020 , 44, 5211-5217	4
225	Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. 2020 , 59, 10633-1063	8 143

Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. 2020, 132, 10720-107255 224 Theoretical Studies of MoS2 and Phosphorene Drug Delivery for Antituberculosis Drugs. 2020, 124, 8279-8287 223 Two-Dimensional Theranostic Nanomaterials in Cancer Treatment: State of the Art and 222 11 Perspectives. **2020**, 12, Functionalized MoS-nanoparticles for transdermal drug delivery of atenolol. 2020, 27, 909-916 221 MoS-ALG-Fe/GOx hydrogel with Fenton catalytic activity for combined cancer photothermal, 220 51 starvation, and chemodynamic therapy. 2020, 195, 111243 A bifunctional nanoplatform based on copper manganate nanoflakes for bacterial elimination via a 219 7 catalytic and photothermal synergistic effect. 2020, 8, 4266-4274 Near-infrared triggered Ti3C2/g-C3N4 heterostructure for mitochondria-targeting multimode 218 40 photodynamic therapy combined photothermal therapy. **2020**, 34, 100919 Harnessing biological applications of quantum materials: opportunities and precautions. 2020, 8, 10498-10525 2 217 Comparative analysis of biological effects of molybdenum(IV) sulfide in the form of nano- and 6 216 microparticles on human hepatoma HepG2 cells grown in 2D and 3D models. 2020, 68, 104931 Morphology-controlled Synthesis of Molybdenum Oxide with Tunable Plasmon Absorption for 6 215 Phothermal Therapy of Cancer. **2020**, 6, 1407-1416 Peculiar piezoelectricity of atomically thin planar structures. 2020, 12, 2875-2901 214 25 The Rise of 2D Photothermal Materials beyond Graphene for Clean Water Production. 2020, 7, 1902236 213 100 Synthesis of porous gadolinium oxide nanosheets for cancer therapy and magnetic resonance 8 212 imaging. 2020, 265, 127375 Near-Infrared Light-Switched MoS Nanoflakes@Gelatin Bioplatform for Capture, Detection, and 211 17 Nondestructive Release of Circulating Tumor Cells. 2020, 92, 3111-3117 WS nanosheets functionalized by biomimetic lipids with enhanced dispersibility for photothermal 210 13 and chemo combination therapy. 2020, 8, 2331-2342 Synthesis of biogenic chitosan-functionalized 2D layered MoS hybrid nanocomposite and its performance in pharmaceutical applications: In-vitro antibacterial and anticancer activity. 2020, 209 20 149, 1019-1033 Immunostimulatory Potential of MoS Nanosheets: Enhancing Dendritic Cell Maturation, Migration 208 9 and T Cell Elicitation. 2020, 15, 2971-2986 Liquid-Phase Exfoliation and Functionalization of MoS Nanosheets for Effective Antibacterial 207 11 Application. 2020, 21, 2373-2380

(2021-2020)

