$Flexible\ metal \hat{a} {\bf \in ``organic\ frameworks}$

Chemical Society Reviews 43, 6062-6096 DOI: 10.1039/c4cs00101j

Citation Report

#	Article	IF	CITATIONS
2	Transformation from non- to double-interpenetration in robust Cd(<scp>ii</scp>) doubly-pillared-layered metal–organic frameworks. Chemical Communications, 2014, 50, 14543-14546.	2.2	29
3	Dynamic Metal–Organic Framework with Anion-Triggered Luminescence Modulation Behavior. Inorganic Chemistry, 2014, 53, 12225-12227.	1.9	37
4	Reversible reconstructive transition of the [CuZn(CN)4]â^' framework host induced by guest exchange. CrystEngComm, 2014, 16, 10173-10176.	1.3	5
5	Photocatalytic Metal–Organic Framework from CdS Quantum Dot Incubated Luminescent Metallohydrogel. Journal of the American Chemical Society, 2014, 136, 14845-14851.	6.6	287
6	A 3-D diamondoid MOF catalyst based on in situ generated [Cu(L) ₂] N-heterocyclic carbene (NHC) linkers: hydroboration of CO ₂ . Chemical Communications, 2014, 50, 11760-11763.	2.2	70
7	Rapid room temperature syntheses of zeolitic-imidazolate framework (ZIF) nanocrystals. Chemical Communications, 2014, 50, 13258-13260.	2.2	81
8	Structural diversity and luminescent properties of cyanoacetato zinc/cadmium coordination polymers with N,N′-ditopic auxiliary ligands. Polyhedron, 2015, 102, 693-698.	1.0	4
9	Coordination Polymer Flexibility Leads to Polymorphism and Enables a Crystalline Solid–Vapour Reaction: A Multiâ€ŧechnique Mechanistic Study. Chemistry - A European Journal, 2015, 21, 8799-8811.	1.7	25
10	Structural, energetic and dynamic insights into the abnormal xylene separation behavior of hierarchical porous crystal. Scientific Reports, 2015, 5, 11537.	1.6	29
11	Unveiling the Mechanism of Waterâ€īriggered Diplex Transformation and Correlating the Changes in Structures and Separation Properties. Advanced Functional Materials, 2015, 25, 6448-6457.	7.8	41
12	Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications. Advanced Materials, 2015, 27, 5432-5441.	11.1	470
14	Influence of Solventâ€Like Sidechains on the Adsorption of Light Hydrocarbons in Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 18764-18769.	1.7	32
15	A New Structural Family of Gasâ€Sorbing Coordination Polymers Derived from Phenolic Carboxylic Acids. Chemistry - A European Journal, 2015, 21, 18057-18061.	1.7	21
16	Porphyrin Boxes: Rationally Designed Porous Organic Cages. Angewandte Chemie - International Edition, 2015, 54, 13241-13244.	7.2	161
17	Metal–Organic Frameworks Incorporating Various Alkoxy Pendant Groups: Hollow Tubular Morphologies, Xâ€ray Singleâ€Crystal Structures, and Selective Carbon Dioxide Adsorption Properties. Chemistry - an Asian Journal, 2015, 10, 2257-2263.	1.7	6
18	Probing Solid-State Breathing and Structural Transformations in a Series of Silver(I) Porous Coordination Polymers. European Journal of Inorganic Chemistry, 2015, 2015, 3723-3729.	1.0	10
19	Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AICHE Journal, 2015, 61, 2757-2762.	1.8	317
20	Structure and mechanical features of one-dimensional coordination polymer catena-{(μ ₂ -adipato-O,O′)-bis(pyridine-4-aldoxime)-copper(<scp>ii</scp>)}. CrystEngComm, 2015, 17, 2450-2458.	1.3	6

#	Article	IF	CITATIONS
21	Porous materials based on metal–nucleobase systems sustained by coordination bonds and base pairing interactions. CrystEngComm, 2015, 17, 3051-3059.	1.3	43
22	lsoreticular isomerism in 4,4-connected paddle-wheel metal–organic frameworks: structural prediction by the reverse topological approach. CrystEngComm, 2015, 17, 344-352.	1.3	30
23	Adsorbents for CO2 Capture. Springer Briefs in Molecular Science, 2015, , 25-41.	0.1	0
24	Double-step CO ₂ sorption and guest-induced single-crystal-to-single-crystal transformation in a flexible porous framework. Dalton Transactions, 2015, 44, 10141-10145.	1.6	16
25	Discrete and polymeric complexes formed from cobalt(<scp>ii</scp>), 4,4′-bipyridine and 2-sulfoterephthalate: synthetic, crystallographic and magnetic studies. CrystEngComm, 2015, 17, 4502-4511.	1.3	8
26	Turn-on luminescence based discrimination of protic acids using a flexible layered metal–organic coordination polymer. RSC Advances, 2015, 5, 48169-48175.	1.7	8
27	Metal organic frameworks for photo-catalytic water splitting. Energy and Environmental Science, 2015, 8, 1923-1937.	15.6	277
28	Spongeâ€Like Behaviour in Isoreticular Cu(Glyâ€Hisâ€X) Peptideâ€Based Porous Materials. Chemistry - A European Journal, 2015, 21, 16027-16034.	1.7	36
29	Coligand syntheses, crystal structures, luminescence and photocatalytic properties of five coordination polymers based on rigid tetracarboxylic acids and imidazole linkers. CrystEngComm, 2015, 17, 9413-9422.	1.3	75
30	Toward a robust porous coordination polymer: the inhibition of mutual movement between interpenetrating sub-networks by introduction of multiple C–Hâ<ï€ interactions. RSC Advances, 2015, 5, 89052-89055.	1.7	4
31	An unprecedented twelve-connected 3D metal-organic framework based on heptanuclear cobalt cluster building blocks. Inorganic Chemistry Communication, 2015, 62, 98-102.	1.8	3
32	Structural Origin of Unusual CO ₂ Adsorption Behavior of a Small-Pore Aluminum Bisphosphonate MOF. Journal of Physical Chemistry C, 2015, 119, 4208-4216.	1.5	63
33	Flexible Porous Zinc–Pyrazole–Adenine Framework for Hysteretic Sorption of Light Hydrocarbons. Crystal Growth and Design, 2015, 15, 1210-1213.	1.4	22
34	Coordination polymers based on copper carboxylates and angular 2,5-bis(imidazol-1-yl)thiophene (thim ₂) ligand: sequential structural transformations. CrystEngComm, 2015, 17, 2153-2161.	1.3	11
35	Understanding DABCO Nanorotor Dynamics in Isostructural Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2015, 6, 812-816.	2.1	37
36	Interaction of the Trinuclear Triangular Secondary Building Unit [Cu ₃ (μ ₃ -OH)(μ-pz) ₃] ²⁺ with 4,4′-Bipyridine. Structural Characterizations of New Coordination Polymers and Hexanuclear Cu ^{II} Clusters. 2Ű. Crystal Growth and Design. 2015. 15. 1259-1272.	1.4	20
37	A two-dimensional flexible porous coordination polymer based on Co(<scp>ii</scp>) and terpyridyl phosphine oxide. Inorganic Chemistry Frontiers, 2015, 2, 388-394.	3.0	9
38	Responsive Metal–Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends. Chemistry of Materials, 2015, 27, 1905-1916.	3.2	432

#	Article	IF	CITATIONS
39	Modulated preparation and structural diversification of metal–organic frameworks based on 4,4′,4″-(1H-imidazole-2,4,5-triyl)tripyridine ligand. Inorganica Chimica Acta, 2015, 427, 240-247.	1.2	5
40	An insight into the controllable synthesis of Cd(<scp>ii</scp>) complexes with a new multifunctional ligand and its application in dye-sensitized solar cells and luminescence properties. Journal of Materials Chemistry A, 2015, 3, 6053-6063.	5.2	18
41	Syntheses, crystal structures and properties of three cyano-bridged one-dimensional coordination polymers based on macrocyclic metallic tectons. RSC Advances, 2015, 5, 19034-19040.	1.7	8
42	Porous Supramolecular Networks Constructed of One-Dimensional Metal–Organic Chains: Carbon Dioxide and Iodine Capture. Inorganic Chemistry, 2015, 54, 1655-1660.	1.9	63
43	The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Transactions, 2015, 44, 5258-5275.	1.6	225
44	A photoactive porous metal–organic complex: synthesis, crystal morphology and the influence of photocycloaddition on fluorescence properties and adsorption behavior. CrystEngComm, 2015, 17, 2353-2358.	1.3	16
45	Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 3177-3180.	6.6	323
46	NO adsorption in amino-modified Cu3(btc)2-type MOFs studied by solid-state NMR. Microporous and Mesoporous Materials, 2015, 216, 111-117.	2.2	18
47	Structural Transformation and Hysteretic Sorption of Light Hydrocarbons in a Flexible Zn–Pyrazole–Adenine Framework. Chemistry - A European Journal, 2015, 21, 5700-5703.	1.7	41
48	Luminescent silver(<scp>i</scp>) coordination architectures containing 2-aminopyrimidyl ligands. CrystEngComm, 2015, 17, 3393-3417.	1.3	34
49	Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nature Communications, 2015, 6, 6350.	5.8	65
50	Inâ€situ Generation of Ni Nanoparticles from Metal–Organic Framework Precursors and Their Use for Biomass Hydrodeoxygenation. ChemSusChem, 2015, 8, 1703-1710.	3.6	26
51	DFT-Derived Force Fields for Modeling Hydrocarbon Adsorption in MIL-47(V). Langmuir, 2015, 31, 8453-8468.	1.6	37
52	Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chemical Engineering Journal, 2015, 281, 669-677.	6.6	248
53	Converting 3D rigid metal–organic frameworks (MOFs) to 2D flexible networks via ligand exchange for enhanced CO ₂ /N ₂ and CH ₄ /N ₂ separation. Chemical Communications, 2015, 51, 14716-14719.	2.2	45
54	A Series of Cyanoacetato Copper(II) Coordination Polymers with Various <i>N</i> , <i>N</i> ′-Ditopic Spacers: Structural Diversity, Supramolecular Robustness, and Magnetic Properties. Crystal Growth and Design, 2015, 15, 3804-3812.	1.4	9
55	Water-mediated promotion of direct oxidation of benzene over the metal–organic framework HKUST-1. RSC Advances, 2015, 5, 56020-56027.	1.7	16
56	Unusually Large Band Gap Changes in Breathing Metal–Organic Framework Materials. Journal of Physical Chemistry C, 2015, 119, 16667-16677.	1.5	52

#	Article	IF	CITATIONS
57	Syntheses, characterization and properties of nine novel Zn(<scp>ii</scp>) coordination polymers based on 4,4′-(phenylazanediyl)dibenzoic acid and various N-donor ligands. CrystEngComm, 2015, 17, 5451-5467.	1.3	18
58	Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO ₂ /CH ₄ gas separation. Journal of Materials Chemistry A, 2015, 3, 15202-15213.	5.2	125
59	Reversible flexible structural changes in multidimensional MOFs by guest molecules (I2, NH3) and thermal stimulation. Journal of Solid State Chemistry, 2015, 226, 114-119.	1.4	9
60	Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19218-19253.	5.2	1,566
61	Coordination polymers from a highly flexible alkyldiamine-derived ligand: structure, magnetism and gas adsorption studies. Dalton Transactions, 2015, 44, 17494-17507.	1.6	29
62	3D Metal–Organic Framework Based on a Lower-Rim Acid-Functionalized Calix[4]arene: Crystal-to-Crystal Transformation upon Lattice Solvent Removal. Crystal Growth and Design, 2015, 15, 3556-3560.	1.4	31
63	Exceptional adsorption-induced cluster and network deformation in the flexible metal–organic framework DUT-8(Ni) observed by in situ X-ray diffraction and EXAFS. Physical Chemistry Chemical Physics, 2015, 17, 17471-17479.	1.3	96
64	A series of multi-dimensional metal–organic frameworks with trans-4,4′-azo-1,2,4-triazole: polymorphism, guest induced single-crystal-to-single-crystal transformation and solvatochromism. CrystEngComm, 2015, 17, 5396-5409.	1.3	31
65	Pd(II)-Directed Encapsulation of Hydrogenase within the Layer-by-Layer Multilayers of Carbon Nanotube Polyelectrolyte Used as a Heterogeneous Catalyst for Oxidation of Hydrogen. Langmuir, 2015, 31, 6546-6553.	1.6	4
66	Controlling the flexibility and single-crystal to single-crystal interpenetration reconstitution of metal–organic frameworks. Chemical Communications, 2015, 51, 12665-12668.	2.2	32
67	Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6051-6111.	23.0	241
68	Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIFâ€4. Angewandte Chemie - International Edition, 2015, 54, 6447-6451.	7.2	87
70	Multifunctional Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) metal complexes for tunable luminescence properties and highly efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 43705-43716.	1.7	17
71	Absorbate-Induced Piezochromism in a Porous Molecular Crystal. Nano Letters, 2015, 15, 2149-2154.	4.5	36
72	Characteristics of flexibility in metal-organic framework solid solutions of composition [Zn2(BME-bdc)x(DB-bdc)2â^'xdabco]n: In situ powder X-ray diffraction, in situ NMR spectroscopy, and molecular dynamics simulations. Microporous and Mesoporous Materials, 2015, 216, 64-74.	2.2	41
73	Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material. Journal of the American Chemical Society, 2015, 137, 9296-9301.	6.6	103
75	An Amideâ€Functionalized Dynamic Metal–Organic Framework Exhibiting Visual Colorimetric Anion Exchange and Selective Uptake of Benzene over Cyclohexane. Chemistry - A European Journal, 2015, 21, 7071-7076.	1.7	56
76	Immobilization of Cu Complex into Zr-Based MOF with Bipyridine Units for Heterogeneous Selective Oxidation. Journal of Physical Chemistry C, 2015, 119, 8131-8137.	1.5	89

# 77	ARTICLE Magnesium-based systems for carbon dioxide capture, storage and recycling: from leaves to synthetic nanostructured materials. RSC Advances, 2015, 5, 36192-36239.	IF 1.7	Citations 61
78	Tolerance of Flexible MOFs toward Repeated Adsorption Stress. ACS Applied Materials & Interfaces, 2015, 7, 22292-22300.	4.0	67
79	Control of Molecular Rotor Rotational Frequencies in Porous Coordination Polymers Using a Solid-Solution Approach. Journal of the American Chemical Society, 2015, 137, 12183-12186.	6.6	78
80	A Comparison of Barostats for the Mechanical Characterization of Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2015, 11, 5583-5597.	2.3	83
81	Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature, 2015, 527, 357-361.	13.7	817
82	A porous Zr-cluster-based cationic metal–organic framework for highly efficient Cr ₂ O ₇ ^{2â^'} removal from water. Chemical Communications, 2015, 51, 14732-14734.	2.2	234
83	Targeted capture and pressure/temperature-responsive separation in flexible metal–organic frameworks. Journal of Materials Chemistry A, 2015, 3, 22574-22583.	5.2	30
84	Isoreticular synthesis of 2D MOFs with rotating aryl rings. Inorganic Chemistry Frontiers, 2015, 2, 1001-1005.	3.0	4
85	Hydrothermal Breakdown of Flexible Metal–Organic Frameworks: A Study by First-Principles Molecular Dynamics. Journal of Physical Chemistry Letters, 2015, 6, 4365-4370.	2.1	23
86	Reversible Tuning Hydroquinone/Quinone Reaction in Metal–Organic Framework: Immobilized Molecular Switches in Solid State. Chemistry of Materials, 2015, 27, 6426-6431.	3.2	72
87	Maximizing negative thermal expansion via rigid unit modes: a geometry-based approach. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150188.	1.0	24
88	Semi-analytical mean-field model for predicting breathing in metal–organic frameworks. Molecular Simulation, 2015, 41, 1311-1328.	0.9	21
89	Structural and luminescence modulation in 8-hydroxyquinolinate-based coordination polymers by varying the dicarboxylic acid. Dalton Transactions, 2015, 44, 17774-17783.	1.6	12
90	Synthesis and Structural Characterizations of New Coordination Polymers Generated by the Interaction Between the Trinuclear Triangular SBU [Cu ₃ (μ ₃ -OH)(μ+pz) ₃] ²⁺ and 4,4′-Bipyridine. 3°. Crysta Growth and Design 2015, 15, 4854-4862	al ^{1.4}	21
91	An unprecedented 3D manganese(II) MOF displaying (4,5)-connected xah topology. Inorganic Chemistry Communication, 2015, 61, 24-26.	1.8	14
92	Synthesis of well dispersed polymer grafted metal–organic framework nanoparticles. Chemical Communications, 2015, 51, 15566-15569.	2.2	81
93	Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties. Journal of Solid State Chemistry, 2015, 231, 70-79.	1.4	3
94	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	6.6	149

#	Article	IF	CITATIONS
95	Effect of Solvent Molecule in Pore for Flexible Porous Coordination Polymer upon Gas Adsorption and Iodine Encapsulation. Inorganic Chemistry, 2015, 54, 11283-11291.	1.9	62
96	Synthesis of phosphotungstic acid-supported versatile metal–organic framework PTA@MIL-101(Fe)–NH ₂ –Cl. RSC Advances, 2015, 5, 97589-97597.	1.7	11
97	Reaction of Copper(II) Chloroacetate with Pyrazole. Synthesis of a One-Dimensional Coordination Polymer and Unexpected Dehydrochlorination Reaction. Crystal Growth and Design, 2015, 15, 5910-5918.	1.4	18
98	A 2-D coordination polymer incorporating cobalt(<scp>ii</scp>), 2-sulfoterephthalate and the flexible bridging ligand 1,3-di(4-pyridyl)propane. Inorganic Chemistry Frontiers, 2015, 2, 157-163.	3.0	14
99	New Zn(II) Coordination Polymers Constructed from Amino-Alcohols and Aromatic Dicarboxylic Acids: Synthesis, Structure, Photocatalytic Properties, and Solid-State Conversion to ZnO. Crystal Growth and Design, 2015, 15, 799-811.	1.4	18
100	Syntheses, crystal structures and properties of complexes with two anthracene-based bulky backbone ligands. Transition Metal Chemistry, 2015, 40, 69-77.	0.7	1
101	¹¹³ Cd Solid‣tate NMR for Probing the Coordination Sphere in Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 1118-1124.	1.7	27
102	Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm, 2015, 17, 229-246.	1.3	237
103	Location of CO ₂ during its uptake by the flexible porous metal–organic framework MIL-53(Fe): a high resolution powder X-ray diffraction study. CrystEngComm, 2015, 17, 422-429.	1.3	19
104	Nanotechnology for Water Cleanup. , 2016, , 1-18.		2
105	Directional Functionalization of MOFâ€74 Analogs via Ligand Preâ€installation. Chinese Journal of Chemistry, 2016, 34, 220-224.	2.6	5
106	CO ₂ Adsorption in Azobenzene Functionalized Stimuli Responsive Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 16658-16667.	1.5	53
107	A Breathing Zirconium Metal–Organic Framework with Reversible Loss of Crystallinity by Correlated Nanodomain Formation. Chemistry - A European Journal, 2016, 22, 3264-3267.	1.7	41
108	Visualizing the Dynamics of Temperature―and Solventâ€Responsive Soft Crystals. Angewandte Chemie - International Edition, 2016, 55, 7478-7482.	7.2	59
109	A Luminescent Metal–Organic Framework Thermometer with Intrinsic Dual Emission from Organic Lumophores. Chemistry - A European Journal, 2016, 22, 4460-4468.	1.7	66
110	Organometallic Hydrogels. ChemNanoMat, 2016, 2, 364-375.	1.5	17
111	Switchable Roomâ€Temperature Ferroelectric Behavior, Selective Sorption and Solventâ€Exchange Studies of [H ₃ O][Co ₂ (dat)(sdba) ₂]â <h<sub>2sdbaâ<5 H_{2ChemPlusChem, 2016, 81, 733-742.}</h<sub>	b> 0 .	9
112	Nanoparticles. , 0, , 491-521.		2

#	Article	IF	CITATIONS
113	Visualizing the Dynamics of Temperature―and Solventâ€Responsive Soft Crystals. Angewandte Chemie, 2016, 128, 7604-7608.	1.6	44
114	Inâ€Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 2012-2016.	7.2	53
115	Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10776-10780.	7.2	179
116	Role of Molecular Simulations in the Field of MOFs. , 2016, , 765-794.		1
117	Anomalous Thermal Expansion and Luminescence Thermochromism in Silver(I) Dicyanamide. European Journal of Inorganic Chemistry, 2016, 2016, 4378-4381.	1.0	9
118	Intercalation of Varied Sulfonates into a Layered MOC: Confinementâ€Caused Tunable Luminescence and Novel Properties. Chemistry - A European Journal, 2016, 22, 5327-5334.	1.7	18
119	Flexible, Luminescent Metal–Organic Frameworks Showing Synergistic Solidâ€Solution Effects on Porosity and Sensitivity. Angewandte Chemie, 2016, 128, 16255-16259.	1.6	9
120	Zinc Dialkylhydroxybenzoates with Unusual Structures: First Example of a Discrete Threeâ€Blade Paddleâ€Wheel and a Solvent Engulfed Coordination Polymer. ChemistrySelect, 2016, 1, 6658-6668.	0.7	5
121	H3O+ tetrahedron induction in large negative linear compressibility. Scientific Reports, 2016, 6, 26015.	1.6	6
122	Carboxylic Acid Functionalized Clathrochelate Complexes: Large, Robust, and Easy-to-Access Metalloligands. Inorganic Chemistry, 2016, 55, 4006-4015.	1.9	43
123	Enhanced gas sorption and breathing properties of the new sulfone functionalized COMOC-2 metal organic framework. Dalton Transactions, 2016, 45, 9485-9491.	1.6	26
124	Outlook and challenges for hydrogen storage in nanoporous materials. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	129
125	Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85, 280-307.	2.5	300
126	A unique multi-functional cationic luminescent metal–organic nanotube for highly sensitive detection of dichromate and selective high capacity adsorption of Congo red. RSC Advances, 2016, 6, 33888-33900.	1.7	54
127	A pressure-amplifying framework material with negative gas adsorption transitions. Nature, 2016, 532, 348-352.	13.7	490
128	Tuning the adsorption behaviors of water, methanol, and ethanol in a porous material by varying the flexibility of substituted groups. Dalton Transactions, 2016, 45, 7235-7239.	1.6	19
129	1D to 3D and Chiral to Noncentrosymmetric Metal–Organic Complexes Controlled by the Amount of DEF Solvent: Photoluminescent and NLO Properties. Inorganic Chemistry, 2016, 55, 4199-4205.	1.9	30
130	Internal dynamics and guest binding of a sterically overcrowded host. Chemical Science, 2016, 7, 4676-4684.	3.7	54

