Nanophotonic quantum phase switch with a single ator

Nature 508, 241-244 DOI: 10.1038/nature13188

Citation Report

#	Article	IF	CITATIONS
2	Carrier-free Raman manipulation of trapped neutral atoms. New Journal of Physics, 2014, 16, 113042.	1.2	8
3	Saturated absorption at nanowatt power levels using metastable xenon in a high-finesse optical cavity. Optics Express, 2014, 22, 22882.	1.7	5
4	Integrated nonlinear photonics: emerging applications and ongoing challenges [Invited]. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 3193.	0.9	39
5	Minimal ancilla mediated quantum computation. EPJ Quantum Technology, 2014, 1, .	2.9	3
6	Experimental realization of a dynamic squeezing gate. Physical Review A, 2014, 90, .	1.0	38
7	Controllable optical bistability of an asymmetric cavity containing a single two-level atom. Physical Review A, 2014, 90, .	1.0	24
8	Angular correlation and entanglement between a spin-polarization-resolved photoelectron and a polarization-resolved fluorescent photon. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 165201.	0.6	1
9	Entanglement distillation for quantum communication network with atomic-ensemble memories. Optics Express, 2014, 22, 23897.	1.7	27
10	A strong hybrid couple. Nature, 2014, 508, 195-196.	13.7	8
11	Microtoroidal cavity QED with fiber overcoupling and strong atom-field coupling: A single-atom quantum switch for coherent light fields. Physical Review A, 2014, 90, .	1.0	16
12	Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nature Photonics, 2014, 8, 965-970.	15.6	116
13	Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide. Physical Review Letters, 2014, 113, 093603.	2.9	449
14	Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond. Physical Review Letters, 2014, 113, 113602.	2.9	333
15	All-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 2014, 345, 903-906.	6.0	351
16	Quantum systems under control. Science, 2014, 345, 272-273.	6.0	6
17	Quantum nonlinear optics—Âphoton by photon. Nature Photonics, 2014, 8, 685-694.	15.6	539
18	Cross Modulation of Two Laser Beams at the Individual-Photon Level. Physical Review Letters, 2014, 113, 113603.	2.9	8
19	Single-photon transistor based on superconducting systems. Physical Review B, 2014, 89, .	1.1	20

ATION REDO

#		IE	CITATIONS
#		IF	CHATIONS
20	A photon steers a photon with an atom. Science, 2014, 345, 871-871.	6.0	2
21	A quantum switch routes photons one by one. Physics Today, 2014, 67, 15-16.	0.3	0
22	Universal control of an oscillator with dispersive coupling to a qubit. Physical Review A, 2015, 92, .	1.0	99
23	Enhanced nonlinear optics in coupled optical microcavities with an unbroken and broken parity-time symmetry. Physical Review A, 2015, 92, .	1.0	28
24	Low-power cross-phase modulation in a metastable xenon-filled cavity for quantum-information applications. Physical Review A, 2015, 92, .	1.0	8
25	Multiphoton-scattering theory and generalized master equations. Physical Review A, 2015, 92, .	1.0	137
26	Demonstration of an Exposed-Core Fiber Platform for Two-Photon Rubidium Spectroscopy. Physical Review Applied, 2015, 4, .	1.5	8
27	Extended linear regime of cavity-QED enhanced optical circular birefringence induced by a charged quantum dot. Physical Review B, 2015, 91, .	1.1	28
28	Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity. Physical Review Letters, 2015, 115, 093603.	2.9	107
29	Deterministic Generation of Arbitrary Photonic States Assisted by Dissipation. Physical Review Letters, 2015, 115, 163603.	2.9	93
30	Imaging electric fields in the vicinity of cryogenic surfaces using Rydberg atoms. Physical Review A, 2015, 92, .	1.0	30
31	Rapid Production of Uniformly Filled Arrays of Neutral Atoms. Physical Review Letters, 2015, 115, 073003.	2.9	111
32	Quantum Process Tomography of an Optically-Controlled Kerr Non-linearity. Scientific Reports, 2015, 5, 16581.	1.6	8
33	Photonic ququart logic assisted by the cavity-QED system. Scientific Reports, 2015, 5, 13255.	1.6	6
34	Controlled Photon Switch Assisted by Coupled Quantum Dots. Scientific Reports, 2015, 5, 11169.	1.6	4
35	Experimental demonstration of a quantum router. Scientific Reports, 2015, 5, 12452.	1.6	38
36	Universal remote quantum computation assisted by the cavity input–output process. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150274.	1.0	6
37	Heralded Quantum Gates with Integrated Error Detection in Optical Cavities. Physical Review Letters, 2015, 114, 110502.	2.9	41

#	Article	IF	CITATIONS
38	Platonic quantum networks as coherence-assisted switches in perfect and imperfect situations. Journal Physics D: Applied Physics, 2015, 48, 235104.	1.3	1
39	Heralded Storage of a Photonic Quantum Bit in a Single Atom. Physical Review Letters, 2015, 114, 220501.	2.9	78
40	Continuous generation of rubidium vapor in hollow-core photonic bandgap fibers. Optics Letters, 2015, 40, 5379.	1.7	15
41	Cavity-based quantum networks with single atoms and optical photons. Reviews of Modern Physics, 2015, 87, 1379-1418.	16.4	632
42	Quantum nonlinear optics near optomechanical instabilities. Physical Review A, 2015, 91, .	1.0	31
43	Susceptibility of a two-level atom near an isotropic photonic band edge: Transparency and band edge profile reconstruction. Physica A: Statistical Mechanics and Its Applications, 2015, 425, 34-40.	1.2	0
44	Coherent spin control of a nanocavity-enhanced qubit in diamond. Nature Communications, 2015, 6, 6173.	5.8	144
45	Quantum computation mediated by ancillary qudits and spin coherent states. Physical Review A, 2015, 91, .	1.0	6
46	High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Information Processing, 2015, 14, 1305-1320.	1.0	23
47	Deterministic photon–emitter coupling in chiral photonic circuits. Nature Nanotechnology, 2015, 10, 775-778.	15.6	466
48	Photon Sorting, Efficient Bell Measurements, and a Deterministic Controlled- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Z</mml:mi>Gate Using a Passive Two-Level Nonlinearity. Physical Review Letters, 2015, 114, 173603.</mml:math 	2.9	48
49	Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter. Physical Review A, 2015, 91, .	1.0	11
50	Theory of microwave single-photon detection using an impedance-matched <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ĥ</mml:mi>system. Physical Review A, 2015, 91, .</mml:math 	1.0	29
51	Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. Physical Review Letters, 2015, 114, 157401.	2.9	419
52	Quantum controlled-phase-flip gate between a flying optical photon and a Rydberg atomic ensemble. Scientific Reports, 2015, 5, 10005.	1.6	25
53	Trapped quantum light. Europhysics Letters, 2015, 110, 20001.	0.7	2
54	Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Physical Review A, 2015, 91, .	1.0	107
55	Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3866-3873.	3.3	568