206	Design and application of proximity hybridization-based multiple stimuli-responsive immunosensing platform for ovarian cancer biomarker detection. 2020 , 159, 112201		21	
205	A novel one-pot strategy for fabrication of PEGylated MoS2 composites for pH responsive controlled drug delivery. 2020 , 307, 112962		2	
204	Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization. 2020 , 31, 315101		4	
203	Two-Dimensional Transition Metal Dichalcogenides: Synthesis, Biomedical Applications and Biosafety Evaluation. 2020 , 8, 236		34	
202	Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds. 2020 , 396, 125081		26	
201	Graphdiyne Micromotors in Living Biomedia. 2020 , 26, 8471-8477		7	
200	Metal-based nanocontainers for drug delivery in tumor therapy. 2020 , 195-215		0	
199	Large-area 2D TMD layers for mechanically reconfigurable electronic devices. 2020 , 53, 313002		11	
198	Applications of molybdenum oxide nanomaterials in the synergistic diagnosis and treatment of tumor. 2020 , 10, 2069-2083		4	
197	Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy. 2020 , 7, 1834-1844		36	
196	Preparation of high-performance natural rubber/carbon black/molybdenum disulfide composite by using the premixture of epoxidized natural rubber and cysteine-modified molybdenum disulfide. 2021 , 78, 1213-1230		1	
195	Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. 2021 , 61, 101830		11	
194	Biomedical applications of transition metal dichalcogenides (TMDCs). 2021 , 271, 116610		10	
193	Ultra-small MoS2 nanodots-incorporated mesoporous silica nanospheres for pH-sensitive drug delivery and CT imaging. 2021 , 63, 91-96		5	
192	Effect of ROS generation on highly dispersed 4-layer O-TiO nanosheets toward tumor synergistic therapy. <i>Materials Science and Engineering C</i> , 2021 , 120, 111666	8.3	O	
191	Inorganic Nanomaterials for Photothermal-Based Cancer Theranostics. 2021 , 4, 2000207		5	
190	Solar-Driven Photocatalytic Disinfection Over 2D Semiconductors: The Generation and Effects of Reactive Oxygen Species. 2021 , 5, 2000594		5	
189	Black phosphorus nanosheets-based platform for targeted chemo-photothermal synergistic cancer therapy. 2021 , 198, 111467		14	

188	Low-dimensional nanomaterials enabled autoimmune disease treatments: Recent advances, strategies, and future challenges. <i>Coordination Chemistry Reviews</i> , 2021 , 432, 213697	2
187	Simultaneous doxorubicin encapsulation and in-situ microfluidic micellization of bio-targeted polymeric nanohybrids using dichalcogenide monolayers: A molecular in-silico study. 2021 , 26, 101948	12
186	Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. 2021 , 330, 257-283	20
185	First-principles studies of MoF6 absorption on hydroxylated and non-hydroxylated metal oxide surfaces and implications for atomic layer deposition of MoS2. 2021 , 541, 148461	2
184	Spherelike aggregates of porphyrin as phototherapeutic agent for synergistic cancer treatment. 2021 , 186, 108926	3
183	Discovery of natural water-dispersible MoS2 quantum dots in bulk powder. 2021 , 535, 147661	1
182	Liquid exfoliated biocompatible WS@BSA nanosheets with enhanced theranostic capacity. 2021 , 9, 148-156	4
181	Multimodal channel cancer chemotherapy by 2D functional gadolinium metal-organic framework. 2021 , 8, nwaa221	10
180	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. 2021 , 50, 11381-11485	23
179	Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. 2021 , 50, 4432-4483	58
178	Molybdenum disulfide/carbon nanocomposite with enhanced photothermal effect for doxorubicin delivery. 2021 , 136, 1	О
177	Recent Trends in Photoacoustic Imaging Techniques for 2D Nanomaterial-Based Phototherapy. 2021 , 9,	9
176	Material and strategies used in oncology drug delivery. 2021 , 47-62	
175	One-step in situ growth of MoS2@lentinan as a dual-stimuli-responsive nanocarrier for synergistic chemo-photothermal therapy.	1
174	NIR-absorbing Prussian blue nanoparticles for transarterial infusion photothermal therapy of VX2 tumors implanted in rabbits. 2021 , 13, 8490-8497	3
173	Simultaneous sulfidation of Mo and Co oxides supported on Au(111). 2021 , 23, 8403-8412	
172	Recent advances in the photothermal applications of two-dimensional nanomaterials: photothermal therapy and beyond. 2021 , 9, 17569-17591	11
171	Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. 2021 , 9, 2384-2412	4