#	Article	IF	CITATIONS
131	Coordination nanoarchitectonics at interfaces between supramolecular and materials chemistry. Coordination Chemistry Reviews, 2016, 320-321, 139-152.	9.5	82
132	Molecular modeling of zinc paddlewheel molecular complexes and the pores of a flexible metal organic framework. Journal of Molecular Modeling, 2016, 22, 80.	0.8	15
133	Single-crystal and humidity-controlled powder diffraction study of the breathing effect in a metal–organic framework upon water adsorption/desorption. Chemical Communications, 2016, 52, 7229-7232.	2.2	15
134	Structural Investigation of a Flexible MOF [Cu(BF ₄) ₂ (1,3-bis(4-pyridyl)propane) ₂] Showing Selective Gate Adsorption with Dynamic Pore-Opening/Pore-Closing Processes. Journal of Physical Chemistry C, 2016, 120, 21571-21579.	1.5	26
135	Crystal Dynamics in Multiâ€stimuliâ€Responsive Entangled Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 15864-15873.	1.7	46
136	Influence of the Amide Groups in the CO ₂ /N ₂ Selectivity of a Series of Isoreticular, Interpenetrated Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 6016-6023.	1.4	73
137	Electrochemically Active Coordination Polymers: A Review. Theoretical and Experimental Chemistry, 2016, 52, 197-211.	0.2	7
138	Porous Polyrotaxane Coordination Networks Containing Two Distinct Conformers of a Discontinuously Flexible Ligand. Inorganic Chemistry, 2016, 55, 10467-10474.	1.9	11
139	Turn-on fluorescence detection of ciprofloxacin in tablets based on lanthanide coordination polymer nanoparticles. RSC Advances, 2016, 6, 100743-100747.	1.7	47
140	Variation of Desolvation Behavior in Two Isostructural Metal–Organic Frameworks Based on a Flexible, Racemic Bifunctional Organic Linker. European Journal of Inorganic Chemistry, 2016, 2016, 4430-4439.	1.0	4
141	Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal–organic frameworks at room temperature. Journal of Materials Chemistry A, 2016, 4, 16645-16652.	5.2	49
142	Metal–Organic Framework-Templated Synthesis of Bifunctional N-Doped TiO ₂ –Carbon Nanotablets via Solid-State Thermolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 6744-6753.	3.2	35
143	Sorption discrimination between secondary alcohol enantiomers by chiral alkyl-dicarboxylate MOFs. RSC Advances, 2016, 6, 93707-93714.	1.7	7
144	Removal of Pertechnetateâ€Related Oxyanions from Solution Using Functionalized Hierarchical Porous Frameworks. Chemistry - A European Journal, 2016, 22, 17581-17584.	1.7	107
145	Recognition of 1,3â€Butadiene by a Porous Coordination Polymer. Angewandte Chemie, 2016, 128, 13988-13992.	1.6	4
146	Recognition of 1,3â€Butadiene by a Porous Coordination Polymer. Angewandte Chemie - International Edition, 2016, 55, 13784-13788.	7.2	55
147	Ligand and Metal Effects on the Stability and Adsorption Properties of an Isoreticular Series of MOFs Based on Tâ€ s haped Ligands and Paddleâ€Wheel Secondary Building Units. Chemistry - A European Journal, 2016, 22, 16147-16156.	1.7	43
148	Flexible Porous Coordination Polymers from Divergent Photoluminescent 4-Oxo-1,8-naphthalimide Ligands. Inorganic Chemistry, 2016, 55, 11570-11582.	1.9	22

#	Article	IF	CITATIONS
149	Metal-Organic Frameworks and Related Materials. , 2016, , 33-109.		3
150	Isophthalate–Hydrazone 2D Zinc–Organic Framework: Crystal Structure, Selective Adsorption, and Tuning of Mechanochemical Synthetic Conditions. Inorganic Chemistry, 2016, 55, 9663-9670.	1.9	25
151	Direct Structural Identification of Gas Induced Gateâ€Opening Coupled with Commensurate Adsorption in a Microporous Metal–Organic Framework. Chemistry - A European Journal, 2016, 22, 11816-11825.	1.7	27
152	Hydrothermal synthesis and characterization of a series of luminescent Ag(<scp>i</scp>) coordination polymers with two new multidentate bis-(1,2,3-triazole) ligands: structural diversity, polymorphism and photoluminescent sensing. CrystEngComm, 2016, 18, 6640-6652.	1.3	38
153	Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts. Angewandte Chemie, 2016, 128, 10934-10938.	1.6	53
154	A structurally flexible triazolate-based metal–organic framework featuring coordinatively unsaturated copper(<scp>i</scp>) sites. Dalton Transactions, 2016, 45, 13853-13862.	1.6	26
155	Hydrogenâ€Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie - International Edition, 2016, 55, 10667-10671.	7.2	334
156	The First Example of Heteroâ€Tripleâ€Walled Metal–Organic Frameworks with High Chemical Stability Constructed via Flexible Integration of Mixed Molecular Building Blocks. Advanced Science, 2016, 3, 1500283.	5.6	33
157	Hydrogenâ€Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie, 2016, 128, 10825-10829.	1.6	76
158	Structural diversity, luminescence and photocatalytic properties of six coordination polymers based on designed bifunctional 2-(imidazol-1-yl)terephthalic acid. CrystEngComm, 2016, 18, 6914-6925.	1.3	48
159	Porous Coordination Polymers Containing Pyridine-3,5-Bis(5-azabenzimidazole): Exploration of Water Sorption, Selective Dye Adsorption, and Luminescent Properties. Crystal Growth and Design, 2016, 16, 5976-5984.	1.4	42
160	Three-Component Coupling of Aldehyde, Alkyne, and Amine via C–H Bond Activation Using Indium-Based Metal–Organic Framework Mil-68(In) as a Recyclable Heterogeneous Catalyst. Catalysis Letters, 2016, 146, 2087-2097.	1.4	11
161	Simultaneous introduction of various palladium active sites into MOF via one-pot synthesis: Pd@[Cu _{3â^'x} Pd _x (BTC) ₂] _n . Dalton Transactions, 2016, 45, 14883-14887.	1.6	31
162	Hydrogen adsorption in azolium and metalated N-heterocyclic carbene containing MOFs. CrystEngComm, 2016, 18, 7003-7010.	1.3	17
163	A magnesium-based bifunctional MOF: Studies on proton conductivity, gas and water adsorption. Inorganica Chimica Acta, 2016, 453, 321-329.	1.2	12
164	Solid-State Ring-Opening Structural Transformation in Triazolyl Ethanesulfonate Based Silver Complexes. Crystal Growth and Design, 2016, 16, 5836-5842.	1.4	6
165	Creation of new guest accessible space under gas pressure in a flexible MOF: multidimensional insight through combination of in situ techniques. Chemical Communications, 2016, 52, 11374-11377.	2.2	23
166	A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(<scp>iii</scp>)–organic framework. Dalton Transactions, 2016, 45, 15492-15499.	1.6	201

#	Article	IF	CITATIONS
167	Two metal-organic frameworks with different configurations constructed from a flexible tripodal triaromatic acid. Journal of Molecular Structure, 2016, 1125, 656-661.	1.8	4
168	The roles of imidazole ligands in coordination supramolecular systems. CrystEngComm, 2016, 18, 6543-6565.	1.3	88
169	Eyeâ€Catching Dualâ€Fluorescent Dynamic Metal–Organic Framework Senses Traces of Water: Experimental Findings and Theoretical Correlation. Chemistry - A European Journal, 2016, 22, 14998-15005.	1.7	69
170	Olefin/Paraffin Separation Potential of ZIFâ€9 and ZIFâ€71: A Combined Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2016, 2016, 4440-4449.	1.0	33
171	Flexible, Luminescent Metal–Organic Frameworks Showing Synergistic Solid‣olution Effects on Porosity and Sensitivity. Angewandte Chemie - International Edition, 2016, 55, 16021-16025.	7.2	60
172	A Germanate with a Collapsible Open-Framework. Crystal Growth and Design, 2016, 16, 6967-6973.	1.4	4
173	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie, 2016, 128, 15251-15254.	1.6	16
174	Flexible chiral pyrazolate-based metal–organic framework containing saddle-type Cu ^I ₄ (pyrazolate) ₄ units. CrystEngComm, 2016, 18, 7883-7893.	1.3	9
175	Giant Hysteretic Sorption of CO ₂ : In Situ Crystallographic Visualization of Guest Binding within a Breathing Framework at 298 K. Angewandte Chemie - International Edition, 2016, 55, 13271-13275.	7.2	62
176	Giant Hysteretic Sorption of CO ₂ : In Situ Crystallographic Visualization of Guest Binding within a Breathing Framework at 298 K. Angewandte Chemie, 2016, 128, 13465-13469.	1.6	5
177	Amide-CO ₂ Interaction Induced Gate-Opening Behavior for CO ₂ Adsorption in 2-Fold Interpenetrating Framework. ChemistrySelect, 2016, 1, 2923-2929.	0.7	14
178	Lanthanide-Organic Frameworks (LnOFs) Containing 1D Metal/Oxygen Ribbons with Cubane-like and Triangle Motifs: Synthesis, Structure, Luminescence and Slow Magnetic Relaxation. ChemistrySelect, 2016, 1, 3335-3342.	0.7	8
179	A new anionic metal-organic framework for highly efficient removal of cationic pollutant in water. Materials Letters, 2016, 185, 177-180.	1.3	17
180	Influence of Water on the Chemistry and Structure of the Metal–Organic Framework Cu ₃ (btc) ₂ . Journal of Physical Chemistry C, 2016, 120, 17323-17333.	1.5	64
181	Endohedral dynamics of push–pull rotor-functionalized cages. Chemical Communications, 2016, 52, 10411-10414.	2.2	25
182	Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule. Journal of the American Chemical Society, 2016, 138, 10700-10707.	6.6	102
183	Organised chaos: entropy in hybrid inorganic–organic systems and other materials. Chemical Science, 2016, 7, 6316-6324.	3.7	62
184	A Highly Waterâ€Tolerant Magnesium(II) Coordination Polymer Derived from a Flexible Layered Structure. Chemistry - A European Journal, 2016, 22, 11042-11047.	1.7	4

#	Article	IF	CITATIONS
185	Reversible Phase Transformation in Three Dynamic Mixed-Ligand Metal–Organic Frameworks: Synthesis, Structure, and Sorption Study. Crystal Growth and Design, 2016, 16, 4783-4792.	1.4	14
186	Exploring the Flexibility of MIL-47(V)-Type Materials Using Force Field Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2016, 120, 14934-14947.	1.5	48
187	Influence of Co-adsorbates on CO ₂ induced phase transition in functionalized pillared-layered metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 12963-12972.	5.2	25
188	Single-Crystal-to-Single-Crystal Breathing and Guest Exchange in Co ^{II} Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 5247-5259.	1.4	28
189	Density functional calculations reveal a flexible version of the copper paddlewheel unit: implications for metal organic frameworks. Dalton Transactions, 2016, 45, 11944-11948.	1.6	15
190	A flexible metal-organic framework with double interpenetration for highly selective CO2 capture at room temperature. Science China Chemistry, 2016, 59, 965-969.	4.2	30
191	Precise Modulation of the Breathing Behavior and Pore Surface in Zrâ€MOFs by Reversible Postâ€Synthetic Variableâ€Spacer Installation to Fineâ€Tune the Expansion Magnitude and Sorption Properties. Angewandte Chemie, 2016, 128, 10086-10090.	1.6	30
192	Precise Modulation of the Breathing Behavior and Pore Surface in Zrâ€MOFs by Reversible Postâ€Synthetic Variableâ€Spacer Installation to Fineâ€Tune the Expansion Magnitude and Sorption Properties. Angewandte Chemie - International Edition, 2016, 55, 9932-9936.	7.2	125
193	Liquid Phase Epitaxial Growth and Optical Properties of Photochromic Guest-Encapsulated MOF Thin Film. Crystal Growth and Design, 2016, 16, 5487-5492.	1.4	35
194	Design and synthesis of two novel functional metal–organic microcapsules; an investigation into ligand expansion effects on the metal–organic microcapsules' properties. RSC Advances, 2016, 6, 101652-101659.	1.7	3
195	New polynuclear compounds based on <i>N</i> -benzyliminodipropionic acid: solution studies, synthesis, and X-ray crystal structures. Journal of Coordination Chemistry, 2016, 69, 3650-3663.	0.8	5
196	A two-dimensional metal-organic framework composed of paddle-wheel cobalt clusters with permanent porosity. Inorganic Chemistry Communication, 2016, 74, 98-101.	1.8	10
197	Visibleâ€Light Excited Luminescent Thermometer Based on Single Lanthanide Organic Frameworks. Advanced Functional Materials, 2016, 26, 8677-8684.	7.8	188
198	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie - International Edition, 2016, 55, 15027-15030.	7.2	166
199	Arene Selectivity by a Flexible Coordination Polymer Host. Chemistry - A European Journal, 2016, 22, 13120-13126.	1.7	17
200	Fabrication of hierarchical composite microspheres of copper-doped Fe ₃ O ₄ @P4VP@ZIF-8 and their application in aerobic oxidation. New Journal of Chemistry, 2016, 40, 10127-10135.	1.4	21
201	Commensurate Superstructure of the {Cu(NO ₃)(H ₂ O)}(HTae)(Bpy) Coordination Polymer: An Example of 2D Hydrogen-Bonding Networks as Magnetic Exchange Pathway. Inorganic Chemistry, 2016, 55, 11662-11675.	1.9	9
202	Tuning the Adsorption-Induced Phase Change in the Flexible Metal–Organic Framework Co(bdp). Journal of the American Chemical Society, 2016, 138, 15019-15026.	6.6	123

		CITATION REPORT	
#	Article	IF	CITATIONS
203	Metal–organic frameworks for membrane-based separations. Nature Reviews Materials, 2016, 1, .	23.3	602
204	Crystal structures of two one-dimensional coordination polymers constructed from Mn2+ ions, chelating hexafluoro-acetylacetonate anions, and flexible bipyridyl bridging ligands. Journal of Structural Chemistry, 2016, 57, 1169-1175.	0.3	0
205	EPR Insights into Switchable and Rigid Derivatives of the Metal–Organic Framework DUT-8(Ni) by NO Adsorption. Journal of Physical Chemistry C, 2016, 120, 14246-14259.	1.5	40
206	Adsorbent–Adsorbate Interactions in the Oxidation of HMF Catalyzed by Ni-Based MOFs: A DRIFT and FT-IR Insight. Journal of Physical Chemistry C, 2016, 120, 15310-15321.	1.5	20
207	Lanthanide–organic frameworks constructed from naphthalenedisulfonates: structure, luminescence and luminescence sensing properties. CrystEngComm, 2016, 18, 5890-5900.	1.3	27
208	A series of coordination polymers assembled from p-terphenyl-2,2″,2′′′′,5,4″,4′′′′ various flexible imidazole derivatives: Synthesis, structures and luminescent properties. Inorganica Chimica Acta, 2016, 450, 12-22.	oxylic acid a 1.2	and 4
209	Solvent-regulated assemblies of four Zn(II) coordination polymers constructed by flexible tetracarboxylates and pyridyl ligands. Journal of Molecular Structure, 2016, 1118, 233-240.	1.8	6
210	Can a highly flexible copper(<scp>i</scp>) cluster-containing 1D and 2D coordination polymers exhibit MOF-like properties?. Dalton Transactions, 2016, 45, 11413-11421.	1.6	20
211	Towards scalable and controlled synthesis of metal–organic framework materials using continuous flow reactors. Reaction Chemistry and Engineering, 2016, 1, 352-360.	1.9	68
212	Inâ€Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 2052-2056.	1.6	15
213	Simple fabrication of flake-like NH 2 -MIL-53(Cr) and its application as an electrochemical sensor for the detection of Pb 2+. Chemical Engineering Journal, 2016, 289, 479-485.	6.6	101
214	Controlled partial interpenetration in metal–organic frameworks. Nature Chemistry, 2016, 8, 250-257.	6.6	113
215	Ammonia capture and flexible transformation of M-2(INA) (M = Cu, Co, Ni, Cd) series materials. Journal of Hazardous Materials, 2016, 306, 340-347.	6.5	39
216	Exploration of Gate-Opening and Breathing Phenomena in a Tailored Flexible Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 1920-1925.	1.9	81
217	Synthesis and characterization of copper(II) and nickel(II) coordination polymers containing 2,6-naphthalenedicarboxylate and bis(benzimidazole) ligands. Transition Metal Chemistry, 2016, 41, 287-294.	0.7	1
218	Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance. Dalton Transactions, 2016, 45, 4132-4135.	1.6	34
219	Cooperative effects of lanthanides when associated with palladium in novel, 3D Pd/Ln coordination polymers. Sustainable applications as water-stable, heterogeneous catalysts in carbon–carbon cross-coupling reactions. Applied Catalysis A: General, 2016, 511, 1-10.	2.2	34
220	Self-assembled construction of a sheet-type coordination polymer bearing cationic M2L4 cages: creation of channel-like space for removal of ClO4â° and NO3â° from aqueous solutions. Dalton Transactions, 2016, 45, 894-898.	1.6	11

#	Article	IF	CITATIONS
221	Tuning the topology of hybrid inorganic–organic materials based on the study of flexible ligands and negative charge of polyoxometalates: A crystal engineering perspective. Coordination Chemistry Reviews, 2016, 309, 84-106.	9.5	140
222	A chiral porous organic cage for molecular recognition using gas chromatography. Analytica Chimica Acta, 2016, 903, 156-163.	2.6	60
223	Effect of N-Donor Ligands and Metal lons on the Coordination Polymers Based on a Semirigid Carboxylic Acid Ligand: Structures Analysis, Magnetic Properties, and Photoluminescence. Crystal Growth and Design, 2016, 16, 2062-2073.	1.4	80
224	Photoswitchable metal organic frameworks: turn on the lights and close the windows. CrystEngComm, 2016, 18, 4006-4012.	1.3	118
225	Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. Journal of Materials Chemistry A, 2016, 4, 4062-4070.	5.2	109
226	Melt-Quenched Glasses of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 3484-3492.	6.6	252
227	Molecular separations with breathing metal–organic frameworks: modelling packed bed adsorbers. Dalton Transactions, 2016, 45, 4416-4430.	1.6	22
228	An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO ₂ over C ₂ H ₂ . Journal of the American Chemical Society, 2016, 138, 3022-3030.	6.6	359
229	The effects of framework dynamics on the behavior of water adsorbed in the [Zn(l-L)(Cl)] and Co-MOF-74 metal–organic frameworks. Physical Chemistry Chemical Physics, 2016, 18, 8196-8204.	1.3	12
230	Engineering coordination polymers for photocatalysis. Nano Energy, 2016, 22, 149-168.	8.2	223
231	Synthesis and structural characterization of a flexible metal organic framework Sciences, 2016, 52, 1-9.	1.5	9
232	Tuning the flexibility in MOFs by SBU functionalization. Dalton Transactions, 2016, 45, 4407-4415.	1.6	34
233	Adsorptive separation of C2/C3/C4-hydrocarbons on a flexible Cu-MOF: The influence of temperature, chain length and bonding character. Microporous and Mesoporous Materials, 2016, 224, 392-399.	2.2	18
234	Controllable synthesis of Zn/Cd(<scp>ii</scp>) coordination polymers: dual-emissive luminescent properties, and tailoring emission tendency under varying excitation energies. Dalton Transactions, 2016, 45, 4863-4878.	1.6	22
235	High-symmetry hydrogen-bonded organic frameworks: air separation and crystal-to-crystal structural transformation. Chemical Communications, 2016, 52, 4991-4994.	2.2	50
236	The structural diversity and properties of nine new viologen based zwitterionic metal–organic frameworks. CrystEngComm, 2016, 18, 2189-2202.	1.3	50
237	How Guest Molecules Stabilize the Narrow Pore Phase of Soft Porous Crystals: Structural and Mechanical Properties of MIL-53(Al)⊃H2O. Journal of Physical Chemistry C, 2016, 120, 5059-5066.	1.5	14
238	Paddle Wheel Based Triazolyl Isophthalate MOFs: Impact of Linker Modification on Crystal Structure and Gas Sorption Properties. Inorganic Chemistry, 2016, 55, 3030-3039.	1.9	29