#	Article	IF	CITATIONS
56	Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nature Photonics, 2015, 9, 320-325.	15.6	242
57	Efficient fiber-optical interface for nanophotonic devices. Optica, 2015, 2, 70.	4.8	119
58	Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 2015, 6, 8655.	5.8	196
59	Coupling thermal atomic vapor to an integrated ring resonator. New Journal of Physics, 2016, 18, 103031.	1.2	29
60	Serialized quantum error correction protocol for high-bandwidth quantum repeaters. New Journal of Physics, 2016, 18, 093008.	1.2	20
61	Exact analysis of the response of quantum systems to two-photons using a QSDE approach. New Journal of Physics, 2016, 18, 033004.	1.2	18
62	A controllable single photon beam-splitter as a node of a quantum network. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 065502.	0.6	1
63	Distributed Photonic Quantum Computations Assisted by Atomic Ensembles. IEEE Journal of Quantum Electronics, 2016, 52, 1-8.	1.0	2
64	A photon–photon quantum gate based on a single atom in an optical resonator. Nature, 2016, 536, 193-196.	13.7	227
65	Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide. Scientific Reports, 2016, 6, 28905.	1.6	15
66	Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime. Physical Review A, 2016, 94, .	1.0	21
67	Universal quantum computation in waveguide QED using decoherence free subspaces. New Journal of Physics, 2016, 18, 043041.	1.2	89
68	Implementations of two-photon four-qubit Toffoli and Fredkin gates assisted by nitrogen-vacancy centers. Scientific Reports, 2016, 6, 35529.	1.6	8
69	Quantum dynamics of a driven two-level molecule with variable dephasing. Physical Review A, 2016, 94,	1.0	27
70	Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. APL Photonics, 2016, 1, .	3.0	33
71	Coupling of single NV center to adiabatically tapered optical single mode fiber. European Physical Journal D, 2016, 70, 1.	0.6	21
72	Two coupled one-atom lasers. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 797.	0.9	6
73	Photon transport in a one-dimensional nanophotonic waveguide QED system. Physica Scripta, 2016, 91, 063004.	1.2	68

#	Article	IF	CITATIONS
74	Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber. Light: Science and Applications, 2016, 5, e16032-e16032.	7.7	66
75	Storage Enhanced Nonlinearities in a Cold Atomic Rydberg Ensemble. Physical Review Letters, 2016, 117, 113001.	2.9	30
76	An integrated diamond nanophotonics platform for quantum-optical networks. Science, 2016, 354, 847-850.	6.0	570
77	Emergence of correlated optics in one-dimensional waveguides for classical and quantum atomic gases. Physical Review Letters, 2016, 117, 143602.	2.9	43
78	Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit. Physical Review Letters, 2016, 117, 140503.	2.9	43
79	Quantum simulation with a boson sampling circuit. Physical Review A, 2016, 94, .	1.0	7
80	Coupling of single NV center to the tapered optical fiber. , 2016, , .		1
81	Quantum nanophotonics in diamond [Invited]. Journal of the Optical Society of America B: Optical Physics, 2016, 33, B65.	0.9	178
82	Observation of Fano-Type Interference in a Coupled Cavity-Atom System. Chinese Physics Letters, 2016, 33, 014202.	1.3	1
83	Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms. Physical Review Letters, 2016, 117, 060506.	2.9	29
84	Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Optics Express, 2016, 24, 18619.	1.7	52
85	Quantum spin dynamics with pairwise-tunable, long-range interactions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4946-55.	3.3	108
86	Nanofiber-segment ring resonator. Optics Letters, 2016, 41, 3683.	1.7	11
87	Large conditional single-photon cross-phase modulation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9740-9744.	3.3	63
88	Strong Coupling of Rydberg Atoms and Surface Phonon Polaritons on Piezoelectric Superlattices. Physical Review Letters, 2016, 117, 103201.	2.9	11
89	Collective phases of strongly interacting cavity photons. Physical Review A, 2016, 94, .	1.0	45
90	Quantum nondestructive determination of qubit states in low-Q cavities via single-photon input-output process. Optics Express, 2016, 24, 5487.	1.7	1
91	Photon Molecules in Atomic Gases Trapped Near Photonic Crystal Waveguides. Physical Review X, 2016, 6, .	2.8	39

#	Article	IF	CITATIONS
92	Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters. Physical Review A, 2016, 94, .	1.0	48
93	Chiral quantum optics with V-level atoms and coherent quantum feedback. Physical Review A, 2016, 94,	1.0	43
94	Single-shot optical readout of a quantum bit using cavity quantum electrodynamics. Physical Review A, 2016, 94, .	1.0	22
95	Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Physical Review A, 2016, 93, .	1.0	72
96	Rabi oscillation in a quantum cavity: Markovian and non-Markovian dynamics. Physical Review A, 2016, 93, .	1.0	39
97	Quantum-state transfer in staggered coupled-cavity arrays. Physical Review A, 2016, 93, .	1.0	58
98	Non-Markovian dynamics in chiral quantum networks with spins and photons. Physical Review A, 2016, 93, .	1.0	91
99	Magnetic-sublevel-independent magic wavelengths: Application to Rb and Cs atoms. Physical Review A, 2016, 93, .	1.0	12
100	Single-Photon Superradiance from a Quantum Dot. Physical Review Letters, 2016, 116, 163604.	2.9	48
101	A semiconductor photon-sorter. Nature Nanotechnology, 2016, 11, 857-860.	15.6	35
102	Teleportation of a ququart system using hyperentangled photons assisted by atomic-ensemble memories. Physical Review A, 2016, 93, .	1.0	13
103	Photonic controlled-phase gates through Rydberg blockade in optical cavities. Physical Review A, 2016, 93, .	1.0	51
104	Photonic Circuits with Time Delays and Quantum Feedback. Physical Review Letters, 2016, 116, 093601.	2.9	153
105	Large-scale quantum photonic circuits in silicon. Nanophotonics, 2016, 5, 456-468.	2.9	109
106	Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction. Annals of Physics, 2016, 375, 105-118.	1.0	28
107	Photonic switches with ideal switching contrasts for waveguide photons. Physical Review A, 2016, 94,	1.0	21
108	Optimal architectures for long distance quantum communication. Scientific Reports, 2016, 6, 20463.	1.6	262
109	Demonstration of a quantum error correction for enhanced sensitivity of photonic measurements.	1.0	11