170	Protein interactions with chemical vapor deposited graphene modified by substrate. 2021 , 8, 025015		1
169	Aptamer-Functionalized Micro- and Nanocarriers for Controlled Release. <i>ACS Applied Materials</i> & Samp; Interfaces, 2021 , 13, 9520-9541	9.5	18
168	The age of bioinspired molybdenum-involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. 2021 , 2, 20200188		16
167	Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. 2021 , 16, 708-716		46
166	Stanene-Based Nanosheets for Elemene Delivery and Ultrasound-Mediated Combination Cancer Therapy. 2021 , 133, 7231-7240		9
165	CellBubstrate Interactions Lead to Internalization and Localization of Layered MoS2 Nanosheets. 2021 , 4, 2002-2010		2
164	2D LDH-MoS clay nanosheets: synthesis, catalase-mimic capacity, and imaging-guided tumor photo-therapy. 2021 , 19, 36		9
163	Stanene-Based Nanosheets for Elemene Delivery and Ultrasound-Mediated Combination Cancer Therapy. 2021 , 60, 7155-7164		53
162	Renal-Clearable Ultrasmall Polypyrrole Nanoparticles with Size-Regulated Property for Second Near-Infrared Light-Mediated Photothermal Therapy. 2021 , 31, 2008362		25
161	Preparation and Laser Marking Properties of Poly(propylene)/Molybdenum Sulfide Composite Materials. 2021 , 6, 9129-9140		2
160	Near-infrared light-triggered platelet arsenal for combined photothermal-immunotherapy against cancer. 2021 , 7,		20
159	Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. 2021 , 11,		8
158	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. 2021 , 43, 99-131		29
157	Functionalized MoS2-Based Nanomaterials for Cancer Phototherapy and Other Biomedical Applications. 2021 , 3, 462-496		22
156	Engineering of bioactive metal sulfide nanomaterials for cancer therapy. 2021 , 19, 93		8
155	Reversing Immunosuppression in Hypoxic and Immune-Cold Tumors with Ultrathin Oxygen Self-Supplementing Polymer Nanosheets under Near Infrared Light Irradiation. 2021 , 31, 2100354		11
154	Hollow mesoporous polyaniline nanoparticles with high drug payload and robust photothermal capability for cancer combination therapy. 2021 , 38, 221-221		2
153	Exfoliated FePS3 nanosheets for T1-weighted magnetic resonance imaging-guided near-infrared photothermal therapy in vivo. 2021 , 64, 2613-2623		4

152	The synergistic strategies for the immuno-oncotherapy with photothermal nanoagents. 2021 , 13, e1717	3
151	Molybdenum disulfide-based materials with enzyme-like characteristics for biological applications. 2021 , 200, 111575	9
150	A bibliometric analysis: Research progress and prospects on transition metal dichalcogenides in the biomedical field. 2021 , 32, 3762-3762	3
149	pH-Sensitive Dye-Based Nanobioplatform for Colorimetric Detection of Heterogeneous Circulating Tumor Cells. 2021 , 6, 1925-1932	5
148	A Smart Nanoplatform with Photothermal Antibacterial Capability and Antioxidant Activity for Chronic Wound Healing. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100033	21
147	Synthesis of biocompatible chitosan functionalized Ag decorated biocomposite for effective antibacterial and anticancer activity. 2021 , 178, 270-282	4
146	A Photovoltaic Self-Powered Gas Sensor Based on All-Dry Transferred MoS /GaSe Heterojunction for ppb-Level NO Sensing at Room Temperature. 2021 , 8, e2100472	26
145	Near-infrared triggered drug delivery of Imatinib Mesylate by molybdenum disulfide nanosheets grafted copolymers as thermosensitive nanocarriers. 2021 , 32, 3253-3265	3
144	Evaluation of in vitro and in vivo toxicity of pristine molybdenum disulphide nanosheets in Swiss albino mice.	
143	Biocatalysts at atom level: From coordination structure to medical applications. 2021 , 23, 101029	6
142	Using MoS2 Nanomaterials to Generate or Remove Reactive Oxygen Species: A Review. 2021 , 4, 7523-7537	7
141	Membrane Insertion of MoS Nanosheets: Fresh Aged. 2021 , 9, 706917	2
140	Photothermal Killing of A549 Cells and Autophagy Induction by Bismuth Selenide Particles. 2021 , 14,	1
139	Facile synthesis of porous MoSnanofibers for efficient drug delivery and cancer treatment. 2021 , 32,	O
138	Recent Advances in Immunosafety and Nanoinformatics of Two-Dimensional Materials Applied to Nano-imaging. 2021 , 12, 689519	1
137	Emerging 2D Nanomaterials for Biomedical Applications 2021 , 50, 276-302	22
136	2D transition metal dichalcogenide nanomaterial-based miRNA biosensors. 2021 , 23, 101043	1
135	Facile Synthesis of Thermo-Sensitive Composite Hydrogel with Well Dispersed Ag Nanoparticles for Application in Superior Antibacterial Infections. 2021 , 17, 1148-1159	O