#	Article	IF	CITATIONS
239	A Cd(<scp>ii</scp>)-based metal–organic framework as a luminance sensor to nitrobenzene and Tb(<scp>iii</scp>) ion. Dalton Transactions, 2016, 45, 6983-6989.	1.6	48
240	Adsorption deformation of microporous composites. Dalton Transactions, 2016, 45, 4136-4140.	1.6	14
241	Porphyrin-based assemblies directed by non-covalent interactions: highlights of recent investigations. CrystEngComm, 2016, 18, 3318-3339.	1.3	34
242	Controlling interpenetration for tuning porosity and luminescence properties of flexible MOFs based on biphenyl-4,4′-dicarboxylic acid. CrystEngComm, 2016, 18, 1282-1294.	1.3	30
243	3,5-Bis((4′-carboxylbenzyl)oxy)benzoilate-based coordination polymers: their synthesis, structural characterization, and sensing properties. Inorganic Chemistry Frontiers, 2016, 3, 406-416.	3.0	20
244	Solid-state synthesis of zinc oxide nano-structures with similar morphologies to their precursors and metal–organic frameworks topology. Journal of the Iranian Chemical Society, 2016, 13, 547-552.	1.2	6
245	Role of molecular simulations in the structure exploration of Metal-Organic Frameworks: Illustrations through recent advances in the field. Comptes Rendus Chimie, 2016, 19, 207-215.	0.2	12
246	Adsorption, separation, and catalytic properties of densified metal-organic frameworks. Coordination Chemistry Reviews, 2016, 311, 38-52.	9.5	272
247	One pot synthesis, structure and magnetic property of a pseudo-interpenetrated 2D copper framework based on coordinated 1,1′-biphenyl-3,3′,5,5′-tetracarboxylate and synthon. Journal of Molecular Structure, 2016, 1108, 451-457.	1.8	4
248	Magnetic Properties and Photoluminescence of Lanthanide Coordination Polymers Constructed with Conformation-Flexible Cyclohexane-Tetracarboxylate Ligands. Crystal Growth and Design, 2016, 16, 946-952.	1.4	27
249	Flexible MOFs under stress: pressure and temperature. Dalton Transactions, 2016, 45, 4100-4112.	1.6	33
250	Enhancing the carbon capture capacities of a rigid ultra-microporous MOF through gate-opening at low CO ₂ pressures assisted by swiveling oxalate pillars. Chemical Communications, 2016, 52, 1851-1854.	2.2	44
251	Tunable gas adsorption properties of porous coordination polymers by modification of macrocyclic metallic tectons. CrystEngComm, 2016, 18, 4084-4093.	1.3	11
252	Dynamic metal–organic frameworks: syntheses, characterizations, sorption studies and their hydrolytic inter-conversion. CrystEngComm, 2016, 18, 4074-4083.	1.3	18
253	Synthesis and stabilization of a hypothetical porous framework based on a classic flexible metal carboxylate cluster. Dalton Transactions, 2016, 45, 4269-4273.	1.6	17
254	Mixed-linker solid solutions of functionalized pillared-layer MOFs – adjusting structural flexibility, gas sorption, and thermal responsiveness. Dalton Transactions, 2016, 45, 4230-4241.	1.6	40
255	Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid. Dalton Transactions, 2016, 45, 4179-4186.	1.6	54
256	Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coordination Chemistry Reviews, 2016, 307, 1-31.	9.5	222

#	Article	IF	CITATIONS
257	Neutral N-donor ligand based flexible metal–organic frameworks. Dalton Transactions, 2016, 45, 4060-4072.	1.6	73
258	The flexibility of modified-linker MIL-53 materials. Dalton Transactions, 2016, 45, 4162-4168.	1.6	37
259	Computational characterization and prediction of metal–organic framework properties. Coordination Chemistry Reviews, 2016, 307, 211-236.	9.5	206
260	Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials. Chemical Engineering Science, 2017, 159, 18-30.	1.9	26
261	Two-dimensional metal–organic frameworks for selective separation of CO ₂ /CH ₄ and CO ₂ /N ₂ . Materials Chemistry Frontiers, 2017, 1, 1514-1519.	3.2	30
262	Two 3D Cd(II) Metal–Organic Frameworks Linked by Benzothiadiazole Dicarboxylates: Fantastic S@Cd ₆ Cage, Benzothiadiazole Antidimmer, and Dual Emission. Inorganic Chemistry, 2017, 56, 1696-1705.	1.9	27
263	Mechanical Alloying of Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 2453-2457.	1.6	21
264	Mechanical Alloying of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 2413-2417.	7.2	53
265	Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc -MOF platform for the operative removal of H ₂ S. Journal of Materials Chemistry A, 2017, 5, 3293-3303.	5.2	94
266	Combined in- and ex situ studies of pyrazine adsorption into the aliphatic MOF Al-CAU-13: structures, dynamics and correlations. Dalton Transactions, 2017, 46, 1397-1405.	1.6	21
267	Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E287-E296.	3.3	34
268	Adsorbate-induced lattice deformation in IRMOF-74 series. Nature Communications, 2017, 8, 13945.	5.8	34
269	Electrical bistability in a metal–organic framework modulated by reversible crystalline-to-amorphous transformations. Chemical Communications, 2017, 53, 2479-2482.	2.2	35
270	Syntheses, structural diversities and characterization of a series of coordination polymers with two isomeric oxadiazol-pyridine ligands. RSC Advances, 2017, 7, 9704-9718.	1.7	17
271	A Metal–Organic Framework Based on a Tetra-Arylextended Calix[4]pyrrole Ligand: Structure Control through the Covalent Connectivity of the Linker. Crystal Growth and Design, 2017, 17, 1328-1338.	1.4	15
272	Smart Metal–Organic Framework Coatings: Triggered Antibiofilm Compound Release. ACS Applied Materials & Interfaces, 2017, 9, 4440-4449.	4.0	43
273	PEGâ€Induced Synthesis of Coordinationâ€Polymer Isomers with Tunable Architectures and Iodine Capture. Chemistry - an Asian Journal, 2017, 12, 615-620.	1.7	32
274	Robust Multifunctional Yttrium-Based Metal–Organic Frameworks with Breathing Effect. Inorganic Chemistry, 2017, 56, 1193-1208.	1.9	47

#	Article	IF	CITATIONS
275	Atomically Dispersed Fe/N-Doped Hierarchical Carbon Architectures Derived from a Metal–Organic Framework Composite for Extremely Efficient Electrocatalysis. ACS Energy Letters, 2017, 2, 504-511.	8.8	279
276	Shape Controlled Hierarchical Porous Hydrophobic/Oleophilic Metalâ€Organic Nanofibrous Gel Composites for Oil Adsorption. Advanced Materials, 2017, 29, 1605307.	11.1	155
277	Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.	5.7	221
278	Synthesis and characterization of lanthanide-based coordination polymers for highly selective and sensitive luminescent sensor for Pb2+ over mixed metal ions. Journal of Alloys and Compounds, 2017, 702, 303-308.	2.8	15
279	Nanoparticle/MOF composites: preparations and applications. Materials Horizons, 2017, 4, 557-569.	6.4	262
280	Dynamic behaviours of a rationally prepared flexible MOF by postsynthetic modification of ligand struts. Chemical Communications, 2017, 53, 3220-3223.	2.2	12
281	Structural diversity of Zn(II)/Cd(II) coordination polymers constructed from mixed ligand systems of conformationally flexible azo functionalized bis-imidazolate and dicarboxylates. Polyhedron, 2017, 127, 266-277.	1.0	5
282	Low-Energy CO ₂ Release from Metal–Organic Frameworks Triggered by External Stimuli. Accounts of Chemical Research, 2017, 50, 778-786.	7.6	104
283	Highly Efficient Catalytic Hydrogen Evolution from Ammonia Borane Using the Synergistic Effect of Crystallinity and Size of Noble-Metal-Free Nanoparticles Supported by Porous Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 10759-10767.	4.0	77
284	A New Isomeric Porous Coordination Framework Showing Single-Crystal to Single-Crystal Structural Transformation and Preferential Adsorption of 1,3-Butadiene from C4 Hydrocarbons. Crystal Growth and Design, 2017, 17, 2166-2171.	1.4	31
285	Adsorption and molecular siting of CO ₂ , water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation. Chemical Science, 2017, 8, 3989-4000.	3.7	60
286	Metal–Organic Framework@Porous Organic Polymer Nanocomposite for Photodynamic Therapy. Chemistry of Materials, 2017, 29, 2374-2381.	3.2	204
287	Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. Journal of the American Chemical Society, 2017, 139, 3265-3274.	6.6	104
288	Flexible Zirconium MOF as the Crystalline Sponge for Coordinative Alignment of Dicarboxylates. ACS Applied Materials & Interfaces, 2017, 9, 33408-33412.	4.0	48
289	Directed assembly of a high surface area 2D metal–organic framework displaying the augmented "kagomé dual―(kgd-a) layered topology with high H ₂ and CO ₂ uptake. Inorganic Chemistry Frontiers, 2017, 4, 825-832.	3.0	8
290	Metalâ€Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials, 2017, 27, 1606314.	7.8	483
291	Epitaxial Growth of Oriented Metalloporphyrin Network Thin Film for Improved Selectivity of Volatile Organic Compounds. Small, 2017, 13, 1604035.	5.2	32
292	Modeling of adsorption of CO2 in the deformed pores of MIL-53(Al). Journal of Molecular Modeling, 2017, 23, 101.	0.8	9

#	Article	IF	CITATIONS
293	Highly Enhanced Gas Uptake and Selectivity via Incorporating Methoxy Groups into a Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2172-2177.	1.4	26
294	Thermodynamics of the Flexible Metal–Organic Framework Material MIL-53(Cr) From First-Principles. Journal of Physical Chemistry C, 2017, 121, 4312-4317.	1.5	40
295	Piezochromic Topology Switch in a Coordination Polymer. Journal of Physical Chemistry Letters, 2017, 8, 929-935.	2.1	30
296	Beyond Equilibrium: Metal–Organic Frameworks for Molecular Sieving and Kinetic Gas Separation. Crystal Growth and Design, 2017, 17, 2291-2308.	1.4	109
297	Development of a Porous Coordination Polymer with a High Gas Capacity Using a Thiophene-Based Bent Tetracarboxylate Ligand. ACS Applied Materials & Interfaces, 2017, 9, 33455-33460.	4.0	32
298	Tunable Porous Coordination Polymers for the Capture, Recovery and Storage of Inhalation Anesthetics. Chemistry - A European Journal, 2017, 23, 7871-7875.	1.7	19
299	Cation-Exchange Approach to Tuning the Flexibility of a Metal–Organic Framework for Gated Adsorption. Inorganic Chemistry, 2017, 56, 5069-5075.	1.9	16
300	Vibrational investigation of pressure―and temperature―nduced phase transitions in metal formates templated by ethylammonium ions. Journal of Raman Spectroscopy, 2017, 48, 972-982.	1.2	10
301	CH ₃ -Tagged Bis(pyrazolato)-Based Coordination Polymers and Metal–Organic Frameworks: An Experimental and Theoretical Insight. Crystal Growth and Design, 2017, 17, 3854-3867.	1.4	19
302	Opening of an Accessible Microporosity in an Otherwise Nonporous Metal–Organic Framework by Polymeric Guests. Journal of the American Chemical Society, 2017, 139, 7886-7892.	6.6	65
303	Synthesis and solvent vapor-induced transformations of crystals of 1D coordination polymers assembled with continuous void space. CrystEngComm, 2017, 19, 3398-3406.	1.3	4
304	Crystalline bilayers unzipped and rezipped: solid-state reaction cycle of a metal–organic framework with triple rearrangement of intralayer bonds. CrystEngComm, 2017, 19, 2987-2995.	1.3	12
305	Ultraâ€microporous Metal–Organic Framework Built from Rigid Linkers Showing Structural Flexibility Resulting in a Marked Change in Carbon Dioxide Capacity. European Journal of Inorganic Chemistry, 2017, 2017, 2464-2468.	1.0	2
306	Liquid/vapor-induced reversible dynamic structural transformation of a three-dimensional Cu-based MOF to a one-dimensional MOF showing gate adsorption. Dalton Transactions, 2017, 46, 6762-6768.	1.6	21
307	An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3185-3241.	18.7	987
308	Removal of Confined Ionic Liquid from a Metal Organic Framework by Extraction with Molecular Solvents. Journal of Physical Chemistry C, 2017, 121, 10577-10586.	1.5	12
309	Cucurbit[10]uril-Based Smart Supramolecular Organic Frameworks in Selective Isolation of Metal Cations. Chemistry of Materials, 2017, 29, 5468-5472.	3.2	45
310	Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46, 4774-4808.	18.7	1,519

#	Article	IF	CITATIONS
311	Self-Assembly of [2+2] Platina Macrocycles Using a Flexible Organometallic Clip. ChemistrySelect, 2017, 2, 4099-4105.	0.7	10
312	Breathing-induced new phase transition in an MIL-53(Al)–NH ₂ metal–organic framework under high methane pressures. Chemical Communications, 2017, 53, 8118-8121.	2.2	58
313	Syntheses and single crystal X-ray diffraction studies of hydroxynicotinic acid based complexes involving supramolecular interactions. Polyhedron, 2017, 133, 222-230.	1.0	2
314	Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ far-infrared spectroscopy. Chemical Communications, 2017, 53, 7041-7044.	2.2	30
315	Two tetraphenylethene-containing coordination polymers for reversible mechanochromism. Chemical Communications, 2017, 53, 7048-7051.	2.2	51
316	Activationâ€Dependent Breathing in a Flexible Metal–Organic Framework and the Effects of Repeated Sorption/Desorption Cycling. Angewandte Chemie - International Edition, 2017, 56, 8874-8878.	7.2	53
317	Selective Catalytic Performances of Noble Metal Nanoparticle@MOF Composites: The Concomitant Effect of Aperture Size and Structural Flexibility of MOF Matrices. Chemistry - A European Journal, 2017, 23, 11397-11403.	1.7	50
318	Versatile Assembly of Metal-Coordinated Calix[4]resorcinarene Cavitands and Cages through Ancillary Linker Tuning. Journal of the American Chemical Society, 2017, 139, 7648-7656.	6.6	92
319	Eu(III)-functionalized In-MOF (In(OH)bpydc) as fluorescent probe for highly selectively sensing organic small molecules and anions especially for CHCl3 and MnO4â^. Journal of Colloid and Interface Science, 2017, 504, 197-205.	5.0	93
320	Room temperature silylation of alcohols catalyzed by metal organic frameworks. Catalysis Science and Technology, 2017, 7, 2445-2449.	2.1	9
321	Photochemical reactions of metal complexes in the solid state. Dalton Transactions, 2017, 46, 7120-7140.	1.6	70
322	Combining Polycarboxylate and Bipyridyl-like Ligands in the Design of Luminescent Zinc and Cadmium Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 3893-3906.	1.4	42
323	Structural Contraction of Zeolitic Imidazolate Frameworks: Membrane Application on Porous Metallic Hollow Fibers for Gas Separation. ACS Applied Materials & Interfaces, 2017, 9, 20787-20796.	4.0	31
324	Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 2017, 46, 3402-3430.	18.7	1,033
325	In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor. CrystEngComm, 2017, 19, 3206-3214.	1.3	28
326	Activationâ€Dependent Breathing in a Flexible Metal–Organic Framework and the Effects of Repeated Sorption/Desorption Cycling. Angewandte Chemie, 2017, 129, 9000-9004.	1.6	6
327	Recent advances in the computational chemistry of soft porous crystals. Chemical Communications, 2017, 53, 7211-7221.	2.2	37
328	Modified Metal Organic Frameworks (MOFs)/Ionic Liquid Matrices for Efficient Charge Storage. Journal of the Electrochemical Society, 2017, 164, H5169-H5174.	1.3	35

#	Article	IF	CITATIONS
329	Visible-light-induced tandem reaction of o -aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy. Journal of Catalysis, 2017, 349, 156-162.	3.1	59
330	Hybridization of MOFs and polymers. Chemical Society Reviews, 2017, 46, 3108-3133.	18.7	708
331	Tracking the evolution and differences between guest-induced phases of Ga-MIL-53 via ultra-wideline 69/71Ga solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2017, 84, 118-131.	1.5	18
332	Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange. Inorganic Chemistry, 2017, 56, 4576-4583.	1.9	23
333	Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework. ACS Central Science, 2017, 3, 394-398.	5.3	102
334	Dual stimuli-triggered dielectric switching and sensing in a host–guest cyanometallate framework. Chemical Communications, 2017, 53, 6077-6080.	2.2	21
335	Engineering solid state structural transformations of metal complexes. Coordination Chemistry Reviews, 2017, 342, 1-18.	9.5	53
336	A Dynamic Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 4995-4998.	6.6	213
337	Anion exchange dynamics in the capture of perchlorate by a cationic Ag-based MOF. Dalton Transactions, 2017, 46, 5320-5325.	1.6	15
338	The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials. Journal of the American Chemical Society, 2017, 139, 5547-5557.	6.6	100
339	Solvent- and Pressure-Induced Phase Changes in Two 3D Copper Glutarate-Based Metal–Organic Frameworks via Glutarate (+ <i>gauche</i> â‡,, â°' <i>gauche</i>) Conformational Isomerism. Journal of the American Chemical Society, 2017, 139, 5923-5929.	6.6	38
340	Cu(I) 3,5-Diethyl-1,2,4-Triazolate (MAF-2): From Crystal Engineering to Multifunctional Materials. Crystal Growth and Design, 2017, 17, 1441-1449.	1.4	24
341	Tailoring adsorption induced phase transitions in the pillared-layer type metal–organic framework DUT-8(Ni). Dalton Transactions, 2017, 46, 4685-4695.	1.6	68
342	Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nature Chemistry, 2017, 9, 882-889.	6.6	293
343	Flexible MOF–aminoclay nanocomposites showing tunable stepwise/gated sorption for C ₂ H ₂ , CO ₂ and separation for CO ₂ /N ₂ and CO ₂ /CH ₄ . Journal of Materials Chemistry A, 2017, 5, 8423-8430.	5.2	67
344	Constant Volume Gate-Opening by Freezing Rotational Dynamics in Microporous Organically Pillared Layered Silicates. Journal of the American Chemical Society, 2017, 139, 904-909.	6.6	25
345	Reversibly Tunable Lower Critical Solution Temperature Behavior Induced by H-Bonded Aromatic Amide Macrocycle and Imidazolium Host–Guest Complexation. Organic Letters, 2017, 19, 18-21.	2.4	19
346	Arene guest selectivity and pore flexibility in a metal–organic framework with semi-fluorinated channel walls. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160031.	1.6	5

#	Article	IF	CITATIONS
347	Design of a flexible organometallic tecton: host–guest chemistry with picric acid and self-assembly of platinum macrocycles. Dalton Transactions, 2017, 46, 1986-1995.	1.6	18
348	Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks. Chemical Science, 2017, 8, 2373-2380.	3.7	121
349	Interplay between defects, disorder and flexibility in metal-organic frameworks. Nature Chemistry, 2017, 9, 11-16.	6.6	342
350	Synthesis, structure, and properties of a new Co(II) diphosphonate based on auxiliary ligand 2,2'-bipyridine. Inorganic and Nano-Metal Chemistry, 2017, 47, 608-613.	0.9	2
351	Synthesis of copper coordinated dithiooxamide metal organic framework and its performance assessment in the adsorptive removal of tartrazine from water. Journal of Environmental Chemical Engineering, 2017, 5, 328-340.	3.3	33
352	Piezochromic Porous Metal–Organic Framework. Journal of Physical Chemistry Letters, 2017, 8, 279-284.	2.1	53
353	Coordination-modulated piezochromism in metal–viologen materials. Journal of Materials Chemistry C, 2017, 5, 12400-12408.	2.7	90
354	Influence of the Synthesis Conditions and the Presence of Guest Molecules on the Structures of Coordination Polymers [Fe2MO(Piv)6(L) x] n (L = $4,4\hat{a}\in^2$ -Bipyridine, Bis(4-Pyridyl)ethane) with the Labile Crystal Lattice. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2017, 43, 619-629.	0.3	3
355	Inclusion of a dithiadiazolyl radical in a seemingly non-porous solid. Chemical Communications, 2017, 53, 11310-11313.	2.2	16
356	A dendritic catiomer with an MOF motif for the construction of safe and efficient gene delivery systems. Journal of Materials Chemistry B, 2017, 5, 8322-8329.	2.9	17
357	The effect of centred versus offset interpenetration on C ₂ H ₂ sorption in hybrid ultramicroporous materials. Chemical Communications, 2017, 53, 11592-11595.	2.2	40
358	Chemically reprogrammable metal organic frameworks (MOFs) based on Diels–Alder chemistry. Chemical Communications, 2017, 53, 11461-11464.	2.2	18
359	Separation of C2/C1 hydrocarbons through a gate-opening effect in a microporous metal–organic framework. CrystEngComm, 2017, 19, 6896-6901.	1.3	34
360	Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments. Coordination Chemistry Reviews, 2017, 352, 328-345.	9.5	241
361	Pitfalls in the characterisation of the hydrogen sorption properties of materials. International Journal of Hydrogen Energy, 2017, 42, 29320-29343.	3.8	40
362	Flexible Zirconium MOFs as Bromineâ€Nanocontainers for Bromination Reactions under Ambient Conditions. Angewandte Chemie - International Edition, 2017, 56, 14622-14626.	7.2	65
363	Liquid metal–organic frameworks. Nature Materials, 2017, 16, 1149-1154.	13.3	326
364	Flexible Zirconium MOFs as Bromineâ€Nanocontainers for Bromination Reactions under Ambient Conditions. Angewandte Chemie, 2017, 129, 14814-14818.	1.6	13

#	Article	IF	CITATIONS
365	Balancing gravimetric and volumetric hydrogen density in MOFs. Energy and Environmental Science, 2017, 10, 2459-2471.	15.6	127
366	Solid-state dynamics and single-crystal to single-crystal structural transformations in octakis(3-chloropropyl)octasilsesquioxane and octavinyloctasilsesquioxane. Physical Chemistry Chemical Physics, 2017, 19, 27516-27529.	1.3	13
367	Zinc Coordination Polymers Containing Isomeric Forms of <i>p</i> â€(Thiazolyl)benzoic Acid: Blueâ€Emitting Materials with a Solvatochromic Response to Water. European Journal of Inorganic Chemistry, 2017, 2017, 4909-4918.	1.0	9
368	Lanthanide functionalized hybrid materials of polyoxometallate based metal–organic frameworks for multi-color luminescence. New Journal of Chemistry, 2017, 41, 12795-12800.	1.4	15
369	Reversible pressure pre-amorphization of a piezochromic metal–organic framework. Dalton Transactions, 2017, 46, 14795-14803.	1.6	30
370	Knitting Nâ€doped Hierarchical Porous Polymers to Stabilize Ultraâ€small Pd Nanoparticles for Solventâ€Free Catalysis. Chemistry - an Asian Journal, 2017, 12, 3039-3045.	1.7	5
371	Controllable Modular Growth of Hierarchical MOFâ€onâ€MOF Architectures. Angewandte Chemie, 2017, 129, 15864-15868.	1.6	64
372	Controllable Modular Growth of Hierarchical MOFâ€onâ€MOF Architectures. Angewandte Chemie - International Edition, 2017, 56, 15658-15662.	7.2	246
373	A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. CheM, 2017, 3, 822-833.	5.8	83
374	Flicking the switch on a molecular gate. Science, 2017, 358, 303-303.	6.0	10
375	Stomata-like metal peptide coordination polymer. Journal of Materials Chemistry A, 2017, 5, 23440-23445.	5.2	9
376	General synthesis of MFe ₂ O ₄ /carbon (M = Zn, Mn, Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 23641-23650.	5.2	73
377	Four coordination polymers based on dinuclear and trinuclear units with a new multifunctional pyridyl-dicarboxylate ligand: luminescence and magnetic properties. CrystEngComm, 2017, 19, 5755-5763.	1.3	16
378	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	11.1	88
379	Efficient and Reusable Metal–Organic Framework Catalysts for Carboxylative Cyclization of Propargylamines with Carbon Dioxide. ChemCatChem, 2017, 9, 4598-4606.	1.8	56
380	Tuning Two-Photon Absorption Cross Section in Metal Organic Frameworks. Chemistry of Materials, 2017, 29, 7424-7430.	3.2	31
381	Flexible Viologenâ€Based Porous Framework Showing Xâ€ray Induced Photochromism with Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation. Angewandte Chemie - International Edition, 2017, 56, 14458-14462.	7.2	139
382	The impact of N,N′-ditopic ligand length and geometry on the structures of zinc-based mixed-linker metal–organic frameworks. CrystEngComm, 2017, 19, 5549-5557.	1.3	14