#	Article	IF	CITATIONS
110	Coherent and dynamic beam splitting based on light storage in cold atoms. Scientific Reports, 2016, 6, 34279.	1.6	17
111	Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber. Scientific Reports, 2016, 6, 25630.	1.6	2
112	Faithful conditional quantum state transfer between weakly coupled qubits. Scientific Reports, 2016, 6, 32125.	1.6	2
113	Universal quantum gates for photon-atom hybrid systems assisted by bad cavities. Scientific Reports, 2016, 6, 24183.	1.6	13
114	Filtration and extraction of quantum states from classical inputs. Physical Review A, 2016, 94, .	1.0	3
115	Quantum and Nonlinear Optics in Strongly Interacting Atomic Ensembles. Advances in Atomic, Molecular and Optical Physics, 2016, , 321-372.	2.3	36
116	Quantum memories: emerging applications and recent advances. Journal of Modern Optics, 2016, 63, 2005-2028.	0.6	294
117	Hybrid quantum computing with ancillas. Contemporary Physics, 2016, 57, 459-476.	0.8	7
118	Threshold for formation of atom-photon bound states in a coherent photonic band-gap reservoir. Optics Communications, 2016, 366, 431-441.	1.0	4
119	A quantum phase switch between a single solid-state spin and a photon. Nature Nanotechnology, 2016, 11, 539-544.	15.6	129
120	Deterministic photon-atom and photon-photon interactions based on single-photon Raman interaction. , 2016, , .		0
121	Enhancing steady-state entanglement via vacuum-induced emitter–mirror coupling in a hybrid optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 025501.	0.6	9
122	Single-photon switching in photonic crystal waveguide with quantum impurity via a control light. Optics Communications, 2016, 358, 30-34.	1.0	0
123	Storing single photons emitted by a quantum memory on a highly excited Rydberg state. Nature Communications, 2017, 8, 14072.	5.8	38
124	Deterministic implementations of single-photon multi-qubit Deutsch–Jozsa algorithms with linear optics. Annals of Physics, 2017, 377, 38-47.	1.0	4
125	Designing exotic many-body states of atomic spin and motion in photonic crystals. Nature Communications, 2017, 8, 14696.	5.8	20
126	Quantum Enhanced Inference in Markov Logic Networks. Scientific Reports, 2017, 7, 45672.	1.6	25
127	A solid-state single-photon filter. Nature Nanotechnology, 2017, 12, 663-667.	15.6	66

#	Article	IF	CITATIONS
128	Heralded multiphoton states with coherent spin interactions in waveguide QED. New Journal of Physics, 2017, 19, 043004.	1.2	5
129	Quantum State Transfer via Noisy Photonic and Phononic Waveguides. Physical Review Letters, 2017, 118, 133601.	2.9	100
130	Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Scientific Reports, 2017, 7, 45582.	1.6	40
131	Robust quantum state transfer via topologically protected edge channels in dipolar arrays. Quantum Science and Technology, 2017, 2, 015001.	2.6	53
132	Cooperative Resonances in Light Scattering from Two-Dimensional Atomic Arrays. Physical Review Letters, 2017, 118, 113601.	2.9	196
133	Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction. Physical Review A, 2017, 95, .	1.0	24
134	Arrays of strongly coupled atoms in a one-dimensional waveguide. Physical Review A, 2017, 96, .	1.0	35
135	Nonlinear photon-atom coupling with 4Pi microscopy. Nature Communications, 2017, 8, 1200.	5.8	12
136	Microwave photonics with superconducting quantum circuits. Physics Reports, 2017, 718-719, 1-102.	10.3	853
137	Enhanced exciton transmission by quantum-jump-based feedback. Physical Review A, 2017, 96, .	1.0	4
138	Multiphoton Scattering Tomography with Coherent States. Physical Review Letters, 2017, 119, 153601.	2.9	13
139	Universal photonic quantum computation via time-delayed feedback. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11362-11367.	3.3	117
140	Optimized architectures for long distance quantum communication. , 2017, , .		0
141	A photonic platform for donor spin qubits in silicon. Science Advances, 2017, 3, e1700930.	4.7	75
142	Induced Cavities for Photonic Quantum Gates. Physical Review Letters, 2017, 119, 113601.	2.9	23
143	Optical source of individual pairs of colour-conjugated photons. Scientific Reports, 2017, 7, 11418.	1.6	0
144	Diagrammatic approach to multiphoton scattering. Physical Review A, 2017, 95, .	1.0	17
145	Measuring the polarization of electromagnetic fields using Rabi-rate measurements with spatial resolution: Experiment and theory. Physical Review A, 2017, 95, .	1.0	11

#	Article	IF	CITATIONS
146	Limitations of two-level emitters as nonlinearities in two-photon controlled-phase gates. Physical Review A, 2017, 95, .	1.0	16
147	Emergent equilibrium in many-body optical bistability. Physical Review A, 2017, 95, .	1.0	91
148	Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators. Physical Review A, 2017, 96, .	1.0	38
149	Coherent Photon Manipulation in Interacting Atomic Ensembles. Physical Review X, 2017, 7, .	2.8	22
150	Scattering of few photons by a ladder-type quantum system. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 345301.	0.7	3
151	Nonlinear input-output feature of the atom-nanowires coupling system. Journal of Applied Physics, 2017, 122, 023102.	1.1	3
152	Robust quantum switch with Rydberg excitations. Scientific Reports, 2017, 7, 12952.	1.6	2
153	Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nature Communications, 2017, 8, 1857.	5.8	174
154	Free-Space Quantum Electrodynamics with a Single Rydberg Superatom. Physical Review X, 2017, 7, .	2.8	44
155	Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics. Physical Review Letters, 2017, 118, 213601.	2.9	62
156	Strong coupling between moving atoms and slow-light Cherenkov photons. Physical Review A, 2017, 95, .	1.0	24
157	Overcoming erasure errors with multilevel systems. New Journal of Physics, 2017, 19, 013026.	1.2	40
158	Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities. Physical Review Letters, 2017, 118, 223605.	2.9	159
159	Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit. Physical Review Letters, 2017, 118, 237401.	2.9	207
160	Ultracold molecule assembly with photonic crystals. New Journal of Physics, 2017, 19, 123035.	1.2	12
161	Polarization response and scaling law of chirality for a nanofibre optical interface. Scientific Reports, 2017, 7, 17085.	1.6	11
162	Stability of fractional quantum Hall states in disordered photonic systems. New Journal of Physics, 2017, 19, 115004.	1.2	0
163	Eliminating light shifts for single atom trapping. New Journal of Physics, 2017, 19, 023007.	1.2	31