134	NIR light-responsive nanocarriers for controlled release. 2021 , 47, 100420		10
133	NIR-II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. 2021 , 31, 2101625		23
132	2D MXene Nanomaterials for Versatile Biomedical Applications: Current Trends and Future Prospects. 2021 , 17, e2100946		13
131	An Acceptor-EDonor Structured Organic Chromophore for NIR Triggered Thermal Ablation of Tumor via DNA Damage-Mediated Apoptosis. 2021 , 16, 4901-4911		2
130	Designing highly stable ferrous selenide-black phosphorus nanosheets heteronanostructure via P-Se bond for MRI-guided photothermal therapy. 2021 , 19, 201		9
129	A Near-Infrared Light Triggered Composite Nanoplatform for Synergetic Therapy and Multimodal Tumor Imaging. 2021 , 9, 695511		0
128	Spatially Controlled Preparation of Layered Metallic-Semiconducting Metal Chalcogenide Heterostructures. <i>ACS Nano</i> , 2021 ,	16.7	0
127	Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. 2021 , 33, 575-575		8
126	Interpreting 2D Materials Bio-Nano Interactions: Influence of Aggregation Status, Protein Corona, Cell Culture Media, and Cell Types. 2021 , 8, 2100251		2
125	Stand-Alone CuFeSe (Eskebornite) Nanosheets for Photothermal Cancer Therapy. 2021 , 11,		4
124	Mn2+-doped ZrO2@PDA nanocomposite for multimodal imaging-guided chemo-photothermal combination therapy. 2021 , 32, 2405-2410		7
123	Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia. 2021 , 135, 617-627		8
122	Engineering of a Hollow-Structured Cu2IXS Nano-Homojunction Platform for Near Infrared-Triggered Infected Wound Healing and Cancer Therapy. 2106700		13
121	Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2101439	10.1	2
120	MoS-based nanocomposites for cancer diagnosis and therapy. 2021 , 6, 4209-4242		42
119	Adsorption and reduction coupling of permanganate on MoS2: Water treatment and metal ion separation. 2021 , 304, 122588		O
118	A facile preparation method for MoS2 nanosheets and their well-controllable interfacial assembly with PEDOT: PSS for effective electrochemical hydrogen evolution reactions. 2021 , 56, 7008-7021		1
117	Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. 2021 , 13, 460-484		26

MoS2 nanostructured materials for theranostics and device applications. **2021**, 361-384