#	Article	IF	CITATIONS
383	Tuning the gate-opening pressure and particle size distribution of the switchable metal–organic framework DUT-8(Ni) by controlled nucleation in a micromixer. Dalton Transactions, 2017, 46, 14002-14011.	1.6	63
384	A spin transition mechanism for cooperative adsorption in metal–organic frameworks. Nature, 2017, 550, 96-100.	13.7	189
385	Isoreticular expansion of polyMOFs achieves high surface area materials. Chemical Communications, 2017, 53, 10684-10687.	2.2	52
386	Bistable Dithienylethene-Based Metal–Organic Framework Illustrating Optically Induced Changes in Chemical Separations. Journal of the American Chemical Society, 2017, 139, 13280-13283.	6.6	98
387	Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chemical Science, 2017, 8, 7560-7565.	3.7	57
388	Flexible Viologenâ€Based Porous Framework Showing Xâ€ray Induced Photochromism with Singleâ€Crystalâ€toâ€&ingleâ€Crystal Transformation. Angewandte Chemie, 2017, 129, 14650-14654.	1.6	22
389	Cooperative Adsorption by Porous Frameworks: Diffraction Experiment and Phenomenological Theory. Chemistry - A European Journal, 2017, 23, 17714-17720.	1.7	12
390	Liquid Adsorption of Organic Compounds on Hematite α-Fe2O3 Using ReaxFF. Langmuir, 2017, 33, 11257-11263.	1.6	18
391	A Stimuliâ€Responsive Zirconium Metal–Organic Framework Based on Supermolecular Design. Angewandte Chemie, 2017, 129, 10816-10820.	1.6	9
392	Reversible Pressureâ€Controlled Depolymerization of a Copper(II)â€Containing Coordination Polymer. Chemistry - A European Journal, 2017, 23, 12480-12483.	1.7	20
393	Construction of bimetallic nanoparticles immobilized by porous functionalized metal-organic frameworks toward remarkably enhanced catalytic activity for the room-temperature complete conversion of hydrous hydrazine into hydrogen. International Journal of Hydrogen Energy, 2017, 42, 19096-19105.	3.8	32
394	Elucidating the CO ₂ adsorption mechanisms in the triangular channels of the bis(pyrazolate) MOF Fe ₂ (BPEB) ₃ by in situ synchrotron X-ray diffraction and molecular dynamics simulations. Journal of Materials Chemistry A, 2017, 5, 16964-16975.	5.2	21
395	Explicit treatment of hydrogen bonds in the universal force field: Validation and application for metal-organic frameworks, hydrates, and host-guest complexes. Journal of Chemical Physics, 2017, 147, 161705.	1.2	10
396	A Stimuliâ€Responsive Zirconium Metal–Organic Framework Based on Supermolecular Design. Angewandte Chemie - International Edition, 2017, 56, 10676-10680.	7.2	72
397	Molecular Borromean Rings Based on Dihalogenated Ligands. CheM, 2017, 3, 110-121.	5.8	94
398	Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis. Research on Chemical Intermediates, 2017, 43, 5169-5186.	1.3	88
399	Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid. Nature Communications, 2017, 8, 100.	5.8	100
400	Synthesis of Fe 3 O 4 @P4VP@ZIF-8 core-shell microspheres and their application in a Knoevenagel condensation reaction. Journal of Solid State Chemistry, 2017, 256, 27-32.	1.4	24

#	Article	IF	CITATIONS
401	Coordination change, lability and hemilability in metal–organic frameworks. Chemical Society Reviews, 2017, 46, 5444-5462.	18.7	216
402	Cation–Anion Arrangement Patterns in Self-Assembled Pd ₂ L ₄ and Pd ₄ L ₈ Coordination Cages. Accounts of Chemical Research, 2017, 50, 2233-2243.	7.6	207
403	Flexibility in metal–organic frameworks derived from positional and electronic effects of functional groups. CrystEngComm, 2017, 19, 5361-5368.	1.3	12
404	Transmission electron microscopy on metal–organic frameworks – a review. Journal of Materials Chemistry A, 2017, 5, 14969-14989.	5.2	108
405	Characteristic Features of CO ₂ and CO Adsorptions to Paddle-Wheel-type Porous Coordination Polymer. Journal of Physical Chemistry C, 2017, 121, 19129-19139.	1.5	13
406	Switchable Conductive MOF–Nanocarbon Composite Coatings as Threshold Sensing Architectures. ACS Applied Materials & Interfaces, 2017, 9, 43782-43789.	4.0	57
407	Reticular Chemistry and the Discovery of a New Family of Rare Earth (4, 8)-Connected Metal-Organic Frameworks with csq Topology Based on RE ₄ (μ ₃ -O) ₂ (COO) ₈ Clusters. ACS Applied Materials & Interfaces, 2017, 9, 44560-44566.	4.0	25
408	Redox-switchable breathing behavior in tetrathiafulvalene-based metal–organic frameworks. Nature Communications, 2017, 8, 2008.	5.8	116
409	Selective Hydrogen Isotope Separation via Breathing Transition in MIL-53(Al). Journal of the American Chemical Society, 2017, 139, 17743-17746.	6.6	111
410	Efficient Construction of Free Energy Profiles of Breathing Metal–Organic Frameworks Using Advanced Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2017, 13, 5861-5873.	2.3	45
411	Cooperative Bond Scission in a Soft Porous Crystal Enables Discriminatory Gate Opening for Ethylene over Ethane. Journal of the American Chemical Society, 2017, 139, 18313-18321.	6.6	72
412	Raman spectroscopy studies of the terahertz vibrational modes of a DUT-8 (Ni) metal–organic framework. Physical Chemistry Chemical Physics, 2017, 19, 32099-32104.	1.3	49
413	Guest–Host Complexes of TCNQ and TCNE with Cu ₃ (1,3,5-benzenetricarboxylate) ₂ . Journal of Physical Chemistry C, 2017, 121, 26330-26339.	1.5	18
414	From helix to helical pores: solid-state crystalline conversions triggered by gas–solid reactions. Chemical Communications, 2017, 53, 12950-12953.	2.2	3
415	Shrink-wrapping water to conduct protons. Nature Energy, 2017, 2, 842-843.	19.8	16
416	Discovery of hypothetical hetero-interpenetrated MOFs with arbitrarily dissimilar topologies and unit cell shapes. CrystEngComm, 2017, 19, 4497-4504.	1.3	14
417	Molecular Mechanism of Swing Effect in Zeolitic Imidazolate Framework ZIFâ€8: Continuous Deformation upon Adsorption. ChemPhysChem, 2017, 18, 2732-2738.	1.0	75
418	Effects of Nonhydrostatic Stress on Structural and Optoelectronic Properties of Methylammonium Lead Bromide Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 3457-3465.	2.1	53

#	Article	IF	CITATIONS
419	Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor. Journal of Chemical Theory and Computation, 2017, 13, 3722-3730.	2.3	13
420	Achieving efficient room-temperature catalytic H2 evolution from formic acid through atomically controlling the chemical environment of bimetallic nanoparticles immobilized by isoreticular amine-functionalized metal-organic frameworks. Applied Catalysis B: Environmental, 2017, 218, 460-469.	10.8	62
421	Reversible and Topotactic Solvent Removal in a Magnetic Ni(NCS) ₂ Coordination Polymer. Inorganic Chemistry, 2017, 56, 8007-8017.	1.9	24
422	Unidirectional compression and expansion of a crosslinked MOF crystal prepared via axis-dependent crosslinking and ligand exchange. Polymer Journal, 2017, 49, 685-689.	1.3	11
423	A Flexible Fluorescent Zr Carboxylate Metal–Organic Framework for the Detection of Electron-Rich Molecules in Solution. Inorganic Chemistry, 2017, 56, 8423-8429.	1.9	23
424	Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nature Communications, 2017, 8, 15985.	5.8	373
425	Nano Metalâ€Organic Frameworkâ€Derived Inorganic Hybrid Nanomaterials: Synthetic Strategies and Applications. Chemistry - A European Journal, 2017, 23, 5631-5651.	1.7	104
426	Structures and properties of coordination polymers with a rigid zwitterionic pyridinium-based tricarboxylate ligand. Inorganica Chimica Acta, 2017, 456, 207-215.	1.2	0
427	Probing Structure and Reactivity of Metal Centers in Metal–Organic Frameworks by XAS Techniques. , 2017, , 397-430.		4
428	Engineering catalytic coordination space in a chemically stable Ir-porphyrin MOF with a confinement effect inverting conventional Si–H insertion chemoselectivity. Chemical Science, 2017, 8, 775-780.	3.7	82
429	A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous and Mesoporous Materials, 2017, 239, 221-234.	2.2	45
430	Novel 3-D interpenetrated metal–organometallic networks based on self-assembled Zn(<scp>ii</scp>)/Cu(<scp>ii</scp>) from 1,1′-ferrocenedicarboxylic acid and 4,4′-bipyridine. CrystEngComm, 2017, 19, 758-761.	1.3	14
431	Dynamic breathing effect in metal-organic frameworks: Reversible 2D-3D-2D-3D single-crystal to single-crystal transformation. Inorganica Chimica Acta, 2017, 460, 99-107.	1.2	11
432	Investigating the geometrical preferences of a flexible benzimidazolone-based linker in the synthesis of coordination polymers. Royal Society Open Science, 2017, 4, 171064.	1.1	2
433	Uncovering a reconstructive solid–solid phase transition in a metal–organic framework. Royal Society Open Science, 2017, 4, 171355.	1.1	7
434	Adsorption Behavior of High Stable Zr-Based MOFs for the Removal of Acid Organic Dye from Water. Materials, 2017, 10, 205.	1.3	56
435	Study of Adsorption and Desorption Performances of Zr-Based Metal–Organic Frameworks Using Paper Spray Mass Spectrometry. Materials, 2017, 10, 769.	1.3	10
436	Dynamic Behavior of Porous Coordination Polymers. , 2017, , 425-474.		2

#	Article	IF	CITATIONS
437	In Search of the Reason for the Breathing Effect of MIL53 Metal-Organic Framework: An ab Initio Multiconfigurational Study. Frontiers in Chemistry, 2017, 5, 111.	1.8	10
438	Breathing 3D Frameworks with T-Shaped Connecting Ligand Exhibiting Solvent Induction, Metal Ions Effect and Luminescent Properties. Crystals, 2017, 7, 311.	1.0	2
439	A phase transition caught in mid-course: independent and concomitant analyses of the monoclinic and triclinic structures of (^{<i>n</i>} Bu ₄ N)[Co(orotate) ₂ (bipy)]·3H ₂ O. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 731-742.	0.2	4
440	Selective Recognition of Hg ²⁺ ion in Water by a Functionalized Metal–Organic Framework (MOF) Based Chemodosimeter. Inorganic Chemistry, 2018, 57, 2360-2364.	1.9	131
441	Solid-state tunable photoluminescence in gadolinium-organic frameworks: effects of the Eu ³⁺ content and co-doping with Tb ³⁺ . New Journal of Chemistry, 2018, 42, 5514-5522.	1.4	21
442	Binuclear Mn ²⁺ complexes of a biphenyltetracarboxylic acid with variable N-donor ligands: syntheses, structures, and magnetic properties. CrystEngComm, 2018, 20, 1818-1831.	1.3	20
443	General strategies for effective capture and separation of noble gases by metal–organic frameworks. Dalton Transactions, 2018, 47, 4027-4031.	1.6	33
444	A Lanthanide Luminescent Cation Exchange Material Derived from a Flexible Tricarboxylic Acid 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Tecton. Inorganic Chemistry, 2018, 57, 3920-3930.	1.9	16
445	A Cooperative Pillar–Template Strategy as a Generalized Synthetic Method for Flexible Homochiral Porous Frameworks. Angewandte Chemie, 2018, 130, 3799-3803.	1.6	8
446	Silicaâ€Protectionâ€Assisted Encapsulation of Cu ₂ O Nanocubes into a Metal–Organic Framework (ZIFâ€8) To Provide a Composite Catalyst. Angewandte Chemie - International Edition, 2018, 57, 6834-6837.	7.2	144
447	Magnetic Switching by the In Situ Electrochemical Control of Quasiâ€5pinâ€Peierls Singlet States in a Threeâ€Dimensional Spin Lattice Incorporating TTFâ€TCNQ Salts. Chemistry - A European Journal, 2018, 24, 4294-4303.	1.7	12
448	Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: A review of studies from the last decade. Chemosphere, 2018, 201, 627-643.	4.2	230
449	Composites based on heparin and MIL-101(Fe): the drug releasing depot for anticoagulant therapy and advanced medical nanofabrication. Journal of Materials Chemistry B, 2018, 6, 2450-2459.	2.9	34
450	Tetracarboxylate Linker-Based Flexible Cu ^{II} Frameworks: Efficient Separation of CO ₂ from CO ₂ /N ₂ and C ₂ H ₂ from C ₂ H ₂ /C ₂ H ₄ Mixtures. ACS Omega, 2018, 3, 2018-2026.	1.6	18
451	Selective molecular-gating adsorption in a novel copper-based metal–organic framework. Journal of Materials Chemistry A, 2018, 6, 5910-5918.	5.2	23
452	A metal-organic framework with ultrahigh glass-forming ability. Science Advances, 2018, 4, eaao6827.	4.7	196
453	A Cooperative Pillar–Template Strategy as a Generalized Synthetic Method for Flexible Homochiral Porous Frameworks. Angewandte Chemie - International Edition, 2018, 57, 3737-3741.	7.2	29
454	A Survey of Metal-Organic Frameworks Based on Phosphorus- and Sulfur-Containing Building Blocks. Series on Chemistry, Energy and the Environment, 2018, , 37-141.	0.3	3

#	ARTICLE	IF	CITATIONS
455	Oligoacetylacetones as shapable carbon chains and their transformation to oligoimines for construction of metal-organic architectures. Communications Chemistry, 2018, 1, .	2.0	28
456	Flexibility of metal-organic frameworks for separations: utilization, suppression and regulation. Current Opinion in Chemical Engineering, 2018, 20, 107-113.	3.8	20
457	The effect of crystallite size on pressure amplification in switchable porous solids. Nature Communications, 2018, 9, 1573.	5.8	92
458	Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions. International Journal of Biological Macromolecules, 2018, 117, 648-658.	3.6	29
459	Cyclic Structural Transformations from Crystalline to Crystalline to Amorphous Phases and Magnetic Properties of a Mn(II)-Based Metal–Organic Framework. Crystal Growth and Design, 2018, 18, 3360-3365.	1.4	9
460	A Monte Carlo study of adsorption-induced deformation in wedge-shaped graphitic micropores. Chemical Engineering Journal, 2018, 346, 672-681.	6.6	9
461	Negative thermal expansion in molecular materials. Chemical Communications, 2018, 54, 5164-5176.	2.2	104
462	Room-Temperature Synthesis of Magnetic Metal–Organic Frameworks Composites in Water for Efficient Removal of Methylene Blue and As(V). Industrial & Engineering Chemistry Research, 2018, 57, 6201-6209.	1.8	22
463	Phase Transition Induced by Gas Adsorption in Metalâ€Organic Frameworks. Chemistry - A European Journal, 2018, 24, 8530-8534.	1.7	15
464	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	7.2	161
465	On flexible force fields for metal–organic frameworks: Recent developments and future prospects. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1363.	6.2	49
466	Toward Ultimate Control of Radical Polymerization: Functionalized Metal–Organic Frameworks as a Robust Environment for Metal-Catalyzed Polymerizations. Chemistry of Materials, 2018, 30, 2983-2994.	3.2	45
467	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	1.6	27
468	Versatile IR Spectroscopy Combined with Synchrotron XAS–XRD: Chemical, Electronic, and Structural Insights during Thermal Treatment of MOF Materials. European Journal of Inorganic Chemistry, 2018, 2018, 1847-1853.	1.0	17
469	Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. Chemical Engineering Journal, 2018, 346, 489-496.	6.6	87
470	From 2D → 3D interpenetration to packing: N coligand-driven structural assembly and tuning of luminescent sensing activities towards Fe ³⁺ and Cr ₂ O ₇ ^{2â^'} ions. Dalton Transactions, 2018, 47, 6240-6249.	1.6	76
471	Thermodynamic and Kinetic Effects in the Crystallization of Metal–Organic Frameworks. Accounts of Chemical Research, 2018, 51, 659-667.	7.6	115
472	Different Breathing Mechanisms in Flexible Pillared-Layered Metal–Organic Frameworks: Impact of the Metal Center. Chemistry of Materials, 2018, 30, 1667-1676.	3.2	76

#	Article	IF	CITATIONS
473	The Importance of Cell Shape Sampling To Accurately Predict Flexibility in Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2018, 14, 1186-1197.	2.3	13
474	Xenon Gas Separation and Storage Using Metal-Organic Frameworks. CheM, 2018, 4, 466-494.	5.8	182
475	Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal–organic frameworks. Journal of Computational Chemistry, 2018, 39, 999-1011.	1.5	59
476	Distinguishing Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 1738-1747.	1.4	74
477	On the intrinsic dynamic nature of the rigid UiO-66 metal–organic framework. Chemical Science, 2018, 9, 2723-2732.	3.7	41
478	Neutral ligand TIPA-based two 2D metal–organic frameworks: ultrahigh selectivity of C ₂ H ₂ /CH ₄ and efficient sensing and sorption of Cr(<scp>vi</scp>). Dalton Transactions, 2018, 47, 3725-3732.	1.6	99
479	Selective CO ₂ adsorption in water-stable alkaline-earth based metal–organic frameworks. Inorganic Chemistry Frontiers, 2018, 5, 541-549.	3.0	11
480	Mechanochemical Reactions of Metal-Organic Frameworks. Advances in Inorganic Chemistry, 2018, , 403-434.	0.4	17
481	Substrate-Independent Epitaxial Growth of the Metal–Organic Framework MOF-508a. ACS Applied Materials & Interfaces, 2018, 10, 4057-4065.	4.0	29
482	Metal–organic framework@silica as a stationary phase sorbent for rapid and cost-effective removal of hexavalent chromium. Journal of Materials Chemistry A, 2018, 6, 2742-2751.	5.2	112
483	Modeling of Diffusion in MOFs. , 2018, , 63-97.		2
484	Flexibility in Metal–Organic Frameworks: A fundamental understanding. Coordination Chemistry Reviews, 2018, 358, 125-152.	9.5	175
485	Microwave-Activated Mn-Doped Zirconium Metal–Organic Framework Nanocubes for Highly Effective Combination of Microwave Dynamic and Thermal Therapies Against Cancer. ACS Nano, 2018, 12, 2201-2210.	7.3	176
486	Emergence of Surface- and Interface-Induced Structures and Properties in Metal-Organic Framework Thin Films. European Journal of Inorganic Chemistry, 2018, 2018, 1697-1706.	1.0	27
487	Zn/Cd/Cu- frameworks constructed by 3,3′-diphenyldicarboxylate and 1,4-bis(1,2,4-triazol-1-yl)butane: Syntheses, structure, luminescence and luminescence sensing for metal ion in aqueous medium. Journal of Solid State Chemistry, 2018, 258, 744-752.	1.4	20
488	Structures and properties of two coordination polymers constructed by the semirigid bi-functional 5-((1-methyl-1H-tetrazol-5-yl)thio)isophthalic acid ligand. Journal of Solid State Chemistry, 2018, 258, 453-459.	1.4	6
489	Boronic Acid Moiety as Functional Defect in UiO-66 and Its Effect on Hydrogen Uptake Capacity and Selective CO ₂ Adsorption: A Comparative Study. ACS Applied Materials & amp; Interfaces, 2018, 10, 787-795.	4.0	36
490	Thermodynamic insight into stimuli-responsive behaviour of soft porous crystals. Nature Communications, 2018, 9, 204.	5.8	104

	CITATION RE	Citation Report	
Article		IF	CITATIONS
Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Combined Experimental/Computational Approach. Journal of Physical Chemistry C, 2018, 1	Al) Using a 22, 2734-2746.	1.5	70
Influence of Flexibility on the Separation of Chiral Isomers in STWâ€Type Zeolite. Chemistry Journal, 2018, 24, 4121-4132.	y - A European	1.7	14
Highly selective luminescence sensing for the detection of nitrobenzene and Fe ^{3+Cd(<scp>ii</scp>)-based MOFs. CrystEngComm, 2018, 20, 477-486.}	sup> by new	1.3	119
Pore closure in zeolitic imidazolate frameworks under mechanical pressure. Chemical Scien 1654-1660.	ce, 2018, 9,	3.7	63
Fluorescence Quenching Investigation of Methyl Red Adsorption on Aluminum-Based Meta Frameworks. Langmuir, 2018, 34, 1441-1446.	l–Organic	1.6	37
TopoFF: MOF structure prediction using specifically optimized blueprints. Faraday Discussio 211, 79-101.	ons, 2018,	1.6	24
Tailor-Made Pyrazolide-Based Metal–Organic Frameworks for Selective Catalysis. Journal American Chemical Society, 2018, 140, 6383-6390.	of the	6.6	124
Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by ind MOF UiO-66 and its derivatives. Journal of Membrane Science, 2018, 558, 64-77.	corporating	4.1	126
Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-1	26.	9.5	105
Readily accessible shape-memory effect in a porous interpenetrated coordination network. Advances, 2018, 4, eaaq1636.	Science	4.7	61
One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation mono- and di-branched alkane isomers <i>via</i> temperature- and adsorbate-dependent n sieving. Energy and Environmental Science, 2018, 11, 1226-1231.	of linear, nolecular	15.6	103
Direct Structural Evidence of Molecular Packing Effects of Xylene Isomers Adsorbed in BIF-2 Growth and Design, 2018, 18, 2890-2898.	20. Crystal	1.4	7
A flexible doubly interpenetrated metal–organic framework with gate opening effect for selective C ₂ H ₂ /C ₂ H ₄ separation at root temperature. CrystEngComm, 2018, 20, 2341-2345.	highly om	1.3	17
Silicaâ€Protectionâ€Assisted Encapsulation of Cu ₂ O Nanocubes into a Metal Framework (ZIFâ€8) To Provide a Composite Catalyst. Angewandte Chemie, 2018, 130, 69	–Organic 50-6953.	1.6	36
Morphology Modification of the Iron Fumarate MILâ€88A Metal–Organic Framework Usi and Acetic Acid as Modulators. European Journal of Inorganic Chemistry, 2018, 2018, 1909	ng Formic Acid }-1915.	1.0	40
Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhanceme Society Reviews, 2018, 47, 4710-4728.	nts. Chemical	18.7	478