#	Article	IF	CITATIONS
164	Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective. Quantum Science and Technology, 2017, 2, 044012.	2.6	44
165	Tomography of the optical polarization rotation induced by a single quantum dot in a cavity. Optica, 2017, 4, 1326.	4.8	12
166	Measurement of deep-subwavelength emitter separation in a waveguide-QED system. Optics Express, 2017, 25, 31997.	1.7	12
167	Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation. Optical Materials Express, 2017, 7, 1514.	1.6	25
168	Strong coupling between few molecular excitons and Fano-like cavity plasmon in two-layered dielectric-metal core-shell resonators. Optics Express, 2017, 25, 1495.	1.7	16
169	Robust hyperparallel photonic quantum entangling gate with cavity QED. Optics Express, 2017, 25, 10863.	1.7	54
170	Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics. Optics Letters, 2017, 42, 1003.	1.7	27
171	Towards Quantum Simulation with Circular Rydberg Atoms. Physical Review X, 2018, 8, .	2.8	91
172	Enhancing Cavity Quantum Electrodynamics via Antisqueezing: Synthetic Ultrastrong Coupling. Physical Review Letters, 2018, 120, 093602.	2.9	97
173	Threeâ€Photon Polarizationâ€5patial Hyperparallel Quantum Fredkin Gate Assisted by Diamond Nitrogen Vacancy Center in Optical Cavity. Annalen Der Physik, 2018, 530, 1800043.	0.9	23
174	Monoatomic optical diode based on direction-dependent bistability in the Purcell regime. Optik, 2018, 167, 95-102.	1.4	2
175	Photon scattering from a system of multilevel quantum emitters. I. Formalism. Physical Review A, 2018, 97, .	1.0	18
176	Photon scattering from a system of multilevel quantum emitters. II. Application to emitters coupled to a one-dimensional waveguide. Physical Review A, 2018, 97, .	1.0	18
177	Ultrastrong Coupling Few-Photon Scattering Theory. Physical Review Letters, 2018, 120, 153602.	2.9	47
178	Classical-driving-assisted entanglement trapping in photonic-crystal waveguides. Optics Communications, 2018, 420, 183-188.	1.0	4
179	Strong coupling-like phenomenon in single metallic nanoparticle embedded in molecular J-aggregates. Modern Physics Letters B, 2018, 32, 1850046.	1.0	2
180	Time-evolution of photon heat current through series coupled two mesoscopic Josephson junction devices. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 055501.	0.6	4
181	Multi-functional quantum router using hybrid opto-electromechanics. Laser Physics Letters, 2018, 15, 035201.	0.6	5

#	Article	IF	Citations
182	Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity. Physical Review X, 2018, 8, .	2.8	69
183	Controlled-phase Gate for Photons Based on Stationary Light. Physical Review Letters, 2018, 120, 010502.	2.9	15
184	Coupling Thermal Atomic Vapor to Slot Waveguides. Physical Review X, 2018, 8, .	2.8	32
185	Optimal Synthesis of the Joint Unitary Evolutions. International Journal of Theoretical Physics, 2018, 57, 1942-1947.	0.5	1
186	Photon Subtraction by Many-Body Decoherence. Physical Review Letters, 2018, 120, 113601.	2.9	14
187	Photostable Molecules on Chip: Integrated Sources of Nonclassical Light. ACS Photonics, 2018, 5, 126-132.	3.2	51
188	Tunable single-photon multi-channel quantum router based on an optomechanical system. Laser Physics Letters, 2018, 15, 015204.	0.6	10
189	Amplifying the Interaction Between Two Identical Metallic Nanoparticles with a Large Interface Distance Based on the Strong Coupling-Like Phenomenon Involving Molecular J-aggregates. Plasmonics, 2018, 13, 1403-1407.	1.8	0
190	Synthesizing variable particle interaction potentials via spectrally shaped spatially coherent illumination. New Journal of Physics, 2018, 20, 103009.	1.2	2
191	Nonlinear coherent perfect photon absorber in asymmetrical atom–nanowires coupling system. Chinese Physics B, 2018, 27, 114205.	0.7	3
192	Enhanced generation of charge-dependent second-order sideband and high-sensitivity charge sensors in a gain-cavity-assisted optomechanical system. Physical Review A, 2018, 98, .	1.0	31
193	Maximizing the quality factor to mode volume ratio for ultra-small photonic crystal cavities. Applied Physics Letters, 2018, 113, .	1.5	67
194	Strongly Correlated Photon Transport in Waveguide Quantum Electrodynamics with Weakly Coupled Emitters. Physical Review Letters, 2018, 121, 143601.	2.9	67
195	Free-space photonic quantum link and chiral quantum optics. Physical Review A, 2018, 98, .	1.0	57
196	Single photon two-level atom interactions in 1-D dielectric waveguide: quantum mechanical formalism and applications. Optical and Quantum Electronics, 2018, 50, 1.	1.5	0
197	Correlated dephasing noise in single-photon scattering. New Journal of Physics, 2018, 20, 105007.	1.2	8
198	Microfluidics and Nanofluidics: Science, Fabrication Technology (From Cleanrooms to 3D Printing) and Their Application to Chemical Analysis by Battery-Operated Microplasmas-On-Chips. , 2018, , .		7
199	Observation of Three-Body Correlations for Photons Coupled to a Rydberg Superatom. Physical Review Letters, 2018, 121, 103601.	2.9	30

#	Article	IF	CITATIONS
200	Increased atom-cavity coupling and stability using a parabolic ring cavity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 195002.	0.6	6
201	Enabling Lasing Action in Hybrid Atomic–Nanophotonic Integrated Structures. Annalen Der Physik, 2018, 530, 1800203.	0.9	1
202	Tunable SNAP microresonators via internal ohmic heating. Optics Letters, 2018, 43, 4316.	1.7	18
203	Plasmonic trapping potentials for cold atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 135005.	0.6	9
204	One-way quantum repeaters with quantum Reed-Solomon codes. Physical Review A, 2018, 97, .	1.0	22
205	Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system. New Journal of Physics, 2018, 20, 053029.	1.2	7
206	Nanofiber quantum photonics. Journal of Optics (United Kingdom), 2018, 20, 073001.	1.0	83
207	Motional-ground-state cooling outside the Lamb-Dicke regime. Physical Review A, 2018, 97, .	1.0	27
208	<i>Colloquium</i> : Quantum matter built from nanoscopic lattices of atoms and photons. Reviews of Modern Physics, 2018, 90, .	16.4	292
209	Heralded Universal Quantum Gate and Entangler Assisted by Imperfect Doubleâ€5idedÂQuantumâ€Dotâ€MicrocavityÂSystems. Annalen Der Physik, 2018, 530, 1800071.	0.9	14
210	Universal photonic three-qubit quantum gates with two degrees of freedom assisted by charged quantum dots inside single-sided optical microcavities. Laser Physics, 2018, 28, 095201.	0.6	22
211	Tunable bandwidth and nonlinearities in an atom-photon interface with subradiant states. Physical Review A, 2018, 98, .	1.0	4
212	Higher-component quadrupole polarizabilities: Estimations for the clock states of the alkaline-earth-metal ions. Physical Review A, 2018, 98, .	1.0	3
213	Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire. Physical Review B, 2018, 97, .	1.1	10
214	Entanglement of remote material qubits through nonexciting interaction with single photons. Physical Review A, 2018, 97, .	1.0	5
215	A passive photon–atom qubit swap operation. Nature Physics, 2018, 14, 996-1000.	6.5	48
216	Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Science Advances, 2018, 4, eaat2355.	4.7	117
217	Numerical modeling of the coupling efficiency of single quantum emitters in photonic-crystal waveguides. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 514.	0.9	27