	Modification of WS2 nanosheets with beta-cyclodextrone and N-isopropylacrylamide polymers for	
115	tamoxifen adsorption and investigation of in vitro drug release. 2021 , 47, 1955-1978	3
114	A PdMo bimetallene with precise wavelength adjustment and catalysis for synergistic photothermal ablation and hydrogen therapy of cancer at different depths. 2021 , 9, 6441-6459	4
113	Two-dimensional materials in biomedical, biosensing and sensing applications. 2021 , 50, 619-657	95
112	Boosting the photothermal performance of vacancy-rich MoSe nanoflowers for photoacoustic imaging guided tumor chemo-photothermal therapy. 2021 , 13, 14960-14972	1
111	Biomedical Applications of MXenes. 2019 , 503-524	7
110	Facile synthesis of colloidal stable MoS2 nanoparticles for combined tumor therapy. 2018 , 351, 548-558	72
109	CHAPTER 2:Image-guided Drug Delivery Systems Based on NIR-absorbing Nanocarriers for Photothermal-chemotherapy of Cancer. 2018 , 29-52	1
108	Chapter 8:Synthetic Techniques and Functionalization Approaches of 2D Transition Metal Dichalcogenides. 2019 , 245-282	2
107	Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. 2017 , 5, 14061-14069	161
106	Current status and prospects of memristors based on novel 2D materials. 2020 , 7, 1495-1518	59
105	Self-assembled albumin decorated MoS2 aggregates and photo-stimuli induced geometrical switching for enhanced theranostics applications. 2020 , 1, 3000-3008	1
104	Observation of spatial self-phase modulation induced via two competing mechanisms. 2020 , 45, 2850-2853	9
103	Bottom-up synthesis of ultra-small molybdenum disulfide-polyvinylpyrrolidone nanosheets for imaging-guided tumor regression. 2017 , 8, 106707-106720	15
102	A TiN MXene-based nanosystem with ultrahigh drug loading for dual-strategy synergistic oncotherapy. 2021 , 13, 18546-18557	3
101	Spiropyran-Appended Cucurbit[6]uril Enabling Direct Generation of 2D Materials inside Living Cells. 2021 , e2102392	1
100	GeTe Nanosheets as Theranostic Agents for Multimodal Imaging and Therapy of Inflammatory Bowel Disease. 2107433	1
99	Functionalized MoS Nanoflowers with Excellent Near-Infrared Photothermal Activities for Scavenging of Antibiotic Resistant Bacteria. 2021 , 11,	2

98	Smart Textiles Based on MoS Hollow Nanospheres for Personal Thermal Management. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 48988-48996	9.5	6
97	Chapter 3:In Situ Detection of Intracellular Messenger RNA and MicroRNA. 2020 , 47-66		
96	Membrane Insertion of MoS2 Nanosheets: Fresh vs. Aged.		
95	Structural Consequences of the Villin Headpiece Interaction with a Carbon Nitride Polyaniline (C3N) Nanosheet.		
94	Hierarchical dual-responsive cleavable nanosystem for synergetic photodynamic/photothermal therapy against melanoma. <i>Materials Science and Engineering C</i> , 2021 , 131, 112524	8.3	4
93	Large Eextended donor-acceptor polymers for highly efficient in vivo near-infrared photoacoustic imaging and photothermal tumor therapy. 2021 , 64, 2180		5
92	Adaptive Hydrogels Based on Nanozyme with Dual-Enhanced Triple Enzyme-Like Activities for Wound Disinfection and Mimicking Antioxidant Defense System. <i>Advanced Healthcare Materials</i> , 2021 , e2101849	10.1	7
91	Current progress in organicIhorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. <i>Coordination Chemistry Reviews</i> , 2022 , 452, 214282	23.2	8
90	Photothermal Regenerated Fibers with Enhanced Toughness: Silk Fibroin/MoS Nanoparticles. 2021 , 13,		0
89	Two-dimensional transition metal chalcogenide nanomaterials for cancer diagnosis and treatment. 2022 ,		1
88	Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for tumor-sensitive and MRI-guided photonic breast-cancer hyperthermia in the NIR-II biowindow 2022 ,		2
87	Decellularized human amniotic membrane reinforced by MoS-Polycaprolactone nanofibers, a novel conductive scaffold for cardiac tissue engineering 2022 , 8853282211063289		2
86	Polyoxometalate-covalent organic framework hybrid materials for pH-responsive photothermal tumor therapy 2022 ,		2
85	Fate of 2D Nanomaterials and Their Toxic Effects on the Environment and Human Health. 2022 , 243-26	5	
84	Competent Two Dimensional Charge Transfer Kinetics Via Single Layered Molybdenum Sulphide with Nitrogen Doped Graphene Oxide for Water Treatment. 1		1
83	Emerging 2D materials for antimicrobial applications in the pre- and post-pandemic era 2021,		3
82	Near-Infrared Upconversion Mesoporous Tin Dioxide Theranostic Nanocapsules for Synergetic Cancer Chemophototherapy ACS Applied Materials & Theranostic Nanocapsules for Synergetic Cancer Chemophototherapy ACS Applied Materials & Theranostic Nanocapsules for Synergetic Cancer Chemophototherapy ACS Applied Materials & Theranostic Nanocapsules for Synergetic Cancer Chemophototherapy	9.5	1
81	Preparation and performance study of recyclable microsphere soil conditioner based on magnetic metal organic framework structure. 2022 , 640, 128447		1