507	Manipulation of successive crystalline transformations to control electron transfer and switchable functions. National Science Review, 2018, 5, 507-515.	4.6	29
508	Tuning Connectivity and Flexibility of Two Zinc-Triazolate-Carboxylate Type Porous Coordination Polymers. Crystal Growth and Design, 2018, 18, 2694-2698.	1.4	16

#

491

493

495

497

499

501

503

504

#	Article	IF	CITATIONS
509	A Flexible Fluorescent SCC-MOF for Switchable Molecule Identification and Temperature Display. Chemistry of Materials, 2018, 30, 2160-2167.	3.2	138
510	Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90. Journal of Physical Chemistry C, 2018, 122, 7203-7209.	1.5	19
511	Fine-tuning of nano-traps in a stable metal–organic framework for highly efficient removal of propyne from propylene. Journal of Materials Chemistry A, 2018, 6, 6931-6937.	5.2	74
512	Investigating the cheletropic reaction between sulfur dioxide and butadiene-containing linkers in UiO-66. Canadian Journal of Chemistry, 2018, 96, 139-143.	0.6	5
513	Controlling flexibility of metal–organic frameworks. National Science Review, 2018, 5, 907-919.	4.6	240
514	Hybridization of metal–organic frameworks and task-specific ionic liquids: fundamentals and challenges. Materials Chemistry Frontiers, 2018, 2, 219-234.	3.2	72
515	Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science, 2018, 92, 258-283.	16.0	253
516	A search for selectivity to enable CO ₂ capture with porous adsorbents. Energy and Environmental Science, 2018, 11, 57-70.	15.6	457
517	Design and construction of lanthanide metal-organic frameworks through mixed-ligand strategy: Sensing property of acetone and Cu2+. Inorganica Chimica Acta, 2018, 469, 51-56.	1.2	14
518	Metal–organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 2018, 373, 22-48.	9.5	360
519	Immobilizing Organicâ€Based Molecular Switches into Metal–Organic Frameworks: A Promising Strategy for Switching in Solid State. Macromolecular Rapid Communications, 2018, 39, 1700388.	2.0	23
520	1D and 3D coordination polymers based on the Cu 3 (μ 3 -OH)(μ -pz) 3 and Cu(Hpz) 3 SBUs connected by the flexible glutarate dianion. Inorganica Chimica Acta, 2018, 470, 385-392.	1.2	7
521	Effect of Linker Substituent on Layers Arrangement, Stability, and Sorption of Zn-Isophthalate/Acylhydrazone Frameworks. Crystal Growth and Design, 2018, 18, 488-497.	1.4	20
522	Features of supercritical CO2 in the delicate world of the nanopores. Journal of Supercritical Fluids, 2018, 134, 204-213.	1.6	14
523	Insights in the analytical performance of neat metal-organic frameworks in the determination of pollutants of different nature from waters using dispersive miniaturized solid-phase extraction and liquid chromatography. Talanta, 2018, 179, 775-783.	2.9	52
524	Smart Metalâ€Organic Frameworks (MOFs): Switching Gas Permeation through MOF Membranes by External Stimuli. Chemical Engineering and Technology, 2018, 41, 224-234.	0.9	40
525	Purely Physisorptionâ€Based COâ€Selective Gateâ€Opening in Microporous Organically Pillared Layered Silicates. Angewandte Chemie, 2018, 130, 573-577.	1.6	4
526	Distinctive Three-Step Hysteretic Sorption of Ethane with In Situ Crystallographic Visualization of the Pore Forms in a Soft Porous Crystal. Journal of the American Chemical Society, 2018, 140, 2145-2150.	6.6	43

#	Article	IF	CITATIONS
527	Reversible crystal-to-amorphous structural transformations and magnetic variations in single end-on azide-bridged M ^{II} (M = Mn, Ni) coordination polymers. Dalton Transactions, 2018, 47, 845-851.	1.6	24
528	Design of two isoreticular Cd-biphenyltetracarboxylate frameworks for dye adsorption, separation and photocatalytic degradation. Dalton Transactions, 2018, 47, 700-707.	1.6	44
529	Joint Experimental and Computational Investigation of the Flexibility of a Diacetyleneâ€Based Mixedâ€Linker MOF: Revealing the Existence of Two Lowâ€Temperature Phase Transitions and the Presence of Colossal Positive and Giant Negative Thermal Expansions. Chemistry - A European Journal, 2018, 24, 1586-1605.	1.7	10
530	Mechanical Properties in Metal–Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications. Advanced Materials, 2018, 30, e1704124.	11.1	165
531	Reliably Modeling the Mechanical Stability of Rigid and Flexible Metal–Organic Frameworks. Accounts of Chemical Research, 2018, 51, 138-148.	7.6	88
532	Magnetostructural relationships in polymorphic ethylmalonate-containing copper(<scp>ii</scp>) coordination polymers. CrystEngComm, 2018, 20, 7464-7472.	1.3	3
533	Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958.	1.7	16
534	Hierarchical Porous Fluorinated Graphene Oxide@Metal–Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS Applied Materials & Interfaces, 2018, 10, 41089-41097.	4.0	38
535	Structural diversity of metal–organic frameworks via employment of azamacrocycles as a building block. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 92, 237-249.	0.9	16
536	Locationâ€Controlled Synthesis of Hydrophilic Magnetic Metalâ€organic Frameworks for Highly Efficient Recognition of Phthalates in Beverages. ChemistrySelect, 2018, 3, 12440-12445.	0.7	3
537	Metal-organic framework glasses with permanent accessible porosity. Nature Communications, 2018, 9, 5042.	5.8	147
538	Scaling-up phase selection. Nature Materials, 2018, 17, 1058-1059.	13.3	2
539	Effective Room Temperature Hydrogenation of Alkenes by Xâ€Ray Characterized Salicylaldimineâ€Rhodium(I) Complex. ChemistrySelect, 2018, 3, 12341-12345.	0.7	1
540	Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks. Nature Communications, 2018, 9, 4899.	5.8	90
541	A Dynamic, Breathing, Water-Stable, Partially Fluorinated, Two-Periodic, Mixed-Ligand Zn(II) Metal–Organic Framework Modulated by Solvent Exchange Showing a Large Change in Cavity Size: Gas and Vapor Sorption Studies. Crystal Growth and Design, 2018, 18, 7570-7578.	1.4	19
542	Metal–Organic Framework Membranes: From Fabrication to Gas Separation. Crystals, 2018, 8, 412.	1.0	51
543	Influence of Metal Substitution on the Pressure-Induced Phase Change in Flexible Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2018, 140, 15924-15933.	6.6	62
544	Highly dispersed CuCo nanoparticles supported on reduced graphene oxide as high-activity catalysts for hydrogen evolution from ammonia borane hydrolysis. Journal of Nanoparticle Research, 2018, 20,	0.8	12

#	Article	IF	CITATIONS
545	Design of a Semi-Continuous Selective Layer Based on Deposition of UiO-66 Nanoparticles for Nanofiltration. Membranes, 2018, 8, 129.	1.4	21
546	A Threeâ€dimensional Dynamic Supramolecular "Sticky Fingers―Organic Framework. Angewandte Chemie, 2018, 131, 2332.	1.6	1
547	Cooperative adsorption of carbon disulfide in diamine-appended metal–organic frameworks. Nature Communications, 2018, 9, 5133.	5.8	28
548	Reversible Optical Writing and Data Storage in an Anthracene‣oaded Metalâ€Organic Framework. Angewandte Chemie, 2018, 131, 2445.	1.6	24
549	Remoulding a MOF's pores by auxiliary ligand introduction for stability improvement and highly selective CO ₂ -capture. Chemical Communications, 2018, 54, 12029-12032.	2.2	23
550	Theoretical Insight into Gate-Opening Adsorption Mechanism and Sigmoidal Adsorption Isotherm into Porous Coordination Polymer. Journal of the American Chemical Society, 2018, 140, 13958-13969.	6.6	48
551	Molecular Weaving of Covalent Organic Frameworks for Adaptive Guest Inclusion. Journal of the American Chemical Society, 2018, 140, 16015-16019.	6.6	107
552	Construction of Hierarchically Porous Nanoparticles@Metal–Organic Frameworks Composites by Inherent Defects for the Enhancement of Catalytic Efficiency. Advanced Materials, 2018, 30, e1803263.	11.1	88
553	Reviewing Rare Earth Succinate Frameworks from the Reticular Chemistry Point of View: Structures, Nets, Catalytic and Photoluminescence Applications. Israel Journal of Chemistry, 2018, 58, 1044-1061.	1.0	17
554	Structural Transformation and Conservation of Structural Order of [CuZn(CN) ₄] ^{â~} Net. Chemistry Letters, 2018, 47, 1468-1471.	0.7	1
555	Hydrogen Bonding versus Entropy: Revealing the Underlying Thermodynamics of the Hybrid Organic–Inorganic Perovskite [CH ₃ NH ₃]PbBr ₃ . Chemistry of Materials, 2018, 30, 8782-8788.	3.2	29
556	Synthesis of Prussian blue-embedded porous polymer for detection and removal of Cs ions. Polymer, 2018, 158, 320-326.	1.8	9
557	Coordination Network That Reversibly Switches between Two Nonporous Polymorphs and a High Surface Area Porous Phase. Journal of the American Chemical Society, 2018, 140, 15572-15576.	6.6	51
558	An efficient nanosieve. Nature Materials, 2018, 17, 1057-1058.	13.3	10
559	Crucial Factors for the Application of Functional Nanoporous Carbon-Based Materials in Energy and Environmental Applications. Journal of Carbon Research, 2018, 4, 56.	1.4	8
560	Solidâ€State Umbrellaâ€type Inversion of a VO 5 Squareâ€Pyramidal Unit in a Bowlâ€type Dodecavanadate Induced by Insertion and Elimination of a Guest Molecule. Angewandte Chemie, 2018, 130, 16283-16287.	1.6	6
561	Porosity Properties of the Conformers of Sodalite-like Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2018, 140, 14586-14589.	6.6	19
562	Rational Construction of Highly Tunable Donor–Acceptor Materials Based on a Crystalline Host–Guest Platform. Advanced Materials, 2018, 30, e1804715.	11.1	132

#	Article	IF	CITATIONS
563	Spontaneous Reduction of Copper(II) to Copper(I) at Solid–Liquid Interface. Journal of Physical Chemistry Letters, 2018, 9, 6364-6371.	2.1	19
564	Solidâ€State Umbrellaâ€ŧype Inversion of a VO 5 Squareâ€Pyramidal Unit in a Bowlâ€ŧype Dodecavanadate Induced by Insertion and Elimination of a Guest Molecule. Angewandte Chemie - International Edition, 2018, 57, 16051-16055.	7.2	18
565	Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nature Energy, 2018, 3, 1059-1066.	19.8	214
566	Cooperative Spin Transition of Monodispersed FeN ₃ Sites within Graphene Induced by CO Adsorption. Journal of the American Chemical Society, 2018, 140, 15149-15152.	6.6	108
567	Polymer Brush Decorated MOF Nanoparticles Loaded with AlEgen, Anticancer Drug, and Supramolecular Glue for Regulating and In Situ Observing DOX Release. Macromolecular Bioscience, 2018, 18, e1800317.	2.1	15
568	Protocol for Identifying Accurate Collective Variables in Enhanced Molecular Dynamics Simulations for the Description of Structural Transformations in Flexible Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2018, 14, 5511-5526.	2.3	19
569	Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nature Communications, 2018, 9, 3635.	5.8	44
570	Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nature Reviews Materials, 2018, 3, 431-440.	23.3	314
571	A Selfâ€Folding Polymer Film Based on Swelling Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 15646-15650.	1.6	14
572	A Selfâ€Folding Polymer Film Based on Swelling Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 15420-15424.	7.2	71
573	Ligand Isomerism in Coordination Cages. Inorganic Chemistry, 2018, 57, 12222-12231.	1.9	24
574	Mechano-regulated metal–organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nature Communications, 2018, 9, 3813.	5.8	57
575	Elucidating the Formation and Transformation Mechanisms of the Switchable Metal–Organic Framework ELM-11 by Powder and Single-Crystal EPR Study. Inorganic Chemistry, 2018, 57, 11920-11929.	1.9	15
576	Implementation of slow magnetic relaxation in a SIM-MOF through a structural rearrangement. Dalton Transactions, 2018, 47, 14734-14740.	1.6	10
577	Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society, 2018, 140, 12545-12552.	6.6	42
578	Polymer in MOF Nanospace: from Controlled Chain Assembly to New Functional Materials. Israel Journal of Chemistry, 2018, 58, 995-1009.	1.0	18
579	Multistimuli-Responsive Hydrolytically Stable "Smart―Mercury(II) Coordination Polymer. Inorganic Chemistry, 2018, 57, 11369-11381.	1.9	19
580	Synthesis of Spirocyclic Diphosphite-Supported Gold Metallomacrocycles via a Protodeauration/Cyclization Strategy: Mechanistic and Binding Studies. Inorganic Chemistry, 2018, 57, 11662-11672.	1.9	3

#	Article	IF	CITATIONS
581	NIR hyperspectral images for identification of gunshot residue from tagged ammunition. Analytical Methods, 2018, 10, 4711-4717.	1.3	22
582	Mechanical-pressure induced response of the MOF Al-MIL-53-TDC. Polyhedron, 2018, 155, 144-148.	1.0	17
583	A flexible metal–organic framework with adaptive pores for high column-capacity gas chromatographic separation. Inorganic Chemistry Frontiers, 2018, 5, 2777-2783.	3.0	7
584	Crystallization and structural properties of a family of isotopological 3D-networks: the case of a 4,4′-bipy ligand–M2+ triflate system. CrystEngComm, 2018, 20, 3784-3795.	1.3	3
585	Preparation of zeolite imidazolate framework/graphene hybrid aerogels and their application as highly efficient adsorbent. Journal of Solid State Chemistry, 2018, 265, 184-192.	1.4	59
586	Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO ₂ /CH ₄ . Journal of Materials Chemistry A, 2018, 6, 12380-12392.	5.2	74
587	Elucidation of the Formation Mechanism of Metal–Organic Frameworks via in-Situ Raman and FTIR Spectroscopy under Solvothermal Conditions. Journal of Physical Chemistry C, 2018, 122, 12267-12278.	1.5	43
588	Adventures in boron chemistry – the prediction of novel ultra-flexible boron oxide frameworks. Faraday Discussions, 2018, 211, 569-591.	1.6	5
589	Sonochemical synthesis and properties of two new nanostructured silver(I) coordination polymers. Ultrasonics Sonochemistry, 2018, 48, 127-135.	3.8	74
590	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8678-8681.	7.2	33
591	An Unprecedented Stimuliâ€Controlled Singleâ€Crystal Reversible Phase Transition of a Metal–Organic Framework and Its Application to a Novel Method of Guest Encapsulation. Advanced Materials, 2018, 30, e1800726.	11.1	39
592	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 8814-8817.	1.6	11
593	Gas adsorption in an isostructural series of pillared coordination cages. Chemical Communications, 2018, 54, 6392-6395.	2.2	19
594	Recyclable switching between nonporous and porous phases of a square lattice (sql) topology coordination network. Chemical Communications, 2018, 54, 7042-7045.	2.2	37
595	Magnetic Metal–Organic Framework Exhibiting Quick and Selective Solvatochromic Behavior along with Reversible Crystal-to-Amorphous-to-Crystal Transformation. Inorganic Chemistry, 2018, 57, 7006-7014.	1.9	38
596	Methyl-rotation dynamics in metal–organic frameworks probed with terahertz spectroscopy. Chemical Communications, 2018, 54, 5776-5779.	2.2	26
597	Electronic structure, pore size distribution, and sorption characterization of an unusual MOF, {[Ni(dpbz)][Ni(CN)4]}n, dpbz = 1,4-bis(4-pyridyl)benzene. Journal of Applied Physics, 2018, 123, 245105.	1.1	9
598	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	11.1	835

#	Article	IF	CITATIONS
599	Dynamic Motion of Organic Ligands in Polar Layered Cobalt Phosphonates. Chemistry - A European Journal, 2018, 24, 13495-13503.	1.7	5
600	Guest-Induced Switchable Breathing Behavior in a Flexible Metal–Organic Framework with Pronounced Negative Gas Pressure. Inorganic Chemistry, 2018, 57, 8627-8633.	1.9	54
601	Impact of Disordered Guest–Framework Interactions on the Crystallography of Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 8958-8964.	6.6	54
602	Co(II) coordination polymers exhibiting reversible structural transformation and color change: A comparative analysis with Ni(II) analogue. Polyhedron, 2018, 152, 225-232.	1.0	15
603	Towards white-light emission by Tb3+/Eu3+ substitution in a Ca2+ framework. Polyhedron, 2018, 153, 24-30.	1.0	9
604	Harnessing Structural Dynamics in a 2D Manganese–Benzoquinoid Framework To Dramatically Accelerate Metal Transport in Diffusion-Limited Metal Exchange Reactions. Journal of the American Chemical Society, 2018, 140, 11444-11453.	6.6	31
605	Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review. Membranes, 2018, 8, 50.	1.4	66
606	Drinking and Breathing: Solvent Coordinationâ€driven Plasticity of IRMOFâ€9. Israel Journal of Chemistry, 2018, 58, 1131-1137.	1.0	10
607	Upgrading gasoline to high octane numbers using a zeolite-like metal–organic framework molecular sieve with ana -topology. Chemical Communications, 2018, 54, 9414-9417.	2.2	23
608	A dynamic and multi-responsive porous flexible metal–organic material. Nature Communications, 2018, 9, 3080.	5.8	89
609	A 3D metal–organic framework with dual-aerial-octahedral trinucleate building units: synthesis, structure and fluorescence sensing properties. New Journal of Chemistry, 2018, 42, 14648-14654.	1.4	7
610	Preparation of a bispyridine based porous organic polymer as a new platform for Cu(ii) catalyst and its use in heterogeneous olefin epoxidation. New Journal of Chemistry, 2018, 42, 14067-14070.	1.4	3
611	Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 10562-10569.	6.6	62
612	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401.	11.1	229
613	Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks. Journal of Physical Chemistry C, 2018, 122, 19171-19179.	1.5	52
614	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
615	Controlling Thermal Expansion Behaviors of Fence-Like Metal-Organic Frameworks by Varying/Mixing Metal Ions. Frontiers in Chemistry, 2018, 6, 306.	1.8	3
616	Photoinduced Plasmon-Driven Chemistry in <i>trans</i> -1,2-Bis(4-pyridyl)ethylene Gold Nanosphere Oligomers. Journal of the American Chemical Society, 2018, 140, 10583-10592.	6.6	42