#	Article	IF	CITATIONS
218	Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide. Physical Review A, 2018, 98, .	1.0	38
219	Dipole induced transparency and Aulter–Townes splitting via a dipole emitter coupled to a hybrid photonic-plasmonic resonator. Journal of Optics (United Kingdom), 2018, 20, 105401.	1.0	0
220	Quantum memory and gates using a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î> -type quantum emitter coupled to a chiral waveguide. Physical Review A, 2018, 97, .</mml:mi </mml:math 	1.0	67
221	Atomic Source of Single Photons in the Telecom Band. Physical Review Letters, 2018, 120, 243601.	2.9	217
222	Light propagation in systems involving two-dimensional atomic lattices. Physical Review A, 2019, 100, .	1.0	21
223	Optical Interferometry with Quantum Networks. Physical Review Letters, 2019, 123, 070504.	2.9	74
224	Transport and entanglement for single photons in optical waveguide ladders. Physical Review A, 2019, 100, .	1.0	12
225	Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Science Advances, 2019, 5, eaav5931.	4.7	107
226	Quantum Networks with Deterministic Spin–Photon Interfaces. Advanced Quantum Technologies, 2019, 2, 1800091.	1.8	51
227	Microscopic Reversibility, Nonlinearity, and the Conditional Nature of Single Particle Entanglement. Springer Theses, 2019, , 61-70.	0.0	0
228	Quantum Plasmonic Immunoassay Sensing. Nano Letters, 2019, 19, 5853-5861.	4.5	55
229	Electro-optic Photonic Circuits. Springer Theses, 2019, , .	0.0	1
230	Coupling atoms to cavities using narrow linewidth optical transitions: applications to frequency metrology. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 193001.	0.6	2
231	Two-dimensional plasmonic waveguides for nanolasing and four-wave mixing. New Journal of Physics, 2019, 21, 103004.	1.2	2
232	Photonic quantum information processing: A concise review. Applied Physics Reviews, 2019, 6, .	5.5	299
233	Strong coupling with directional absorption features of Ag@Au hollow nanoshell/J-aggregate heterostructures. Nanophotonics, 2019, 8, 1835-1845.	2.9	20
234	Quantum photonic transistor controlled by an atom in a Floquet cavity-QED system. Optics Express, 2019, 27, 6946.	1.7	7
235	An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Physical Review B, 2019, 100, .	1.1	111

#	Article	IF	CITATIONS
236	Polariton Exchange Interactions in Multichannel Optical Networks. Physical Review Letters, 2019, 123, 113605.	2.9	14
237	Splitting in lateral shift induced by strong coupling in Kretschmann configuration involving molecular J-aggregates. Modern Physics Letters B, 2019, 33, 1950370.	1.0	5
238	Coherent nonlinear optics of quantum emitters in nanophotonic waveguides. Nanophotonics, 2019, 8, 1641-1657.	2.9	40
239	Enhanced Kerr nonlinearity with a single quantum dot coupled to a gain cavity under weak-excitation limitation. Laser Physics Letters, 2019, 16, 025204.	0.6	1
240	Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 2019, 91, .	16.4	613
241	Optimal control of hybrid optomechanical systems for generating non-classical states of mechanical motion. Quantum Science and Technology, 2019, 4, 034001.	2.6	21
242	Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal. Physical Review A, 2019, 99, .	1.0	17
243	A fiber-integrated nanobeam single photon source emitting at telecom wavelengths. Applied Physics Letters, 2019, 114, .	1.5	25
244	Quantum plasmonics get applied. Progress in Quantum Electronics, 2019, 65, 1-20.	3.5	70
245	Telecom-Band Quantum Optics with Ytterbium Atoms and Silicon Nanophotonics. Physical Review Applied, 2019, 11, .	1.5	39
246	Angle-dependent magic wavelengths for the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:msub><mml:r transitions of <mml:mat. .<="" 2019,="" 99,="" a,="" physical="" review="" td=""><td>ni≫sø/mm</td><td>l:ms><mml:m< td=""></mml:m<></td></mml:mat.></mml:r </mml:msub></mml:mrow></mml:math 	ni≫sø/mm	l:ms> <mml:m< td=""></mml:m<>
247	Strong coupling between two plasmonic cavities based on metal–insulator–metal structure. Modern Physics Letters B, 2019, 33, 1950116.	1.0	0
248	Strongly Coupled Single-Quantum-Dot–Cavity System Integrated on a CMOS-Processed Silicon Photonic Chip. Physical Review Applied, 2019, 11, .	1.5	38
249	Few-photon Fock-state wave packet interacting with a cavity-atom system in a waveguide: Exact quantum state dynamics. Physical Review A, 2019, 99, .	1.0	15
250	Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices. Nature Communications, 2019, 10, 1647.	5.8	42
251	Nonlinear Interactions and Non-classical Light. Springer Series in Optical Sciences, 2019, , 51-101.	0.5	6
252	Super- and subradiance of clock atoms in multimode optical waveguides. New Journal of Physics, 2019, 21, 025004.	1.2	14
253	Systematic Design of Photonic Crystal Cavities with Ultra-Low Modal Volume Considering Different Fabrication Resolutions. , 2019, , .		0

#	Article	IF	CITATIONS
254	Few-photon transport in strongly interacting light-matter systems: A scattering approach. International Journal of Quantum Information, 2019, 17, 1950050.	0.6	0
255	Observation of Collective Superstrong Coupling of Cold Atoms to a 30-m Long Optical Resonator. Physical Review Letters, 2019, 123, 243602.	2.9	26
256	Real-Time Observation of Single Atoms Trapped and Interfaced to a Nanofiber Cavity. Physical Review Letters, 2019, 123, 213602.	2.9	27
257	Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity. Physical Review Letters, 2019, 123, 233604.	2.9	59
258	One-step implementation of a multiqubit controlled-phase-flip gate in coupled cavities. Quantum Information Processing, 2019, 18, 1.	1.0	3
259	Clocked atom delivery to a photonic crystal waveguide. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 456-465.	3.3	32
260	Efficient Quantum Photonic Phase Shift in a Low Q-Factor Regime. ACS Photonics, 2019, 6, 429-435.	3.2	14
261	Intracavity cold atomic ensemble with high optical depth. Review of Scientific Instruments, 2019, 90, 013105.	0.6	10
262	Alignment-dependent decay rate of an atomic dipole near an optical nanofiber. Physical Review A, 2019, 99, .	1.0	10
263	Strong Plasmon–Exciton Interactions on Nanoantenna Array–Monolayer WS ₂ Hybrid System. Advanced Optical Materials, 2020, 8, 1901002.	3.6	28
264	Nanoâ€Cavity QED with Tunable Nanoâ€Tip Interaction. Advanced Quantum Technologies, 2020, 3, 1900087.	1.8	22
265	Distributed quantum information processing via single atom driving. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 035503.	0.6	6
266	Absorption and delayed reemission in an array of atoms strongly coupled to a waveguide. Physical Review A, 2020, 102, .	1.0	1
267	Reduced volume and reflection for bright optical tweezers with radial Laguerre–Gauss beams. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26109-26117.	3.3	19
268	Small Polarons and Surface Defects in Metal Oxide Photocatalysts Studied Using XUV Reflection–Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 22853-22870.	1.5	24
269	Robust-fidelity hyperparallel controlled-phase-flip gate through microcavities. Applied Physics Express, 2020, 13, 082007.	1.1	9
270	Single-Photon Transport in One-Dimensional Coupled-Resonator Waveguide with Second-Order Nonlinearity oupling to a Nanocavity Containing a Two-Level Atom and Kerr-Nonlinearity. International Journal of Theoretical Physics, 2020, 59, 2294-2307.	0.5	2
271	Tuning of energy gap and 1D Dirac-like points in artificial graphene and boron nitride monolayer by an external electric field. Superlattices and Microstructures, 2020, 147, 106700.	1.4	2