Molybdenum disulfide (MoS)-based nanostructures for tissue engineering applications: prospects and challenges 2022 ,		
		1
Ultra-efficient highly-selective MFC-7 cancer cell therapy enabled by combined electric-pulse carbon 1D-nanomaterials platforms.		0
An erythrocyte membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of breast cancer 2022 ,		3
The applications of two-dimensional materials and the derivative quantum dots in photodynamic therapy. 2022 , 10, 021104		
75 2D Materials for Wearable Energy Harvesting. 2101623		1
Photothermal properties of two-dimensional Molybdenum Disulfide (MoS2) with nanoflower and nanosheet morphology. 2022 , 111837		1
73 Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications 2022 , 13,		8
72 Titanium nanosheet as robust and biosafe drug carrier for combined photochemo cancer therapy 2022 , 20, 154		2
2D Molybdenum Sulfide-Based Materials for Photo-Excited Antibacterial Application <i>Advanced Healthcare Materials</i> , 2022 , e2200360	10.1	2
New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications 2022 , 14,		0
69 Two-dimensional (2D) hybrid nanomaterials for diagnosis and treatment of cancer. 2022 , 70, 103268		2
SDS coated FeO@MoS with NIR-enhanced photothermal-photodynamic therapy and antibiotic resistance gene dissemination inhibition functions 2022 , 214, 112457		0
Electrically Conductive MoS 2 Reinforced Polyacrylonitrile Nanofibers for Biomedical Applications. 2022 , 2, 2100105		О
2D Material-Based Optical Biosensor: Status and Prospect 2021 , e2102924		12
Oxygenic Enrichment in Hybrid Ruthenium Sulfide Nanoclusters for an Optimized Photothermal Effect. ACS Applied Materials & Samp; Interfaces, 2021,	9.5	4
64 ICG-Loaded PEG-Modified Black Phosphorus Nanosheets for Fluorescence Imaging-Guided Breast Cancer Therapy 2021 , 6, 35505-35513		2
In vivo evaluation of oxidized multiwalled-carbon nanotubes-mediated hyperthermia treatment for breast cancer <i>Materials Science and Engineering C</i> , 2021 , 112586	8.3	3