#	Article	IF	CITATIONS
617	Synthesis of hydrophobic MIL-53(Al) nanoparticles in low molecular weight alcohols: systematic investigation of solvent effects. CrystEngComm, 2018, 20, 4666-4675.	1.3	23
618	Synthesis and Crystal Structure of a Zn(II)-Based MOF Bearing Neutral N-Donor Linker and SiF62â^' Anion. Crystals, 2018, 8, 37.	1.0	16
619	CO ₂ Sorption of Layered Hydrogen-bonded Organic Framework Causes Reversible Structural Changes Involving Four Different Crystalline States under Ambient Pressure. Chemistry Letters, 2018, 47, 1143-1146.	0.7	22
620	Structure Transformation of a Luminescent Pillared-Layer Metal–Organic Framework Caused by Point Defects Accumulation. Chemistry of Materials, 2018, 30, 5478-5484.	3.2	34
621	Switchable gate-opening effect in metal–organic polyhedra assemblies through solution processing. Chemical Science, 2018, 9, 6463-6469.	3.7	40
622	Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks. Molecules, 2018, 23, 668.	1.7	15
623	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	18.7	123
624	Aluminum metal–organic frameworks for sorption in solution: A review. Coordination Chemistry Reviews, 2018, 374, 236-253.	9.5	89
625	Gate-Opening Mechanism of Hydrophilic–Hydrophobic Metal–Organic Frameworks: Molecular Simulations and Quasi-Equilibrated Desorption. Chemistry of Materials, 2018, 30, 5116-5127.	3.2	17
626	Fighting at the Interface: Structural Evolution during Heteroepitaxial Growth of Cyanometallate Coordination Polymers. Inorganic Chemistry, 2018, 57, 8701-8704.	1.9	14
627	A MOF-based carrier for <i>in situ</i> dopamine delivery. RSC Advances, 2018, 8, 25664-25672.	1.7	35
628	Thermal and Guest-Assisted Structural Transition in the NH2-MIL-53(Al) Metal Organic Framework: A Molecular Dynamics Simulation Investigation. Nanomaterials, 2018, 8, 531.	1.9	4
629	Crystalline to Crystalline Phase Transformations in Six Two-Dimensional Dynamic Metal–Organic Frameworks: Syntheses, Characterizations, and Sorption Studies. Crystal Growth and Design, 2018, 18, 5231-5244.	1.4	8
630	Near-Perfect CO ₂ /CH ₄ Selectivity Achieved through Reversible Guest Templating in the Flexible Metal–Organic Framework Co(bdp). Journal of the American Chemical Society, 2018, 140, 10324-10331.	6.6	136
631	Atomic Force Microscopy Study of the Influence of the Synthesis Conditions on the Singleâ€Crystal Surface of Interdigitated Metalâ€Organic Frameworks. ChemPhysChem, 2018, 19, 2134-2138.	1.0	7
632	Visualizing Structural Transformation and Guest Binding in a Flexible Metal–Organic Framework under High Pressure and Room Temperature. ACS Central Science, 2018, 4, 1194-1200.	5.3	46
633	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239
634	Electrochemically Generated Conjugated Microporous Polymer Network Thin Films for Chemical Sensor Applications. Macromolecular Chemistry and Physics, 2018, 219, 1800207.	1.1	25
#	Article	IF	CITATIONS
-----	---	-----	-----------
635	Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination Chemistry Reviews, 2018, 376, 248-276.	9.5	174
636	Design and Synthesis of Zirconium ontaining Coordination Polymer Based on Unsymmetric Indolyl Dicarboxylic Acid and Catalytic Application on Borrowing Hydrogen Reaction. Advanced Synthesis and Catalysis, 2018, 360, 4293-4300.	2.1	41
637	Tuning Gas Adsorption by Metal Node Blocking in Photoresponsive Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 15167-15172.	1.7	33
638	Lanthanide Functionalized Metal–Organic Coordination Polymer: Toward Novel Turn-On Fluorescent Sensing of Amyloid β-Peptide. Analytical Chemistry, 2018, 90, 12449-12455.	3.2	62
639	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	6.6	158
640	DABCO molecule in the M2(C8H4O4)2·C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic frameworks. Coordination Chemistry Reviews, 2018, 376, 62-74.	9.5	15
641	Tuning the gate opening pressure of a flexible doubly interpenetrated metal–organic framework through ligand functionalization. Dalton Transactions, 2018, 47, 13158-13163.	1.6	24
642	A vapochromic strategy for ammonia sensing based on a bipyridinium constructed porous framework. Dalton Transactions, 2018, 47, 8204-8208.	1.6	22
643	Fabrication of zinc-based coordination polymer nanocubes and post-modification through copper decoration. Nano Research, 2018, 11, 5890-5901.	5.8	6
644	Solventâ€Triggered Reversible Phase Changes in Two Manganeseâ€Based Metal–Organic Frameworks and Associated Sensing Events. Chemistry - A European Journal, 2018, 24, 13231-13237.	1.7	15
645	Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO ₂ hydrogenation to methane at low temperatures. Catalysis Science and Technology, 2018, 8, 3160-3165.	2.1	87
646	Liquid phase blending of metal-organic frameworks. Nature Communications, 2018, 9, 2135.	5.8	69
647	Copper-catalyzed oxidative coupling of arylboronic acids with aryl carboxylic acids: Cu ₃ (BTC) ₂ MOF as a sustainable catalyst to access aryl esters. Organic Chemistry Frontiers, 2018, 5, 2322-2331.	2.3	19
648	Solvent-free synthesis of a porous thiophene polymer by mechanochemical oxidative polymerization. Journal of Materials Chemistry A, 2018, 6, 21901-21905.	5.2	24
649	Multifunctional Lanthanideâ€Based Metal–Organic Frameworks with a Polyheterotopic Ligand: Doped with Ytterbium(III) for Luminescence Enhancement and Selective Dye Adsorption. Chemistry - an Asian Journal, 2018, 13, 2126-2134.	1.7	17
650	Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coordination Chemistry Reviews, 2018, 375, 558-586.	9.5	93
651	An unusual werner type clathrate of Mn(II) benzoate involving energetically significant weak C H⋯C contacts: A combined experimental and theoretical study. Journal of Molecular Structure, 2019, 1175, 130-138.	1.8	29
652	Zirconium metal-organic framework nanocrystal as microwave sensitizer for enhancement of tumor therapy. Chinese Chemical Letters, 2019, 30, 481-484.	4.8	16

#	Article	IF	CITATIONS
653	Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. Journal of Materials Chemistry C, 2019, 7, 10743-10763.	2.7	273
654	Doubly Interpenetrated Zn ₄ O-Based Metal–Organic Framework for CO ₂ Chemical Transformation and Antibiotic Sensing. Crystal Growth and Design, 2019, 19, 5228-5236.	1.4	31
655	Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nature Communications, 2019, 10, 3632.	5.8	73
656	Olefin/paraffin separation through membranes: from mechanisms to critical materials. Journal of Materials Chemistry A, 2019, 7, 23489-23511.	5.2	63
657	Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications. Coordination Chemistry Reviews, 2019, 398, 213016.	9.5	414
658	Effect of the Metal within Regioisomeric Paddleâ€Wheelâ€Type Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 14414-14420.	1.7	7
659	2D molecular crystal lattices: advances in their synthesis, characterization, and application. Journal of Materials Chemistry A, 2019, 7, 23537-23562.	5.2	33
660	Stepwise and hysteretic sorption of CO ₂ in polycatenated metal–organic frameworks. CrystEngComm, 2019, 21, 4696-4700.	1.3	180
661	The Zeolitic Imidazolate Framework ZIFâ€4 under Low Hydrostatic Pressures. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 970-974.	0.6	18
662	Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework. Chemistry of Materials, 2019, 31, 5856-5866.	3.2	18
663	Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nature Materials, 2019, 18, 994-998.	13.3	133
664	New insights into solvent-induced structural changes of ¹³ C labelled metal–organic frameworks by solid state NMR. Chemical Communications, 2019, 55, 9140-9143.	2.2	20
665	Metal-organic frameworks for detection and desensitization of environmentally hazardous nitro-explosives and related high energy materials. , 2019, , 231-283.		4
666	A Ligand Field Molecular Mechanics Study of CO 2 â€Induced Breathing in the Metal–Organic Framework DUTâ€8(Ni). Advanced Theory and Simulations, 2019, 2, 1900098.	1.3	9
667	Lockâ€andâ€Key and Shapeâ€Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 11757-11762.	7.2	56
668	Mechanochemical synthesis of hyper-crosslinked polymers: influences on their pore structure and adsorption behaviour for organic vapors. Beilstein Journal of Organic Chemistry, 2019, 15, 1154-1161.	1.3	24
669	Meltable Mixed-Linker Zeolitic Imidazolate Frameworks and Their Microporous Glasses: From Melting Point Engineering to Selective Hydrocarbon Sorption. Journal of the American Chemical Society, 2019, 141, 12362-12371.	6.6	143
670	Encapsulating NiCo ₂ O ₄ inside metal–organic framework sandwiched graphene oxide 2D composite nanosheets for high-performance lithium-ion batteries. Nanoscale, 2019, 11, 15166-15172.	2.8	27

#	Article	IF	CITATIONS
671	Effects of Intrinsic Flexibility on Adsorption Properties of Metal–Organic Frameworks at Dilute and Nondilute Loadings. ACS Applied Materials & Interfaces, 2019, 11, 31060-31068.	4.0	50
672	Broad Mid-Infrared Luminescence in a Metal–Organic Framework Glass. ACS Omega, 2019, 4, 12081-12087.	1.6	41
673	Tuning Packing, Structural Flexibility, and Porosity in 2D Metal–Organic Frameworks by Metal Node Choice. Australian Journal of Chemistry, 2019, 72, 797.	0.5	4
674	High-Pressure in Situ ¹²⁹ Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49. Chemistry of Materials, 2019, 31, 6193-6201.	3.2	41
675	Effective Gas Separation Performance Enhancement Obtained by Constructing Polymorphous Core–Shell Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 30234-30239.	4.0	19
676	Insights into the role of zirconium in proline functionalized metal-organic frameworks attaining high enantio- and diastereoselectivity. Journal of Catalysis, 2019, 377, 41-50.	3.1	33
677	Metal–Organic Frameworks for Food Safety. Chemical Reviews, 2019, 119, 10638-10690.	23.0	366
678	Glass-phase coordination polymer displaying proton conductivity and guest-accessible porosity. Chemical Communications, 2019, 55, 8528-8531.	2.2	24
679	Polarityâ€Induced Excitedâ€State Intramolecular Proton Transfer (ESIPT) in a Pair of Supramolecular Isomeric Multifunctional Dynamic Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 12196-12205.	1.7	30
680	Designing crystalline, flexible covalent metal–organic networks through controlled ligand deprotection. CrystEngComm, 2019, 21, 4255-4257.	1.3	3
681	Tuning the Electric Field Response of MOFs by Rotatable Dipolar Linkers. ACS Central Science, 2019, 5, 1440-1448.	5.3	28
682	Lockâ€andâ€Key and Shapeâ€Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 11883-11888.	1.6	10
683	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17342-17350.	7.2	16
684	Solvent-Assisted, Thermally Triggered Structural Transformation in Flexible Mesoporous Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 8787-8793.	3.2	30
685	Silver phosphate supported on metal–organic framework (Ag ₃ PO ₄ @MOFâ€5) as a novel heterogeneous catalyst for green synthesis of indenoquinolinediones. Applied Organometallic Chemistry, 2019, 33, e5176.	1.7	15
686	Engineering Structural Dynamics of Zirconium Metal–Organic Frameworks Based on Natural C4 Linkers. Journal of the American Chemical Society, 2019, 141, 17207-17216.	6.6	54
687	Enhanced Gas Uptake in a Microporous Metal–Organic Framework <i>via</i> a Sorbate Induced-Fit Mechanism. Journal of the American Chemical Society, 2019, 141, 17703-17712.	6.6	152
688	Photochemical cycloaddition and temperature-dependent breathing in pillared-layer metal–organic frameworks. Science Bulletin, 2019, 64, <u>1881-1889</u> .	4.3	13

#		IC	CITATIONS
#	Water Resistant and Elexible MOF Materials for Highly Efficient Separation of Methane from Nitrogen	IF	CHATIONS
689	Industrial & Engineering Chemistry Research, 2019, 58, 20392-20400.	1.8	46
690	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17503-17511.	1.6	11
691	Fluorescent metal–organic frameworks based on mixed organic ligands: new candidates for highly sensitive detection of TNP. Dalton Transactions, 2019, 48, 1900-1905.	1.6	33
692	Negative Thermal Expansion Design Strategies in a Diverse Series of Metal–Organic Frameworks. Advanced Functional Materials, 2019, 29, 1904669.	7.8	48
693	Synthesis, phase transitions and vitrification of the zeolitic imidazolate framework: ZIF-4. Journal of Non-Crystalline Solids, 2019, 525, 119665.	1.5	11
694	Metal–organic frameworks under pressure. Journal of Applied Physics, 2019, 126, .	1.1	54
695	Soft Porous Crystals: Extraordinary Responses to Stimulation. Bulletin of Japan Society of Coordination Chemistry, 2019, 73, 15-23.	0.1	5
696	Molecular Dynamics Simulations of the "Breathing―Phase Transformation of MOF Nanocrystallites. Advanced Theory and Simulations, 2019, 2, 1900117.	1.3	47
697	Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations, 2019, 2, 1900135.	1.3	41
698	Fluorescent "Turnâ€on―Sensing Based on Metal–Organic Frameworks (MOFs). Chemistry - an Asian Journal, 2019, 14, 4506-4519.	1.7	140
699	Computational Studies of Photocatalysis with Metal–Organic Frameworks. Energy and Environmental Materials, 2019, 2, 251-263.	7.3	66
700	Unraveling the thermodynamic criteria for size-dependent spontaneous phase separation in soft porous crystals. Nature Communications, 2019, 10, 4842.	5.8	47
701	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillarâ€Ligand Substitution. Angewandte Chemie - International Edition, 2019, 58, 18212-18217.	7.2	55
702	<i>In situ</i> synthesis and encapsulation of copper phthalocyanine into MIL-101(Cr) and MIL-100(Fe) pores and investigation of their catalytic performance in the epoxidation of styrene. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1118-1131.	0.4	6
703	Introducing a Longer versus Shorter Acylhydrazone Linker to a Metal–Organic Framework: Parallel Mechanochemical Approach, Nonisoreticular Structures, and Diverse Properties. Crystal Growth and Design, 2019, 19, 7160-7169.	1.4	17
704	The Anisotropic Responses of a Flexible Metal–Organic Framework Constructed from Asymmetric Flexible Linkers and Heptanuclear Zinc Carboxylate Secondary Building Units. Crystal Growth and Design, 2019, 19, 5604-5618.	1.4	6
705	Reversing C ₂ H ₂ –CO ₂ adsorption selectivity in an ultramicroporous metal–organic framework platform. Chemical Communications, 2019, 55, 11354-11357.	2.2	46
706	Ligand geometry controlling Zn-MOF partial structures for their catalytic performance in Knoevenagel condensation. RSC Advances, 2019, 9, 25170-25176.	1.7	14

#	Article	IF	CITATIONS
707	Influence of the Metal Ion on the Topology and Interpenetration of Pyridylvinyl(benzoate) Based Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 5592-5603.	1.4	10
708	Crystal size <i>versus</i> paddle wheel deformability: selective gated adsorption transitions of the switchable metal–organic frameworks DUT-8(Co) and DUT-8(Ni). Journal of Materials Chemistry A, 2019, 7, 21459-21475.	5.2	54
709	CO ₂ -induced single-crystal to single-crystal transformations of an interpenetrated flexible MOF explained by <i>in situ</i> crystallographic analysis and molecular modeling. Chemical Science, 2019, 10, 10018-10024.	3.7	39
710	Covalent triazine frameworks for carbon dioxide capture. Journal of Materials Chemistry A, 2019, 7, 22848-22870.	5.2	106
711	Unraveling the thermodynamic conditions for negative gas adsorption in soft porous crystals. Communications Physics, 2019, 2, .	2.0	9
712	Simulating Enhanced Methane Deliverable Capacity of Guest Responsive Pores in Intrinsically Flexible MOFs. Journal of Physical Chemistry Letters, 2019, 10, 5929-5934.	2.1	16
713	Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL-53(Al) type materials. Dalton Transactions, 2019, 48, 15091-15104.	1.6	31
714	Desolvation process in the flexible metal–organic framework [Cu(Me-4py-trz-ia)], adsorption of dihydrogen and related structure responses. CrystEngComm, 2019, 21, 6523-6535.	1.3	9
715	Experimental Evidence for Vibrational Entropy as Driving Parameter of Flexibility in the Metal–Organic Framework ZIF-4(Zn). Chemistry of Materials, 2019, 31, 8366-8372.	3.2	29
716	Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nature Communications, 2019, 10, 4362.	5.8	91
717	Metal-organic frameworks as materials for applications in sensors. Mendeleev Communications, 2019, 29, 361-368.	0.6	33
718	Metal–Organic Frameworks as Key Materials for Solid-Phase Microextraction Devices—A Review. Separations, 2019, 6, 47.	1.1	74
719	Supramolecular membranes: A robust platform to develop separation strategies towards water-based applications. Separation and Purification Technology, 2019, 215, 441-453.	3.9	20
720	Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces. Nature Communications, 2019, 10, 346.	5.8	93
721	A robust and water-stable two-fold interpenetrated metal–organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO ₂ capture. Dalton Transactions, 2019, 48, 415-425.	1.6	20
722	Conformational isomerism controls collective flexibility in metal–organic framework DUT-8(Ni). Physical Chemistry Chemical Physics, 2019, 21, 674-680.	1.3	39
723	Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal–Organic Frameworks, and Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1805293.	11.1	98
724	N-donor ligand driven CdII-based coordination polymers: Synthesis, structures and highly selective luminescence sensing for Fe3+ ions. Inorganica Chimica Acta, 2019, 489, 54-60.	1.2	6

#	Article	IF	CITATIONS
725	Porous metal–organic frameworks as emerging sorbents for clean air. Nature Reviews Chemistry, 2019, 3, 108-118.	13.8	202
726	Crystal Structure and Structural Transformation of [(CH ₃) ₃ NH] ₂ [CuZn(CN) ₅]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 466-471.	0.6	0
727	In Situ ¹³ C NMR Spectroscopy Study of CO ₂ /CH ₄ Mixture Adsorption by Metal–Organic Frameworks: Does Flexibility Influence Selectivity?. Langmuir, 2019, 35, 3162-3170.	1.6	37
728	Metal–ligand ring aromaticity in a 2D coordination polymer used as a photosensitive electronic device. New Journal of Chemistry, 2019, 43, 2710-2717.	1.4	27
729	MOFs containing a linear bis-pyridyl-tris-amide and angular carboxylates: exploration of proton conductivity, water vapor and dye sorptions. Inorganic Chemistry Frontiers, 2019, 6, 184-191.	3.0	41
730	Preparation, optimization and evolution of the kinetic mechanism of an Fe-MIL-88A metal–organic framework. CrystEngComm, 2019, 21, 544-553.	1.3	23
731	Tuning of the flexibility in metal–organic frameworks based on pendant arm macrocycles. Chemical Communications, 2019, 55, 8832-8835.	2.2	16
732	A water-stable luminescent Zn(II) coordination polymer based on 5-sulfosalicylic acid and 1,4-bis(1H-imidazol-1-yl)benzene for highly sensitive and selective sensing of Fe3+ ion. Inorganica Chimica Acta, 2019, 493, 72-80.	1.2	14
733	Inclusion Compound of Phthalic Anhydride in Porous Homochiral Zinc Terephthalate Lactate: The Effect of Guests on the Geometrical Characteristics of the Metal-Organic Framework. Journal of Structural Chemistry, 2019, 60, 284-288.	0.3	6
734	Toward Green Production of Water-Stable Metal–Organic Frameworks Based on High-Valence Metals with Low Toxicities. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	21
735	Hitherto unknown eight-connected frameworks formed from A ₄ B ₄ O ₁₂ metal organophosphate heterocubanes. Chemical Communications, 2019, 55, 7994-7997.	2.2	4
736	A new metal-organic framework with suitable pore size and ttd-type topology revealing highly selective adsorption and separation of organic dyes. Journal of Solid State Chemistry, 2019, 277, 159-162.	1.4	22
737	Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal–Organic Frameworks with "Structural Memory― Journal of the American Chemical Society, 2019, 141, 11628-11640.	6.6	71
738	Phosphonium zwitterions for lighter and chemically-robust MOFs: highly reversible H ₂ S capture and solvent-triggered release. Journal of Materials Chemistry A, 2019, 7, 16842-16849.	5.2	22
739	Tuning of the <i>para</i> -position of pyridyl ligands impacts the electrical properties of a series of Cd(<scp>ii</scp>) ladder polymers. Dalton Transactions, 2019, 48, 11259-11267.	1.6	32
740	Understanding structural flexibility of the paddle-wheel Zn-SBU motif in MOFs: influence of pillar ligands. Physical Chemistry Chemical Physics, 2019, 21, 11977-11982.	1.3	5
741	Topochemical Synthesis of Single-Crystalline Hydrogen-Bonded Cross-Linked Organic Frameworks and Their Guest-Induced Elastic Expansion. Journal of the American Chemical Society, 2019, 141, 10915-10923.	6.6	92
742	Flexibility in Metal–Organic Frameworks: A Basic Understanding. Catalysts, 2019, 9, 512.	1.6	35

#	Article	IF	CITATIONS
743	Direct in Situ Crystallographic Visualization of a Dual Mechanism for the Uptake of CO ₂ Gas by a Flexible Metal–Organic Framework. Inorganic Chemistry, 2019, 58, 8257-8262.	1.9	7
744	Alkaline-earth metal based coordination polymers assembled from two different V-shaped ligands: Synthesis, structure, and dielectric properties. Inorganica Chimica Acta, 2019, 495, 118940.	1.2	8
745	Structure, Dynamics, and Thermodynamics of Intruded Electrolytes in ZIF-8. Journal of Physical Chemistry C, 2019, 123, 15589-15598.	1.5	22
746	Rational Construction of Breathing Metal–Organic Frameworks through Synergy of a Stretchy Ligand and Highly Variable π–π Interaction. ACS Applied Materials & Interfaces, 2019, 11, 20995-21003.	4.0	13
747	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	11.1	138
748	Imparting gas selective and pressure dependent porosity into a non-porous solid <i>via</i> coordination flexibility. Materials Horizons, 2019, 6, 1883-1891.	6.4	17
749	Two-dimensional π-conjugated osmium bis(dithiolene) complex (OsC4S4) as a promising electrocatalyst for ambient nitrogen reduction to ammonia. Applied Surface Science, 2019, 487, 833-839.	3.1	39
750	Soft Porous Crystal Based upon Organic Cages That Exhibit Guest-Induced Breathing and Selective Gas Separation. Journal of the American Chemical Society, 2019, 141, 9408-9414.	6.6	98
751	A Flexible Twoâ€Fold Interpenetrated Indium MOF Exhibiting Dynamic Response to Gas Adsorption and Highâ€Sensitivity Detection of Nitroaromatic Explosives. Chemistry - an Asian Journal, 2019, 14, 3597-3602.	1.7	32
752	Exploring the thermodynamic criteria for responsive adsorption processes. Chemical Science, 2019, 10, 5011-5017.	3.7	29
753	MIL-101(Cr)/graphene hybrid aerogel used as a highly effective adsorbent for wastewater purification. Journal of Porous Materials, 2019, 26, 1607-1618.	1.3	21
754	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie, 2019, 131, 9543-9547.	1.6	20
755	Improving the Stability of Metal Halide Perovskite Quantum Dots by Encapsulation. Advanced Materials, 2019, 31, e1900682.	11.1	270
756	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 9443-9447.	7.2	81
757	From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5. Journal of Chemical Theory and Computation, 2019, 15, 3793-3809.	2.3	72
758	Predictions of Stepped Isotherms in Breathing Adsorbents by the Rigid Adsorbent Lattice Fluid. Journal of Physical Chemistry C, 2019, 123, 14517-14529.	1.5	8
759	rtl -M-MOFs (M = Cu, Zn) with a T-shaped bifunctional pyrazole-isophthalate ligand showing flexibility and S-shaped Type F-IV sorption isotherms with high saturation uptakes for M = Cu. Dalton Transactions, 2019, 48, 8057-8067.	1.6	11
760	Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial. Science Advances, 2019, 5, eaav4119.	4.7	28