#	Article	IF	CITATIONS
272	Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica, 2020, 7, 1654.	4.8	110
273	Fundamental Thermal Noise Limits for Optical Microcavities. Physical Review X, 2020, 10, .	2.8	19
274	Disorder-assisted excitation localization in chirally coupled quantum emitters. Physical Review A, 2020, 102, .	1.0	11
275	Constraint-free wavelength conversion supported by giant optical refraction in a 3D perovskite supercrystal. Communications Materials, 2020, 1, .	2.9	11
276	Large array of SchrĶdinger cat states facilitated by an optical waveguide. Nature Communications, 2020, 11, 5295.	5.8	16
277	Generating entangled SchrĶdinger cat states using a number state and a beam splitter. Physical Review A, 2020, 102, .	1.0	8
278	Efficiently coupled microring circuit for on-chip cavity QED with trapped atoms. Applied Physics Letters, 2020, 117, .	1.5	9
279	Sequential generation of linear cluster states from a single photon emitter. Nature Communications, 2020, 11, 5501.	5.8	53
280	Interactions between a single metallic nanoparticle and chiral molecular J-aggregates in the strong coupling regime and the weak coupling regime. Nanotechnology, 2020, 31, 345202.	1.3	15
281	Ultrafast Spin Crossover in a Room-Temperature Ferrimagnet: Element-Specific Spin Dynamics in Photoexcited Cobalt Ferrite. Journal of Physical Chemistry C, 2020, 124, 11368-11375.	1.5	9
282	Tunable single-photon diode and circulator via chiral waveguide–emitter couplings. Laser Physics Letters, 2020, 17, 065201.	0.6	13
283	Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays. ACS Nano, 2020, 14, 7347-7357.	7.3	47
284	One-Way Quantum Repeater Based on Near-Deterministic Photon-Emitter Interfaces. Physical Review X, 2020, 10, .	2.8	61
285	Frequency Manipulations in Single-Photon Quantum Transport under Ultrastrong Driving. ACS Photonics, 2020, 7, 2010-2017.	3.2	10
286	Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals. Physical Review Letters, 2020, 124, 083603.	2.9	53
287	Influence of driving ways on measurement of relative phase in a two-atoms cavity system*. Chinese Physics B, 2020, 29, 043702.	0.7	0
288	Subradiance dynamics in a singly excited chirally coupled atomic chain. Physical Review A, 2020, 101, .	1.0	17
289	Strong Coupling of Two Individually Controlled Atoms via a Nanophotonic Cavity. Physical Review Letters, 2020, 124, 063602.	2.9	66

#	Article	IF	CITATIONS
290	Scheme for realizing quantum dense coding via entanglement swapping. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 065502.	0.6	8
291	Hybrid integrated quantum photonic circuits. Nature Photonics, 2020, 14, 285-298.	15.6	411
292	A quantum network node with crossed optical fibre cavities. Nature Physics, 2020, 16, 647-651.	6.5	48
293	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msup><mml:mi>l‡</mml:mi><mml:mrow><mml:mo stretchy="false">(<mml:mn>2</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50="" 61<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>2¹17ð (stre</td><td>tchy="false":</td></mml:mo)></mml:mo </mml:mrow></mml:msup>	2 ¹ 17ð (stre	tchy="false":
294	Applied, 2020, 13, . The Integration of Photonic Crystal Waveguides with Atom Arrays in Optical Tweezers. Advanced Quantum Technologies, 2020, 3, 2000008.	1.8	16
295	Dimer chains in waveguide quantum electrodynamics. Optics Communications, 2020, 463, 125427.	1.0	6
296	Radiative transition properties of singly charged magnesium, calcium, strontium and barium ions. Atomic Data and Nuclear Data Tables, 2021, 137, 101381.	0.9	12
297	Quantumized Microwave Detection Based on ĥ-Type Three-Level Superconducting System: HMM Modeling and Performance Prediction. IEEE Transactions on Communications, 2021, 69, 7192-7204.	4.9	1
298	A polarization encoded photon-to-spin interface. Npj Quantum Information, 2021, 7, .	2.8	12
299	Avoiding gauge ambiguities in cavity quantum electrodynamics. Scientific Reports, 2021, 11, 4281.	1.6	7
300	Strongly Correlated States of Light and Repulsive Photons in Chiral Chains of Three-Level Quantum Emitters. Physical Review Letters, 2021, 126, 083605.	2.9	22
301	High-efficiency single-photon router in a network with multiple outports based on chiral waveguide–emitter couplings. Laser Physics Letters, 2021, 18, 035204.	0.6	5
302	Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip. Nanophotonics, 2021, 10, 1387-1435.	2.9	32
304	Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications. Applied Physics Letters, 2021, 118, .	1.5	21
305	Characterization of suspended membrane waveguides towards a photonic atom trap integrated platform. Optics Express, 2021, 29, 13129.	1.7	8
306	Engineering distributed atomic NOON states via single-photon detection. Quantum Information Processing, 2021, 20, 1.	1.0	1
307	Enhanced circular dichroism of plasmonic system in the strong coupling regime*. Chinese Physics B, 2021, 30, 047304.	0.7	0
308	Demonstration of a MOT in a sub-millimeter membrane hole. Scientific Reports, 2021, 11, 8807.	1.6	1

#	Article	IF	CITATIONS
309	Boosting Photonic Quantum Computation with Moderate Nonlinearity. Physical Review Applied, 2021, 15, .	1.5	3
310	Controlling Interactions between Quantum Emitters Using Atom Arrays. Physical Review Letters, 2021, 126, 223602.	2.9	22
311	Cavity quantum electrodynamics with a single molecule: Purcell enhancement, strong coupling and single-photon nonlinearity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 133001.	0.6	5
312	Bound and subradiant multiatom excitations in an atomic array with nonreciprocal couplings. Physical Review A, 2021, 103, .	1.0	13
313	Detecting an Itinerant Optical Photon Twice without Destroying It. Physical Review Letters, 2021, 126, 253603.	2.9	12
315	Interface between Trapped-Ion Qubits and Traveling Photons with Close-to-Optimal Efficiency. PRX Quantum, 2021, 2, .	3.5	40
316	Heralded quantum gates for hybrid systems via waveguide-mediated photon scattering. Physical Review A, 2021, 104, .	1.0	14
317	Random singlet phase of cold atoms coupled to a photonic crystal waveguide. Physical Review A, 2021, 104, .	1.0	1
318	Coupled activity-current fluctuations in open quantum systems under strong symmetries. New Journal of Physics, 2021, 23, 073044.	1.2	4
319	Tune-out and magic wavelengths, and electric quadrupole transition properties of the singly charged alkaline-earth metal ions. Atomic Data and Nuclear Data Tables, 2021, 140, 101422.	0.9	2
320	Proposal for a Deterministic Single-Atom Source of Quasisuperradiant <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi> -Photon Pulses. Physical Review Letters, 2021, 127, 033602.</mml:math 	2.9	12
321	Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon Networks. PRX Quantum, 2021, 2, .	3.5	12
322	Quantum control of bosonic modes with superconducting circuits. Science Bulletin, 2021, 66, 1789-1805.	4.3	45
323	Single-photon nonlinearity at room temperature. Nature, 2021, 597, 493-497.	13.7	77
324	Entanglement transport and a nanophotonic interface for atoms in optical tweezers. Science, 2021, 373, 1511-1514.	6.0	52
325	Photons and qubits get a better connection. Science, 2021, 373, 1436-1437.	6.0	3
326	Spontaneous emission in micro- or nanophotonic structures. PhotoniX, 2021, 2, .	5.5	28
327	SeQUeNCe: a customizable discrete-event simulator of quantum networks. Quantum Science and Technology, 2021, 6, 045027.	2.6	23