62	Scope of 2D materials for immune response-a review. <i>Results in Engineering</i> , 2022 , 14, 100413	3.3	О
61	An Enhanced Photothermal Therapeutic Iridium Hybrid Platform Reversing the Tumor Hypoxic Microenvironment <i>Molecules</i> , 2022 , 27,	4.8	О
60	Image_1.pdf. 2018 ,		
59	Data_Sheet_1.docx. 2019 ,		
58	Preparation of Defect-Enriched (Sio32-, Cu2+) EFe2o3/Mos2 Z-Scheme Composites with Enhanced Photocatalytic-Fenton Performance. SSRN Electronic Journal,	1	
57	A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. <i>Inorganic and Nano-Metal Chemistry</i> , 1-22	1.2	10
56	DNA Nanotechnology-Based Supramolecular Assemblies for Targeted Biomedical Applications <i>Chemical Record</i> , 2022 , e202200048	6.6	1
55	Surface Interactions Studies of Novel Two-Dimensional Molybdenum Disulfide with Gram-Negative and Gram-Positive Bacteria. <i>Analytical Letters</i> , 1-15	2.2	1
54	Chemical Modification of Chitosan for Developing Cancer Nanotheranostics <i>Biomacromolecules</i> , 2022 ,	6.9	0
53	An optimal portfolio of photothermal combined immunotherapy. <i>Cell Reports Physical Science</i> , 2022 , 100898	6.1	2
52	Two-Stage Targeted Bismuthene-Based Composite Nanosystem for Multimodal Imaging Guided Enhanced Hyperthermia and Inhibition of Tumor Recurrence. <i>ACS Applied Materials & Discrete Materials amp; Interfaces</i> ,	9.5	1
51	Synthetic and biodegradable molybdenum (IV) diselenide triggers the cascade photo- and immunotherapy of tumor. <i>Advanced Healthcare Materials</i> , 2200524	10.1	
50	Rational assembly of RGD/MoS2/Doxorubicin nanodrug for targeted drug delivery, GSH-stimulus release and chemo-photothermal synergistic antitumor activity. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2022 , 112487	6.7	О
49	Synthesis, Characterization, and Typical Application of Nitrogen-Doped MoS 2 Nanosheets Based on Pulsed Laser Ablation in Liquid Nitrogen. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2100677	1.6	1
48	Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering. Journal of Materials Research,	2.5	2
47	Infrared-light-driven self-healing MoS2/polyvinyl alcohol hydrogel with simultaneous enhancement of strength and ductility. <i>Journal of Alloys and Compounds</i> , 2022 , 165801	5.7	O
46	Mild hyperthermia synergized chemotherapy by Bi2Se3/MoSe2 nanosaucers for cancer treatment with negligible thermal resistance. <i>Nano Research</i> ,	10	O
45	Recent progress in two-dimensional nanomaterials for cancer theranostics. <i>Coordination Chemistry Reviews</i> , 2022 , 469, 214654	23.2	2

44	Nano-engineering and nano-manufacturing in 2D materials: marvels of nanotechnology. <i>Nanoscale Horizons</i> ,	0.8	2
43	Engineered organosilica hybrid micelles for photothermal-enhanced starvation cancer therapy. Chemistry - an Asian Journal, 4	5	1
42	Preparation of defect-enriched (SiO32-, Cu2+) #Fe2O3/MoS2 Z-scheme composites with enhanced photocatalytic-Fenton performance. <i>Journal of Alloys and Compounds</i> , 2022 , 166293	.7	0
41	Research trends in biomedical applications of two-dimensional nanomaterials over the last decade la bibliometric analysis. <i>Advanced Drug Delivery Reviews</i> , 2022 , 114420	8.5	3
40	Programmable Anisotropic Hydrogels with Localized Photothermal/Magnetic Responsive Properties. 2202173		1
39	Functional 2D Iron-Based Nanosheets for Synergistic Immunotherapy, Phototherapy, and Chemotherapy of Tumor. 2200776		1
38	2D materials, synthesis, characterization and toxicity: A critical review. 2022 , 365, 110081		4
37	Germanene-modified chitosan hydrogel for treating bacterial wound infection: An ingenious hydrogel-assisted photothermal therapy strategy. 2022 , 221, 1558-1571		2
36	Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. 2022 , 472, 214765		1
35	MoS2 nanosheet induced destructive alterations in the Escherichia coli bacterial membrane. 2022 , 18, 7159-7170		1
34	Antibody-conjugated and streptomycin-chitosan oligosaccharide-modified gold nanoshells for synergistic chemo-photothermal therapy of drug-resistant bacterial infection. 2022 ,		0
33	Niobium Diselenide Nanosheets: An Emerging Biodegradable Nanoplatform for Efficient Cancer Phototheranostics in the NIR-II Window. 2202126		O
32	Developing a Versatile Multiscale Therapeutic Platform for Osteosarcoma Synergistic Photothermo-Chemotherapy with Effective Osteogenicity and Antibacterial Capability. 2022 , 14, 44065-4	14083	3 ^O
31	Supercritical Fluids and Nanoparticles in Cancer Therapy. 2022 , 13, 1449		О
30	Effect of Pt Decoration on the Optical Properties of Pristine and Defective MoS2: An Ab-Initio Study. 2022 , 23, 11199		0
29	Molybdenum-Based Nanomaterials for Photothermal Cancer Therapy. 2200065		3
28	A chitosan derivative-crosslinked hydrogel with controllable release of polydeoxyribonucleotides for wound treatment. 2022 , 120298		1
27	Transition metal dichalcogenide micromotors with programmable photophoretic swarming motion.		2