#	Article	IF	CITATIONS
761	A new dynamic framework with direct in situ visualisation of breathing under CO2 gas pressure. CrystEngComm, 2019, 21, 3415-3419.	1.3	2
762	Near-zero thermal expansion coordinated with geometric flexibility and Ï€â<Ï€ interaction in anisotropic [Zn ₈ (SiO ₄)(<i>m</i> -BDC) ₆] _n . Inorganic Chemistry Frontiers, 2019, 6, 1675-1679.	3.0	5
763	Photochromism of four 1D coordination polymers based on 1-(2-carboxyethyl)-4,4′-bipyridinium ligand. Dyes and Pigments, 2019, 170, 107552.	2.0	11
764	Phenolics isolation from bio-oil using the metal–organic framework MIL-53(Al) as a highly selective adsorbent. Chemical Communications, 2019, 55, 6245-6248.	2.2	7
765	Temperature-Controlled Assembly/Reassembly of Two Dicarboxylate-Based Three-Dimensional Co(II) Coordination Polymers with an Antiferromagnetic Metallic Layer and a Ferromagnetic Metallic Chain. Polymers, 2019, 11, 795.	2.0	1
766	Development of a MOF-FF-compatible interaction model for liquid methanol and Clâ^' in methanol. Journal of Molecular Liquids, 2019, 285, 526-534.	2.3	4
767	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 2019, 6, 1802373.	5.6	214
768	Ladder chain Cd-based polymer as a highly effective adsorbent for removal of Congo red. Ecotoxicology and Environmental Safety, 2019, 178, 221-229.	2.9	29
769	Photoinduced Nonlinear Contraction Behavior in Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 8543-8549.	1.7	45
770	Metal-Organic Frameworks. Green Energy and Technology, 2019, , 137-172.	0.4	7
771	Alternatives to Cryogenic Distillation: Advanced Porous Materials in Adsorptive Light Olefin/Paraffin Separations. Small, 2019, 15, e1900058.	5.2	187
772	Strontiumâ€Carboxylateâ€Based Coordination Polymers: Synthesis, Structure and Dielectric Properties. ChemistrySelect, 2019, 4, 4756-4766.	0.7	8
773	Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019, , .	0.4	14
774	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	18.7	1,685
775	A Tailor-Made Interpenetrated MOF with Exceptional Carbon-Capture Performance from Flue Gas. CheM, 2019, 5, 950-963.	5.8	118
776	Metal–Organic Frameworks in Solid-Phase Extraction Procedures for Environmental and Food Analyses. Chromatographia, 2019, 82, 1191-1205.	0.7	50
777	Pressure promoted low-temperature melting of metal–organic frameworks. Nature Materials, 2019, 18, 370-376.	13.3	134
778	Structural Basis of CO2 Adsorption in a Flexible Metal-Organic Framework Material. Nanomaterials, 2019. 9. 354.	1.9	10

#	Article	IF	CITATIONS
779	Methanol Sensing by a Luminescent Zinc(II)â€Based Metalâ^'Organic Framework. ChemPlusChem, 2019, 84, 307-313.	1.3	9
780	Multi- and instabilities in gas partitioning between nanoporous materials and rubber balloons. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180703.	1.0	4
781	Chemiresistive Detection of Gaseous Hydrocarbons and Interrogation of Charge Transport in Cu[Ni(2,3-pyrazinedithiolate) ₂] by Gas Adsorption. Journal of the American Chemical Society, 2019, 141, 5005-5013.	6.6	77
782	Rotational Dynamics of Linkers in Metal–Organic Frameworks. Nanomaterials, 2019, 9, 330.	1.9	83
783	Anomalous Dynamics of a Nanoconfined Gas in a Soft Metal–Organics Framework. Journal of Physical Chemistry Letters, 2019, 10, 1698-1708.	2.1	5
784	Cobalt substitution in a flexible metal–organic framework: modulating a soft paddle-wheel unit for tunable gate-opening adsorption. Dalton Transactions, 2019, 48, 7100-7104.	1.6	9
785	Synthesis of a Zn(<scp>ii</scp>)-based 1D zigzag coordination polymer for the fabrication of optoelectronic devices with remarkably high photosensitivity. Inorganic Chemistry Frontiers, 2019, 6, 1245-1252.	3.0	46
786	Metal–Organic Framework Breathing in the Electric Field: A Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 10333-10338.	1.5	17
787	An NHC-CuCl functionalized metal–organic framework for catalyzing β-boration of α,β-unsaturated carbonyl compounds. Dalton Transactions, 2019, 48, 5144-5148.	1.6	7
788	Metal–organic frameworks with multicomponents in order. Coordination Chemistry Reviews, 2019, 388, 107-125.	9.5	82
789	Synthesis and Characterization of Cu–Ni Mixed Metal Paddlewheels Occurring in the Metal–Organic Framework DUT-8(Ni _{0.98} Cu _{0.02}) for Monitoring Open-Closed-Pore Phase Transitions by X-Band Continuous Wave Electron Paramagnetic Resonance Spectroscopy. Inorganic Chemistry, 2019, 58, 4561-4573.	1.9	17
790	A Dualâ€Stimuliâ€Responsive Coordination Network Featuring Reversible Wideâ€Range Luminescenceâ€Tuning Behavior. Angewandte Chemie, 2019, 131, 5670-5674.	1.6	24
791	Ab Initio Derived Force Fields for Zeolitic Imidazolate Frameworks: MOF-FF for ZIFs. Journal of Chemical Theory and Computation, 2019, 15, 2420-2432.	2.3	45
792	An Efficient and Reusable Multifunctional Composite Magnetic Nanocatalyst for Knoevenagel Condensation. Synlett, 2019, 30, 699-702.	1.0	38
793	Programmable Selfâ€Assembling 3D Architectures Generated by Patterning of Swellable MOFâ€Based Composite Films. Advanced Materials, 2019, 31, e1808235.	11.1	100
794	Influence of interpenetration on the flexibility of MUV-2 . CrystEngComm, 2019, 21, 3031-3035.	1.3	10
795	Mixedâ€Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angewandte Chemie, 2019, 131, 15330-15347.	1.6	124
796	Mixedâ€Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angewandte Chemie - International Edition, 2019, 58, 15188-15205.	7.2	493

#	Article	IF	CITATIONS
797	An Allosteric Metal–Organic Framework That Exhibits Multiple Pore Configurations for the Optimization of Hydrocarbon Separation. Chemistry - an Asian Journal, 2019, 14, 3552-3556.	1.7	11
799	Elucidation of flexible metal-organic frameworks: Research progresses and recent developments. Coordination Chemistry Reviews, 2019, 389, 161-188.	9.5	163
800	Macroscopic and Microscopic View of Competitive and Cooperative Adsorption of Alcohol Mixtures on ZIF-8. Langmuir, 2019, 35, 3887-3896.	1.6	11
801	Concepts for improving hydrogen storage in nanoporous materials. International Journal of Hydrogen Energy, 2019, 44, 7768-7779.	3.8	160
802	Zn(NCS) ₂ â€3 yanopyridine Coordination Compounds: Synthesis, Crystal Structures, and Thermal Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 212-218.	0.6	4
803	Free energy calculations for adsorption-induced deformation of flexible metal–organic frameworks. Current Opinion in Chemical Engineering, 2019, 24, 19-25.	3.8	15
804	Adaptive and Guest Responsive Supramolecular Porous Framework: Solvent Modulated Energy Transfer toward Fingerprint Sensing. Crystal Growth and Design, 2019, 19, 1514-1517.	1.4	7
805	Self-templated synthesis of amide catenanes and formation of a catenane coordination polymer. Organic and Biomolecular Chemistry, 2019, 17, 2442-2447.	1.5	14
806	Synthesis of coordination polymer thin films with conductance-response to mechanical stimulation. Chemical Communications, 2019, 55, 2545-2548.	2.2	9
807	New functionalized MIL-53(In) solids: syntheses, characterization, sorption, and structural flexibility. RSC Advances, 2019, 9, 1918-1928.	1.7	13
809	Single-side and double-side swing behaviours of a flexible porous coordination polymer with a rhombic-lattice structure. CrystEngComm, 2019, 21, 1872-1875.	1.3	0
810	Progress and challenges of graphene oxide/metal-organic composites. Coordination Chemistry Reviews, 2019, 387, 262-272.	9.5	99
811	Highly Selective and Reversible Sulfur Dioxide Adsorption on a Microporous Metal–Organic Framework via Polar Sites. ACS Applied Materials & Interfaces, 2019, 11, 10680-10688.	4.0	64
812	Structural dynamics of a metal–organic framework induced by CO2 migration in its non-uniform porous structure. Nature Communications, 2019, 10, 999.	5.8	54
813	Porosity Dependence of Compression and Lattice Rigidity in Metal–Organic Framework Series. Journal of the American Chemical Society, 2019, 141, 4365-4371.	6.6	51
814	Modeling Gas Adsorption in Flexible Metal–Organic Frameworks via Hybrid Monte Carlo/Molecular Dynamics Schemes. Advanced Theory and Simulations, 2019, 2, 1800177.	1.3	40
815	A Dualâ€Stimuliâ€Responsive Coordination Network Featuring Reversible Wideâ€Range Luminescenceâ€Tuning Behavior. Angewandte Chemie - International Edition, 2019, 58, 5614-5618.	7.2	132
816	Phonons in deformable microporous crystalline solids. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 513-527.	0.4	7

#	Article	IF	CITATIONS
817	The impact of lattice vibrations on the macroscopic breathing behavior of MIL-53(Al). Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 529-545.	0.4	22
818	Flux melting of metal–organic frameworks. Chemical Science, 2019, 10, 3592-3601.	3.7	67
819	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillarâ€Ligand Substitution. Angewandte Chemie, 2019, 131, 18380-18385.	1.6	12
820	Exploiting Dynamic Opening of Apertures in a Partially Fluorinated MOF for Enhancing H ₂ Desorption Temperature and Isotope Separation. Journal of the American Chemical Society, 2019, 141, 19850-19858.	6.6	60
821	Thermodynamic Modeling of the Selective Adsorption of Carbon Dioxide over Methane in the Mechanically Constrained Breathing MILâ€53(Cr). Advanced Theory and Simulations, 2019, 2, 1900124.	1.3	3
822	Highly selective encapsulation and purification of U-based C ₇₈ -EMFs within a supramolecular nanocapsule. Nanoscale, 2019, 11, 23035-23041.	2.8	19
823	A temperature-responsive smart molecular gate in a metal–organic framework for task-specific gas separation. Journal of Materials Chemistry A, 2019, 7, 26574-26579.	5.2	32
824	A Gaâ€MILâ€53â€ŧype Framework based on 1,4â€Phenylenediacetate Showing Subtle Flexibility. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1334-1340.	0.6	0
825	Unusual adsorption behaviours and responsive structural dynamics <i>via</i> selective gate effects of an hourglass porous metal–organic framework. RSC Advances, 2019, 9, 37222-37231.	1.7	3
826	Pillared-layered metal–organic frameworks for mechanical energy storage applications. Journal of Materials Chemistry A, 2019, 7, 22663-22674.	5.2	34
827	Microporous Organically Pillared Layered Silicates (MOPS): A Versatile Class of Functional Porous Materials. Chemistry - A European Journal, 2019, 25, 2103-2111.	1.7	4
828	Three 1D coordination polymers based on bipyridinium carboxylate ligands: Photochromism. Dyes and Pigments, 2019, 160, 476-482.	2.0	21
829	Mechanical Properties of a Metal–Organic Framework formed by Covalent Cross-Linking of Metal–Organic Polyhedra. Journal of the American Chemical Society, 2019, 141, 1045-1053.	6.6	89
830	Complex Phase Behaviour and Structural Transformations of Metalâ€Organic Frameworks with Mixed Rigid and Flexible Bridging Ligands. Chemistry - A European Journal, 2019, 25, 1353-1362.	1.7	2
831	Intrinsically Stretchable Resistive Switching Memory Enabled by Combining a Liquid Metal–Based Soft Electrode and a Metal–Organic Framework Insulator. Advanced Electronic Materials, 2019, 5, 1800655.	2.6	53
832	Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 2019, 380, 378-418.	9.5	91
833	Order-disorder phase transitions in Zn2(C8H4O4)2.C6H12N2 in atmospheres of noble gases. Journal of Chemical Thermodynamics, 2019, 130, 147-153.	1.0	6
834	Hydrogen storage in MIL-88 series. Journal of Materials Science, 2019, 54, 3994-4010.	1.7	27

#	Article	IF	CITATIONS
835	Rapid screening detection of fluoroquinolone residues in milk based on turn-on fluorescence of terbium coordination polymer nanosheets. Chinese Chemical Letters, 2019, 30, 549-552.	4.8	21
836	Models for Cooperative Catalysis: Oxidative Addition Reactions of Dimethylplatinum(II) Complexes with Ligands Having Both NH and OH Functionality. ACS Omega, 2019, 4, 257-268.	1.6	7
837	Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks. Nano-Micro Letters, 2019, 11, 1.	14.4	364
838	Guest-Dependent Dynamics in a 3D Covalent Organic Framework. Journal of the American Chemical Society, 2019, 141, 3298-3303.	6.6	121
839	Guestâ€Selective Recognition in a Flexible Bipyridiniumâ€Based Framework in a Reversible Crystalâ€toâ€Crystal Fashion. Chemistry - A European Journal, 2019, 25, 4136-4142.	1.7	6
840	Probing Local Structural Changes at Cu ²⁺ in a Flexible Mixed-Metal Metal-Organic Framework by <i>in Situ</i> Electron Paramagnetic Resonance during CO ₂ Ad- and Desorption. Journal of Physical Chemistry C, 2019, 123, 2940-2952.	1.5	24
841	MIL-53(Al)/Carbon Films for CO ₂ -Sensing at High Pressure. ACS Sustainable Chemistry and Engineering, 2019, 7, 4012-4018.	3.2	38
842	Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature, 2019, 565, 213-217.	13.7	219
843	Hydrophobic, amorphous metal–organic network readily prepared by complexing the aluminum ion with a siloxane spaced dicarboxylic acid in aqueous medium. Journal of Applied Polymer Science, 2019, 136, 47144.	1.3	6
844	Reversible Optical Writing and Data Storage in an Anthraceneâ€Loaded Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 2423-2427.	7.2	102
845	Diffusion of Water and Carbon Dioxide and Mixtures Thereof in Mg-MOF-74. Journal of Physical Chemistry C, 2019, 123, 8212-8220.	1.5	19
846	Fabrication of Metal–Organic Framework Thin Films Using Programmed Layerâ€by‣ayer Assembly Techniques. Advanced Materials Technologies, 2019, 4, 1800413.	3.0	37
847	A Threeâ€Dimensional Dynamic Supramolecular "Sticky Fingers―Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 2310-2315.	7.2	16
848	Metal Effects on the Framework Stability and Adsorption Property of a Series of Isoreticular Metal–Organic Frameworks Based on an in-Situ Generated T-Shaped Ligand. Crystal Growth and Design, 2019, 19, 300-304.	1.4	8
849	Luminescent Triazene-Based Covalent Organic Frameworks Functionalized with Imine and Azine: N ₂ and H ₂ Sorption and Efficient Removal of Organic Dye Pollutants. Crystal Growth and Design, 2019, 19, 362-368.	1.4	32
850	Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nature Chemistry, 2019, 11, 109-116.	6.6	75
851	Tortuosity and connectivity evaluation by CFD simulation for morphological characterization of membranes and catalytic structures. Case study: CaF2-like structure. Chemical Engineering Science, 2019, 195, 519-530.	1.9	5
852	Bipyridinium derivative-based coordination polymers: From synthesis to materials applications. Coordination Chemistry Reviews, 2019, 378, 533-560.	9.5	205

#	Article	IF	CITATIONS
853	A highly active copper-based metal-organic framework catalyst for a friedel–crafts alkylation in the synthesis of bis(indolyl)methanes under ultrasound irradiation. Arabian Journal of Chemistry, 2020, 13, 1377-1385.	2.3	10
854	Effect of low frequency phonons on structural properties of ZIFs with SOD topology. Microporous and Mesoporous Materials, 2020, 304, 109132.	2.2	13
855	Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Advanced Materials, 2020, 32, e1806445.	11.1	408
856	Switching in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 4652-4669.	7.2	211
857	Progress in the Design of Cooperative Heterogeneous Catalytic Materials for C–C Bond Formation. Advanced Functional Materials, 2020, 30, 1901385.	7.8	14
858	Schalten in Metallâ€organischen Gerüsten. Angewandte Chemie, 2020, 132, 4680-4699.	1.6	22
859	A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorganica Chimica Acta, 2020, 500, 119205.	1.2	34
860	Study of competitive adsorption of the N2O-CO2-CH4-N2 quaternary mixture on CuBTC. Separation and Purification Technology, 2020, 235, 116211.	3.9	6
861	A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids. Angewandte Chemie - International Edition, 2020, 59, 6652-6664.	7.2	146
862	Deoxypyridinolineâ€bioinspired supramolecular antibacterial salts with a C—Hâ‹O hydrogenâ€bonded tetrameric host to construct the helical scaffold and sheet structures: The importance of rotational flexibility, anion shapes, and robust C—Hâ‹O hydrogen bonding. Journal of the Chinese Chemical Society. 2020. 67. 88-93.	0.8	0
863	Locking of phase transition in MOF ZIF-7: improved selectivity in mixed-matrix membranes for O ₂ /N ₂ separation. Materials Horizons, 2020, 7, 223-228.	6.4	21
864	Two-dimensional π-conjugated metal bis(dithiolene) nanosheet: A promising anchoring material for lithium-sulfur batteries. Computational Materials Science, 2020, 171, 109228.	1.4	15
865	Reversible Phase Transition of Porous Coordination Polymers. Chemistry - A European Journal, 2020, 26, 2766-2779.	1.7	32
866	2D Oligosilyl Metal–Organic Frameworks as Multiâ€state Switchable Materials. Angewandte Chemie, 2020, 132, 773-778.	1.6	5
867	2D Oligosilyl Metal–Organic Frameworks as Multiâ€state Switchable Materials. Angewandte Chemie - International Edition, 2020, 59, 763-768.	7.2	15
868	A Computational Analysis of the Intrinsic Plasticity of Fiveâ€Coordinate Cu(II) Complexes and the Factors Leading to the Breakdown of the Orbital Directing Effect in Paddlewheel Secondary Building Units. Journal of Computational Chemistry, 2020, 41, 340-348.	1.5	5
869	Eine neue Dimension von Koordinationspolymeren und Metallâ€organischen Gerüsten: hin zu funktionellen GlÃ s ern und Flüssigkeiten. Angewandte Chemie, 2020, 132, 6716-6729.	1.6	17
870	Photophysics Modulation in Photoswitchable Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8790-8813.	23.0	275

#	Article	IF	CITATIONS
871	Metal-organic framework-based CO2 capture: From precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14, 188-215.	2.3	31
872	A new design strategy for redox-active molecular assemblies with crystalline porous structures for lithium-ion batteries. Chemical Science, 2020, 11, 37-43.	3.7	35
873	Collective Breathing in an Eightfold Interpenetrated Metal–Organic Framework: From Mechanistic Understanding towards Threshold Sensing Architectures. Angewandte Chemie - International Edition, 2020, 59, 4491-4497.	7.2	46
874	Free-standing 3D nitrogen–carbon anchored Cu nanorod arrays: <i>in situ</i> derivation from a metal–organic framework and strategy to stabilize lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 1425-1431.	5.2	17
875	High-Performance CO ₂ -Selective Hybrid Membranes by Exploiting MOF-Breathing Effects. ACS Applied Materials & Interfaces, 2020, 12, 2952-2961.	4.0	32
876	Semiconductive Nature of Lead-Based Metal–Organic Frameworks with Three-Dimensionally Extended Sulfur Secondary Building Units. Journal of the American Chemical Society, 2020, 142, 27-32.	6.6	51
877	Microporous Metal-Organic Framework Materials for Gas Separation. CheM, 2020, 6, 337-363.	5.8	528
878	Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study. Microporous and Mesoporous Materials, 2020, 296, 110002.	2.2	73
879	Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nature Chemistry, 2020, 12, 90-97.	6.6	93
880	Metal Ion-Driven Assembly of Coordination Polymers Based on 1,3-Bis(4-imidazolylphenoxy)propane: Crystal Structures and Photocatalytic Properties. Journal of Chemical Crystallography, 2020, 50, 428-437.	0.5	0
881	Functionalized Dynamic Metal–Organic Frameworks as Smart Switches for Sensing and Adsorption Applications. Topics in Current Chemistry, 2020, 378, 5.	3.0	14
882	In situ visualization of loading-dependent water effects in a stable metal–organic framework. Nature Chemistry, 2020, 12, 186-192.	6.6	53
883	Breathing Metal–Organic Framework Based on Flexible Inorganic Building Units. Crystal Growth and Design, 2020, 20, 320-329.	1.4	31
884	Crystalâ€Growthâ€Dominated Fabrication of Metal–Organic Frameworks with Orderly Distributed Hierarchical Porosity. Angewandte Chemie, 2020, 132, 2478-2485.	1.6	5
885	Three new coordination polymers based on a fluorene derivative ligand for the highly luminescent sensitive detection of Fe3+. Journal of Molecular Structure, 2020, 1202, 127341.	1.8	7
886	Crystalâ€Growthâ€Dominated Fabrication of Metal–Organic Frameworks with Orderly Distributed Hierarchical Porosity. Angewandte Chemie - International Edition, 2020, 59, 2457-2464.	7.2	53
887	Solventâ€Vaporâ€Induced Reversible Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation of a Triphosphaazatrianguleneâ€Based Metal–Organic Framework. Angewandte Chemie, 2020, 132, 1451-1455.	1.6	5
888	A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707, 135090.	3.9	385