#	Article	IF	Citations
328	Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals. Optica, 2021, 8, 1416.	4.8	12
329	Time-frequency encoded single-photon generation and broadband single-photon storage with a tunable subradiant state. Optica, 2021, 8, 95.	4.8	8
330	Nanoelectronics and Photonics for Next-Generation Devices. , 2021, , 293-313.		2
331	Enhanced Photon-Emitter Coupling in Micro/Nano Photonic Structures. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-10.	1.9	6
332	Coherent characterisation of a single molecule in a photonic black box. Nature Communications, 2021, 12, 706.	5.8	18
333	Photon-Atom Coupling with Parabolic Mirrors. Nano-optics and Nanophotonics, 2015, , 75-98.	0.2	3
334	Waveguide-coupled single collective excitation of atomic arrays. Nature, 2019, 566, 359-362.	13.7	123
335	Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Scientific Reports, 2015, 5, 16444.	1.6	32
336	Many-body decoherence dynamics and optimized operation of a single-photon switch. New Journal of Physics, 2016, 18, 092001.	1.2	16
337	Nanophotonic quantum network node with neutral atoms and an integrated telecom interface. New Journal of Physics, 2020, 22, 073033.	1.2	12
338	Multidimensional super- and subradiance in waveguide quantum electrodynamics. Physical Review Research, 2020, 2, .	1.3	6
339	Single-channel Hadamard gate by exploiting frequency conversion of single-photon Raman scattering in chiral quantum nanophotonics. , 2019, , .		2
341	SiN-on-LiNbO3 Integrated Optical Modulation at Visible. , 2017, , .		3
342	Robust hybrid hyper-controlled-not gates assisted by an input-output process of low-Q cavities. Optics Express, 2019, 27, 17493.	1.7	21
343	Deterministic single-photon subtraction based on a coupled single quantum dot-cavity system. Optics Express, 2020, 28, 6835.	1.7	6
344	Bound state and non-Markovian dynamics of a quantum emitter around a surface plasmonic nanostructure. Optics Express, 2020, 28, 6469.	1.7	13
345	Integrating two-photon nonlinear spectroscopy of rubidium atoms with silicon photonics. Optics Express, 2020, 28, 19593.	1.7	5
346	Ultra-low-loss nanofiber Fabry–Perot cavities optimized for cavity quantum electrodynamics. Optics Letters, 2020, 45, 4875.	1.7	11

		EPUKI	
#	Article	IF	CITATIONS
347	Advanced apparatus for the integration of nanophotonics and cold atoms. Optica, 2020, 7, 1.	4.8	10
348	Cavity quantum electrodynamics with color centers in diamond. Optica, 2020, 7, 1232.	4.8	72
349	Excitation of single-photon embedded eigenstates in coupled cavity–atom systems. Optica, 2019, 6, 799.	4.8	24
350	Microring resonators on a suspended membrane circuit for atom–light interactions. Optica, 2019, 6, 1203.	4.8	25
351	Advanced apparatus for the integration of nanophotonics and cold atoms. Optica, 2020, 7, 1.	4.8	14
353	Ultrabright single-photon emission from germanium-vacancy zero-phonon lines: deterministic emitter-waveguide interfacing at plasmonic hot spots. Nanophotonics, 2020, 9, 953-962.	2.9	21
354	Demonstration of Deterministic Photon-Photon Interactions with a Single Atom. , 2015, , .		0
355	Demonstration of Deterministic Photon-Photon Interactions with a Single Atom. , 2015, , .		0
356	Designing light-matter interactions with trapped atoms in two dimensional photonic crystals slabs. , 2015, , .		0
357	Cavity QED with Collective Excitations of Warm, 3-Level Atoms. , 2016, , .		0
358	Ultra-Low Power Optical Transistor Using a Single Quantum Dot Embedded in a Photonic Wire. , 2017, ,		0
359	Interfacing Single Quantum Dot Spins with Photons Using a Nanophotonic Cavity. Nano-optics and Nanophotonics, 2017, , 359-378.	0.2	1
360	Extinction in a Two-Dimensional Atomic Monolayer. Springer Theses, 2017, , 121-140.	0.0	0
361	High-efficiency power transfer for silicon-based photonic devices. , 2018, , .		3
362	Nonlinear photon-atom coupling in free space. , 2018, , .		0
363	Spinor atoms in an optical nanocavity: generation of N-photon pulses and spin-entangled states. , 2019, , .		0
364	Controllable quantum interference and photon transport in three-mode closed-loop cavity-atom system. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 113701.	0.2	0
365	Nanoelectronics and Photonics for Next Generation Devices. , 2021, , 1-21.		0