26	Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. 2023 , 192, 114644	O
25	Tumor-targeted Molybdenum Disulfide@Barium Titanate Core-Shell Nanomedicine for Dual Photothermal and Chemotherapy of Triple-Negative Breast Cancer Cells.	1
24	Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. 2022 , 12, 1082	1
23	Deformation mechanism and mechanical model construction for recycled regenerated silk fibroin/polyvinyl alcohol blended fibers. 004051752211444	О
22	Ligand-Mediated Exfoliation and Antibacterial Activity of 2H Transition-Metal Dichalcogenides.	0
21	Liquid exfoliation of stanene as degradable nanoagents for NIR-II photothermal therapy. 2023,	o
20	Layered Chalcogenides: Evolution from Bulk to Nano-Dimension for Renewable Energy Perspectives. 2023 , 177-204	0
19	Microfluidic assembly of WO3/MoS2 Z-scheme heterojunction as tandem photocatalyst for nitrobenzene hydrogenation.	О
18	Synthesis of 2D molybdenum disulfide nanoplatform with effective chemo-photothermal antifungal activities and extended shelf-life of fruits. 2023 , 296, 127350	0
17	Recent Progress in the Transition Metal Sulfide/Phosphide for Cancer Theranostic Applications. 2022 , 1, 52-75	О
16	In-Situ Generation of Nitrogen-Doped MoS2 Quantum Dots Using Laser Ablation in Cryogenic Medium for Hydrogen Evolution Reaction. 2023 , 16, 455	0
15	Surface Defects Regulate the in Vivo Bioenergetic Response of Earthworm Eisenia fetida Coelomocytes to Molybdenum Disulfide Nanosheets.	o
14	Intracellularly Self-Assembled 2D Materials Induce Apoptotic Cell Death by Impeding Cytosolic Transport.	0
13	Recent trends in MXene-based material for biomedical applications. 2023, 222, 115337	O
12	Recent Developments in Two-Dimensional (2D) Inorganic Nanomaterials-Based Photothermal Therapy for Cancer Theranostics. 2023 , 563-595	0
11	Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. 2023 , 123, 3625-3692	o
10	Radiation-enhanced self-cascade catalytic Ti3C2Tx-based platform enables controlled release of trans-resveratrol for synergistic radiosensitization against metastasis of orthotopic breast cancer. 2023 , 50, 101836	0
9	Peptide functionalized actively targeted MoS2 nanospheres for fluorescence imaging-guided controllable pH-responsive drug delivery and collaborative chemo/photodynamic therapy. 2023 , 639, 302-313	O

8	Potential and Progress of 2D Materials in Photomedicine for Cancer Treatment. 2023, 6, 365-383	0
7	Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics.	o
6	Colorimetric assay of NO2- and mercury(II) through on-off strategy of the peroxidase-like Cu,Mo-CDs.	O
5	Automatic-degradable Mo-doped W18O49 based nanotheranostics for CT/FL imaging guided synergistic chemo/photothermal/chemodynamic therapy. 2023 , 462, 142156	O
4	Maximum Emission Peak Over 1500 $\bar{\text{I}}$ hm of Organic Assembly for Blood $\bar{\text{B}}$ rain Barrier-Crossing NIR-IIb Phototheranostics of Orthotopic Glioblastoma.	О
3	2D MoS 2 Nanosheets Induce Ferroptosis by Promoting NCOA4-Dependent Ferritinophagy and Inhibiting Ferroportin. 2208063	O
2	WrappingII rapping versus Extraction Mechanism of Bactericidal Activity of MoS2 Nanosheets against Staphylococcus aureus Bacterial Membrane. 2023 , 39, 5440-5453	О
1	Preparation and photothermal effect of Chitosan-Alginate-Molybdenum diselenide nanocomposite scaffolds for cancer therapy. 2023 , 442, 114759	O