#	Article	IF	CITATIONS
366	Controlling single-photon scattering in a rectangular waveguide by a V-type three-level emitter. Optics Express, 2020, 28, 37639.	1.7	1
367	An Advanced Apparatus for Integrating Nanophotonics and Cold Atoms. , 2020, , .		0
368	Deterministic photonic quantum computation in a synthetic time dimension. Optica, 2021, 8, 1515.	4.8	21
369	Waveguide-QED platform for synthetic quantum matter. Physical Review A, 2021, 104, .	1.0	2
370	All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Science Advances, 2021, 7, eabj6627.	4.7	47
371	Proposal for a destructive controlled phase gate using linear optics. Scientific Reports, 2021, 11, 22067.	1.6	1
372	Modal Properties of Photonic Crystal Cavities and Applications to Lasers. Nanomaterials, 2021, 11, 3030.	1.9	20
373	Fault-Tolerant Qubit from a Constant Number of Components. PRX Quantum, 2021, 2, .	3.5	14
374	Analytical Model and Solution Illustrating Classical Optical Contribution to Giant Spectral Splitting in Strongly-Coupled Micro/nanocavity-atom System. Frontiers in Physics, 2022, 10, .	1.0	2
375	Optomechanical strong coupling between a single photon and a single atom. New Journal of Physics, 2022, 24, 023006.	1.2	1
376	Magic wavelengths of the Sr (5s2ÂS01 – 5s5pÂP13) intercombination transition near the 5s5pÂP13 – 5p2Â transition. Physical Review A, 2022, 105, .	P23 1.0	2
377	Plexcitonic strong coupling: unique features, applications, and challenges. Journal Physics D: Applied Physics, 2022, 55, 203002.	1.3	31
378	All-optical switching based on self-assembled halide perovskite microwires. Journal of Semiconductors, 2022, 43, 010401.	2.0	4
379	Nanotrappy: An open-source versatile package for cold-atom trapping close to nanostructures. Physical Review Research, 2022, 4, .	1.3	6
380	The potential and global outlook of integrated photonics for quantum technologies. Nature Reviews Physics, 2022, 4, 194-208.	11.9	151
381	Photon-Mediated Stroboscopic Quantum Simulation of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi mathvariant="double-struck">Z></mml:mi </mml:msub>Lattice Gauge Theory Physical Review Letters 2021, 127, 250501</mml:math 	2.9	23
382	Design of New High Energy Near Field Nanophotonic Materials for Far Field Applications. Engineering Materials, 2022, , 859-920.	0.3	2
383	Few-photon transport via a multimode nonlinear cavity: Theory and applications. Physical Review A, 2022, 105, .	1.0	3

#	Article	IF	Citations
384	Quantum correlations of localized atomic excitations in a disordered atomic chain. Physical Review A, 2022, 105, .	1.0	9
385	One-sided composite cavity on an optical nanofiber for cavity QED. Applied Physics Letters, 2022, 120, .	1.5	6
386	A chiral one-dimensional atom using a quantum dot in an open microcavity. Npj Quantum Information, 2022, 8, .	2.8	4
387	Photon-photon interactions in Rydberg-atom arrays. Quantum - the Open Journal for Quantum Science, 0, 6, 674.	0.0	21
388	All-dielectric multi-resonant bullseye antennas. Optics Express, 2022, 30, 12092.	1.7	2
389	Quantum mechanical solution to spectral lineshape in strongly-coupled atom–nanocavity system. Chinese Physics B, 2022, 31, 043202.	0.7	0
390	The Need for ASAT. , 2022, , 3-10.		0
391	Implementations of Heralded Solid‣tate SWAP and SWAP\$sqrt {SWAP}\$ Gates through Waveguideâ€Assisted Interactions. Annalen Der Physik, 2022, 534, .	0.9	3
392	Multiplexed telecommunication-band quantum networking with atom arrays in optical cavities. Physical Review Research, 2021, 3, .	1.3	12
393	Assessing the Precision of Quantum Simulation of Many-Body Effects in Atomic Systems Using the Variational Quantum Eigensolver Algorithm. Quantum Reports, 2022, 4, 173-192.	0.6	0
394	Engineering a mechanically stable hybrid photonic crystal cavity coupled to color defects in diamond. Journal of Optics (United Kingdom), 0, , .	1.0	0
395	Deterministic Photon Sorting in Waveguide QED Systems. Physical Review Letters, 2022, 128, .	2.9	14
396	Optical Entanglement of Distinguishable Quantum Emitters. Physical Review Letters, 2022, 128, .	2.9	9
397	Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle. Nano Letters, 2022, 22, 4686-4693.	4.5	25
398	Experimental preparation of generalized cat states for itinerant microwave photons. Physical Review A, 2022, 105, .	1.0	4
399	Scalarâ€Superposition Metasurfaces with Robust Placement of Quantum Emitters for Tailoring Singleâ€Photon Emission Polarization. Laser and Photonics Reviews, 2022, 16, .	4.4	3
400	Magnetic Sublevel Independent Magic and Tune-Out Wavelengths of the Alkaline-Earth Ions. Atoms, 2022, 10, 72.	0.7	1
401	Towards compact high-efficiency grating couplers for visible wavelength photonics. Optics Letters, 0,	1.7	1

#	Article	IF	CITATIONS
402	Understanding and suppressing backscatter in optical resonators. Optica, 2022, 9, 878.	4.8	2
403	Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System. Physical Review Letters, 2022, 129, .	2.9	27
404	NMR Hamiltonian as an effective Hamiltonian to generate Schrödinger's cat states. Quantum Information Processing, 2022, 21, .	1.0	1
405	High-Fidelity Photonic Three-Degree-of-Freedom Hyperparallel Controlled-Phase-Flip Gate. Frontiers in Physics, 0, 10, .	1.0	0
406	High-fidelity universal quantum gates for hybrid systems via the practical photon scattering. Chinese Physics B, O, , .	0.7	0
407	A review on quantum information processing in cavities. European Physical Journal Plus, 2022, 137, .	1.2	11
408	From counterportation to local wormholes. Quantum Science and Technology, 2023, 8, 025016.	2.6	3
409	Proposal for low-power atom trapping on a GaN-on-sapphire chip. Physical Review A, 2022, 106, .	1.0	6
410	Asymmetric comb waveguide for strong interactions between atoms and light. Optics Express, 2022, 30, 45093.	1.7	3
411	An ultra-high gain single-photon transistor in the microwave regime. Nature Communications, 2022, 13, .	5.8	3
412	Nanophotonics and optical fibers: New avenues for sensing and active devices. Results in Optics, 2022, 9, 100321.	0.9	1
413	Non-Markovianity of an atom in a semi-infinite rectangular waveguide. Chinese Physics B, 2023, 32, 030305.	0.7	2
414	<i>Colloquium</i> : Cavity-enhanced quantum network nodes. Reviews of Modern Physics, 2022, 94, .	16.4	15
415	Tunable multi-outlet single photon quantum router in an optomechanical system. Laser Physics, 2023, 33, 065201.	0.6	0
416	Highly Efficient Single-Exciton Strong Coupling with Plasmons by Lowering Critical Interaction Strength at an Exceptional Point. Physical Review Letters, 2023, 130, .	2.9	4
417	Single-photon switches, beam splitters, and circulators based on the photonic Aharonov-Bohm effect. Optics Express, 2023, 31, 11142.	1.7	0
418	Coupling Single Atoms to a Nanophotonic Whispering-Gallery-Mode Resonator via Optical Guiding. Physical Review Letters, 2023, 130, .	2.9	11
419	Strong coupling between a plasmon mode and multiple different exciton states. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	4

#	Article	IF	CITATIONS
420	Quantum nonlinear metasurfaces from dual arrays of ultracold atoms. Physical Review Research, 2023, 5, .	1.3	10
421	Multichannel waveguide QED with atomic arrays in free space. Physical Review A, 2023, 107, .	1.0	1
429	Quantum networks with neutral atom processing nodes. Npj Quantum Information, 2023, 9, .	2.8	3
440	Light–matter interactions in quantum nanophotonic devices. Nature Reviews Physics, 2024, 6, 166-179.	11.9	1