#	Article	IF	CITATIONS
889	Solventâ€Vaporâ€Induced Reversible Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation of a Triphosphaazatrianguleneâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 1435-1439.	7.2	40
890	Acoustic manipulation of breathing MOFs particles for self-folding composite films preparation. Sensors and Actuators A: Physical, 2020, 315, 112288.	2.0	5
891	Host–Guest Thin Films by Confining Ultrafine Pt/C QDs into Metalâ€Organic Frameworks for Highly Efficient Hydrogen Evolution. Small, 2020, 16, e2005111.	5.2	39
892	Semiconducting Cu _x Ni _{3â^'x} (hexahydroxytriphenylene) ₂ framework for electrochemical aptasensing of C6 glioma cells and epidermal growth factor receptor. Journal of Materials Chemistry B, 2020, 8, 9951-9960.	2.9	32
893	Structural Dynamics and Adsorption Properties of the Breathing Microporous Aliphatic Metal–Organic Framework. Inorganic Chemistry, 2020, 59, 15724-15732.	1.9	18
894	Label-free visualization of heterogeneities and defects in metal–organic frameworks using nonlinear optics. Chemical Communications, 2020, 56, 13331-13334.	2.2	9
895	Water Molecule-Induced Reversible Magnetic Switching in a Bis-Terpyridine Cobalt(II) Complex Exhibiting Coexistence of Spin Crossover and Orbital Transition Behaviors. Inorganic Chemistry, 2020, 59, 16843-16852.	1.9	30
896	Optimizing supramolecular interactions in metal–organic frameworks for C ₂ separation. Dalton Transactions, 2020, 49, 15548-15559.	1.6	14
897	Transport properties in porous coordination polymers. Coordination Chemistry Reviews, 2020, 421, 213447.	9.5	63
898	Seven Zn(II) and Cd(II) 1D coordination polymers based on azine donor linkers and decorated with 2-thiophenecarboxylate: Syntheses, structural parallels, Hirshfeld surface analysis, and spectroscopic and inclusion properties. Polyhedron, 2020, 188, 114702.	1.0	8
899	Interlinker Hydrogen Bonds Govern CO ₂ Adsorption in a Series of Flexible 2D Diacylhydrazone/Isophthalate-Based MOFs: Influence of Metal Center, Linker Substituent, and Activation Temperature. Inorganic Chemistry, 2020, 59, 10717-10726.	1.9	15
900	Coordination distortion induced water adsorption in hydrophobic flexible metal–organic frameworks. Chemical Communications, 2020, 56, 9106-9109.	2.2	3
901	Tuning the Adsorption Selectivity of ZIFâ€8 by Amorphization. Chemistry - A European Journal, 2020, 26, 13137-13141.	1.7	30
902	Molecular Diffusion in a Flexible Mesoporous Metal–Organic Framework over the Course of Structural Contraction. Journal of Physical Chemistry Letters, 2020, 11, 9696-9701.	2.1	8
903	Design principles for the ultimate gas deliverable capacity material: nonporous to porous deformations without volume change. Molecular Systems Design and Engineering, 2020, 5, 1491-1503.	1.7	5
904	Long-Term Solar Energy Storage under Ambient Conditions in a MOF-Based Solid–Solid Phase-Change Material. Chemistry of Materials, 2020, 32, 9925-9936.	3.2	33
905	Role of the Morphology of Sulfonic Resin Catalysts in the Etherification of Ethanol with iso-Butylene: A Review. Theoretical and Experimental Chemistry, 2020, 56, 309-328.	0.2	1
906	Dynamic metal–organic frameworks for the separation of hydrogen isotopes. Dalton Transactions, 2020, 49, 16617-16622.	1.6	17

		CITATION REPORT		
#	Article		IF	CITATIONS
907	Diverse crystal size effects in covalent organic frameworks. Nature Communications, 2	2020, 11, 6128.	5.8	55
908	Coordination framework of cadmium(II), harvested from dithiolate-imidazole binary lig Crystal structure, Hirshfeld surface analysis, antibacterial, and DNA cleavage potential. 2020, 192, 114838.	and systems: Polyhedron,	1.0	7
909	Crystallizing Atomic Xenon in a Flexible MOF to Probe and Understand Its Temperature Breathing Behavior and Unusual Gas Adsorption Phenomenon. Journal of the Americar Society, 2020, 142, 20088-20097.	e-Dependent ι Chemical	6.6	62
910	Role of particle size and surface functionalisation on the flexibility behaviour of switch metal–organic framework DUT-8(Ni). Journal of Materials Chemistry A, 2020, 8, 227	able 03-22711.	5.2	14
911	Photofunctional metal-organic framework thin films for sensing, catalysis and device fa Inorganica Chimica Acta, 2020, 513, 119926.	abrication.	1.2	15
912	Amino Acid Residues Determine the Response of Flexible Metal–Organic Framework of the American Chemical Society, 2020, 142, 14903-14913.	s to Guests. Journal	6.6	29
913	Identifying misbonded atoms in the 2019 CoRE metal–organic framework database. 10, 26944-26951.	RSC Advances, 2020,	1.7	22
914	Effect of Ligand Functionalization on the Separation of Small Hydrocarbons and CO <s <b="" of="" series="">MUF-15 Analogues. Chemistry of Materials, 2020, 32, 6744-6752.</s>	ub>2 by a	3.2	32
915	Selective, High-Temperature O ₂ Adsorption in Chemically Reduced, Redo Iron-Pyrazolate Metal–Organic Frameworks. Journal of the American Chemical Socie 14627-14637.	x-Active ty, 2020, 142,	6.6	32
916	Crystal engineering of porous coordination networks to enable separation of C2 hydro Chemical Communications, 2020, 56, 10419-10441.	ocarbons.	2.2	123
917	Can flexible framework fillers keep breathing in mixed matrix membranes to enhance s performance?. Journal of Membrane Science, 2020, 614, 118426.	eparation	4.1	11
918	Effect of Flexibility on Thermal Transport in Breathing Porous Crystals. Journal of Physic C, 2020, 124, 18604-18608.	cal Chemistry	1.5	13
919	Hydrophobicity controls guest uptake in Rh8 metallacages. New Journal of Chemistry, 14075-14081.	2020, 44,	1.4	3
920	High-throughput gas separation by flexible metal–organic frameworks with fast gati management capabilities. Nature Communications, 2020, 11, 3867.	ng and thermal	5.8	99
921	Development of biological metal–organic frameworks designed for biomedical appli bio-sensing/bio-imaging to disease treatment. Nanoscale Advances, 2020, 2, 3788-379	cations: from 97.	2.2	107
922	A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensir Chemie - International Edition, 2020, 59, 21752-21757.	ıg. Angewandte	7.2	115
923	Anisotropic reticular chemistry. Nature Reviews Materials, 2020, 5, 764-779.		23.3	149
924	Strain-based chemical sensing using metal–organic framework nanoparticles. Journa Chemistry A, 2020, 8, 18007-18014.	l of Materials	5.2	29

ARTICLE IF CITATIONS Adsorption kinetics of methane reformer off-gases on aluminum based metal-organic framework. 925 3.8 4 International Journal of Hydrogen Energy, 2020, 45, 34918-34926. Metal–Organic Frameworkâ€Derived Nickel/Cobaltâ€Based Nanohybrids for Sensing Nonâ€Enzymatic 1.7 Glucose. ChemElectroChem, 2020, 7, 4446-4452. Guest-Controlled Incommensurate Modulation in a Meta-Rigid Metal–Organic Framework Material. 927 6.6 24 Journal of the American Chemical Society, 2020, 142, 19189-19197. Anisotropic Dynamics and Mechanics of Macromolecular Crystals Containing Lattice-Patterned Polymer Networks. Journal of the American Chemical Society, 2020, 142, 19402-19410. Synthesis, Spectral Characterization, Crystal Structure, Thermal Studies and Hirshfeld Surface Analysis of Novel Dichlorodi-(E)-Nâ \in^2 -(4-methoxybenzylidene)benzohydrazide Manganese(II) Complex. Asian Journal of Chemistry, 2020, 32, 2213-2221. 929 0.1 0 Mixed donor, phenanthroline photoactive MOFs with favourable CO₂ selectivity. Chemical Communications, 2020, 56, 13377-13380. 2.2 Influence of Thermal and Mechanical Stimuli on the Behavior of Al-CAU-13 Metal–Organic Framework. 931 1.9 3 Nanomaterials, 2020, 10, 1698. A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society 932 18.7 367 Reviews, 2020, 49, 7406-7427. Tunable and Cooperative Thermomechanical Properties of Protein–Metal–Organic Frameworks. 933 6.6 31 Journal of the American Chemical Society, 2020, 142, 17265-17270. The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic 934 5.5 54 Resonance. ACS Catalysis, 2020, 10, 12666-12695. Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. 935 7.8 111 Trends in Food Science and Technology, 2020, 104, 102-116. Pressureâ€Gradient Sorption Calorimetry of Flexible Porous Materials: Implications for Intrinsic 3.6 Thermal Management. ChemSusChem, 2020, 13, 5220-5223. Synthesis, Structural Features, and Hydrogen Adsorption Properties of Three New Flexible 937 1.4 6 Sulfur-Containing Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 6707-6714. Reversible switching between positive and negative thermal expansion in a metal–organic framework 5.2 14 DUT-49. Journal of Materials Chemistry A, 2020, 8, 20420-20428. Anomalous Behavior of Heat Capacity in Ni₂(bdc)₂(dabco). Schottky Anomaly 939 1.5 3 and Spinâ€"Phonon Interaction. Journal of Physical Chemistry C, 2020, 124, 20222-20227. Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied 940 Materials & amp; Interfaces, 2020, 12, 44762-44768. A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte 941 1.6 23 Chemie, 2020, 132, 21936-21941. Quantitatively Predicting Impact of Structural Flexibility on Molecular Diffusion in Small Pore Metal–Organic Frameworks—A Molecular Dynamics Study of Hypothetical ZIF-8 Polymorphs. Journal 942 1.5 of Physical Chemistry C, 2020, 124, 20203-20212.

#	Article	IF	CITATIONS
943	Complete Dynamic Reconstruction of C ₆₀ , C ₇₀ , and (C ₅₉ N) ₂ Encapsulation into an Adaptable Supramolecular Nanocapsule. Journal of the American Chemical Society, 2020, 142, 16051-16063.	6.6	36
944	Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chemical Society Reviews, 2020, 49, 6694-6732.	18.7	71
945	A biocompatible ZnNa2-based metal–organic framework with high ibuprofen, nitric oxide and metal uptake capacity. Materials Advances, 2020, 1, 2248-2260.	2.6	8
946	Towards artificial molecular factories from framework-embedded molecular machines. Nature Reviews Chemistry, 2020, 4, 550-562.	13.8	97
947	Engineering micromechanics of soft porous crystals for negative gas adsorption. Chemical Science, 2020, 11, 9468-9479.	3.7	30
948	Evaluating the Fitness of Combinations of Adsorbents for Quantitative Gas Sensor Arrays. ACS Sensors, 2020, 5, 4035-4047.	4.0	7
949	Temperature dependence of adsorption hysteresis in flexible metal organic frameworks. Communications Chemistry, 2020, 3, .	2.0	20
950	MW Synthesis of ZIF-7. The Effect of Solvent on Particle Size and Hydrogen Sorption Properties. Energies, 2020, 13, 6306.	1.6	12
951	Flexible Adsorbents at High Pressure: Observations and Correlation of ZIF-7 Stepped Sorption Isotherms for Nitrogen, Argon, and Other Gases. Langmuir, 2020, 36, 14967-14977.	1.6	10
952	Crystal Size-Dependent Pore Architecture and Surface Chemical Characteristics of Desolvated ZIF-8 Investigated Using Positron Annihilation Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 25291-25298.	1.5	15
953	Statistical Mechanical Model of Gas Adsorption in a Metal–Organic Framework Harboring a Rotaxane Molecular Shuttle. Langmuir, 2020, 36, 13112-13123.	1.6	4
954	Efficient Identification for Alcohol Homologues and Hyperthermy Based on Coordination Polymer Multiple Structural Transformations. ACS Applied Materials & Interfaces, 2020, 12, 24141-24148.	4.0	8
955	A Robust Double-walled Knotted Cage Revealed Guest Binding through Adaptive Portal Expansion. Chemistry Letters, 2020, 49, 912-914.	0.7	1
956	Photoreversible Birefringence Change of Diarylethene Single Crystals as Revealed by Change in Molecular Polarizability Anisotropy. Journal of Physical Chemistry A, 2020, 124, 4732-4741.	1.1	11
957	Cu(ii)Cl2 containing bispyridine-based porous organic polymer support prepared via alkyne–azide cycloaddition as a heterogeneous catalyst for oxidation of various olefins. New Journal of Chemistry, 2020, 44, 9149-9152.	1.4	3
958	Four-dimensional metal-organic frameworks. Nature Communications, 2020, 11, 2690.	5.8	109
959	Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks. CrystEngComm, 2020, 22, 3627-3637.	1.3	37
960	London Dispersion Governs the Interaction Mechanism of Small Polar and Nonpolar Molecules in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 11985-11989.	1.5	7

			CHIMITO		
#	Article			IF	CITATIONS
961					

#	ARTICLE	IF	CITATIONS
979	CO ₂ â€Induced Spinâ€6tate Switching at Room Temperature in a Monomeric Cobalt(II) Complex with the Porous Nature. Angewandte Chemie - International Edition, 2020, 59, 10658-10665.	7.2	25
980	Improving the Stability and Visualizing the Structural Transformation of the Stimuli-Responsive Metal–Organic Frameworks (MOFs). Inorganic Chemistry, 2020, 59, 5093-5098.	1.9	10
981	A Double-Walled Knotted Cage for Guest-Adaptive Molecular Recognition. Journal of the American Chemical Society, 2020, 142, 5504-5508.	6.6	85
982	Correlating Pressureâ€Induced Emission Modulation with Linker Rotation in a Photoluminescent MOF. Angewandte Chemie, 2020, 132, 8195-8199.	1.6	10
983	Metal–Organic Frameworks against Toxic Chemicals. Chemical Reviews, 2020, 120, 8130-8160.	23.0	406
984	Reversible Switching between Nonporous and Porous Phases of a New SIFSIX Coordination Network Induced by a Flexible Linker Ligand. Journal of the American Chemical Society, 2020, 142, 6896-6901.	6.6	51
985	Luminescent metal–organic frameworks (LMOFs) as potential probes for the recognition of cationic water pollutants. Inorganic Chemistry Frontiers, 2020, 7, 1801-1821.	3.0	126
986	A porous fluorinated organic [4+4] imine cage showing CO ₂ and H ₂ adsorption. Chemical Communications, 2020, 56, 4761-4764.	2.2	43
987	Structuralâ€Ðeformationâ€Energyâ€Modulation Strategy in a Soft Porous Coordination Polymer with an Interpenetrated Framework. Angewandte Chemie, 2020, 132, 15647-15651.	1.6	4
988	Structuralâ€Deformationâ€Energyâ€Modulation Strategy in a Soft Porous Coordination Polymer with an Interpenetrated Framework. Angewandte Chemie - International Edition, 2020, 59, 15517-15521.	7.2	38
989	Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure. Nature Communications, 2020, 11, 1216.	5.8	88
990	On/off porosity switching and post-assembly modifications of Cu ₄ L ₄ metal–organic polyhedra. Chemical Science, 2020, 11, 3664-3671.	3.7	31
991	Correlating Pressureâ€Induced Emission Modulation with Linker Rotation in a Photoluminescent MOF. Angewandte Chemie - International Edition, 2020, 59, 8118-8122.	7.2	30
992	Room-temperature preparation of coordination polymers for biomedicine. Coordination Chemistry Reviews, 2020, 411, 213256.	9.5	25
993	Experimental, Structural, and Computational Investigation of Mixed Metal–Organic Frameworks from Regioisomeric Ligands for Porosity Control. Crystal Growth and Design, 2020, 20, 5338-5345.	1.4	3
994	Water Adsorption in Soft and Heterogeneous Nanopores. Accounts of Chemical Research, 2020, 53, 1342-1350.	7.6	15
995	Controlling the gate-sorption properties of solid solutions of Werner complexes by varying component ratios. Dalton Transactions, 2020, 49, 9438-9443.	1.6	2
996	MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020, 120, 8161-8266.	23.0	755

#	Article	IF	Citations
997	Exploring the Effect of Morphologies of Fe(III) Metalâ€Organic Framework MILâ€88A(Fe) on the Photocatalytic Degradation of Rhodamine B. ChemistrySelect, 2020, 5, 7534-7542.	0.7	28
998	Flexible flower-like MOF of Cu2(trans-1,4-cyclohexanedicarboxylic acid)2 as the electroactive matrix material for label-free and highly sensitive sensing of thrombin. Electrochimica Acta, 2020, 353, 136611.	2.6	10
999	Stimuli-responsive structural changes in metal–organic frameworks. Chemical Communications, 2020, 56, 9416-9432.	2.2	50
1000	Designer Metal–Organic Frameworks for Sizeâ€Exclusionâ€Based Hydrocarbon Separations: Progress and Challenges. Advanced Materials, 2020, 32, e2002603.	11.1	182
1001	Competing Roles of Two Kinds of Ligand during Nonclassical Crystallization of Pillaredâ€Layer Metalâ€Organic Frameworks Elucidated Using Microfluidic Systems. Chemistry - A European Journal, 2020, 26, 8889-8896.	1.7	3
1002	Standard Practices of Reticular Chemistry. ACS Central Science, 2020, 6, 1255-1273.	5.3	142
1003	Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chemical Society Reviews, 2020, 49, 5601-5638.	18.7	122
1004	Enhanced Rotation by Ground State Destabilization in Amphidynamic Crystals of a Dipolar 2,3-Difluorophenylene Rotator as Established by Solid State ² H NMR and Dielectric Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 15391-15398.	1.5	12
1005	An Expandable Hydrogen-Bonded Organic Framework Characterized by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2020, 142, 12743-12750.	6.6	70
1006	Specific Isotope-Responsive Breathing Transition in Flexible Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13278-13282.	6.6	47
1007	Copper-Linked Rotaxanes for the Building of Photoresponsive Metal Organic Frameworks with Controlled Cargo Delivery. Journal of the American Chemical Society, 2020, 142, 13442-13449.	6.6	36
1008	Integrating the Mechanical Bond into Metal-Organic Frameworks. CheM, 2020, 6, 1604-1612.	5.8	51
1009	Structural Transitions of the Metal–Organic Framework DUT-49(Cu) upon Physi- and Chemisorption Studied by <i>in Situ</i> Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 5856-5862.	2.1	14
1010	Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Topics in Current Chemistry, 2020, 378, 27.	3.0	57
1011	CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: A review. Journal of Natural Gas Science and Engineering, 2020, 77, 103203.	2.1	68
1012	Core-shell MOF@MOF composites for sensitive nonenzymatic glucose sensing in human serum. Analytica Chimica Acta, 2020, 1110, 35-43.	2.6	71
1013	<i>In situ</i> Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al). RSC Advances, 2020, 10, 7336-7348.	1.7	48
1014	GrenzflÄ e henpolymerisation: Von der Chemie zu funktionellen Materialien. Angewandte Chemie, 2020, 132, 22024-22041.	1.6	11

#	Article	IF	CITATIONS
1015	Interfacial Polymerization: From Chemistry to Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 21840-21856.	7.2	204
1016	Multiscale Design of Flexible Metal–Organic Frameworks. Trends in Chemistry, 2020, 2, 199-213.	4.4	43
1017	Tunable Flexibility and Porosity of the Metal–Organic Framework DUT-49 through Postsynthetic Metal Exchange. Chemistry of Materials, 2020, 32, 889-896.	3.2	54
1018	Tortuosity evaluation for characterization of transport phenomena in pure-crystalline metal lattices and porous media. , 2020, , 91-122.		1
1019	A Dual Threat: Redoxâ€Activity and Electronic Structures of Wellâ€Defined Donor–Acceptor Fulleretic Covalentâ€Organic Materials. Angewandte Chemie, 2020, 132, 6056-6062.	1.6	8
1020	Unraveling Structure and Dynamics in Porous Frameworks via Advanced In Situ Characterization Techniques. Advanced Functional Materials, 2020, 30, 1907847.	7.8	73
1021	Processing supramolecular framework for free interconvertible liquid separation. Nature Communications, 2020, 11, 425.	5.8	53
1022	Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49, 708-735.	18.7	804
1023	A Dual Threat: Redoxâ€Activity and Electronic Structures of Wellâ€Defined Donor–Acceptor Fulleretic Covalentâ€Organic Materials. Angewandte Chemie - International Edition, 2020, 59, 6000-6006.	7.2	20
1024	Collective Breathing in an Eightfold Interpenetrated Metal–Organic Framework: From Mechanistic Understanding towards Threshold Sensing Architectures. Angewandte Chemie, 2020, 132, 4521-4527.	1.6	7
1025	Curating Metal–Organic Frameworks To Compose Robust Gas Sensor Arrays in Dilute Conditions. ACS Applied Materials & Interfaces, 2020, 12, 6546-6564.	4.0	25
1026	Circumventing Wear and Tear of Adaptive Porous Materials. Advanced Functional Materials, 2020, 30, 1908547.	7.8	16
1027	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	3.6	36
1028	Unravelling Crystal Structures of Covalent Organic Frameworks by Electron Diffraction Tomography. Chinese Journal of Chemistry, 2020, 38, 1153-1166.	2.6	31
1029	Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 2020, 12, 103.	14.4	363
1030	CO 2 â€Induced Spinâ€State Switching at Room Temperature in a Monomeric Cobalt(II) Complex with the Porous Nature. Angewandte Chemie, 2020, 132, 10745-10752.	1.6	4
1031	Metalâ€organic Framework of [Cu ₂ (BIPAâ€TC)(DMA) ₂]n: A Promising Anode Material for Lithiumâ€Ion Battery. ChemistrySelect, 2020, 5, 4160-4164.	0.7	13
1032	Mixed matrix membranes on the basis of Matrimid and palladium-zeolitic imidazolate framework for hydrogen separation. Iranian Polymer Journal (English Edition), 2020, 29, 479-491.	1.3	9

#	Article	IF	CITATIONS
1033	Water-based routes for synthesis of metal-organic frameworks: A review. Science China Materials, 2020, 63, 667-685.	3.5	131
1034	The role of flexibility in MOFs. , 2020, , 93-110.		4
1035	Mechanochemical synthesis of MOFs. , 2020, , 197-222.		13
1036	Low Temperature Calorimetry Coupled with Molecular Simulations for an In-Depth Characterization of the Guest-Dependent Compliant Behavior of MOFs. Chemistry of Materials, 2020, 32, 3489-3498.	3.2	8
1037	Interactions of Multiple Water Molecules with MIL-53(Al) and Understanding the Mechanism of Breathing: The DFT Study. Journal of Physical Chemistry C, 2020, 124, 9281-9288.	1.5	5
1038	lsolating reactive metal-based species in Metal–Organic Frameworks – viable strategies and opportunities. Chemical Science, 2020, 11, 4031-4050.	3.7	59
1039	Symmetry breakings in a metal organic framework with a confined guest. Physical Review B, 2020, 101, .	1.1	10
1040	Stimulus-responsive adsorbent materials for CO ₂ capture and separation. Journal of Materials Chemistry A, 2020, 8, 10519-10533.	5.2	39
1041	A Synchronous Change in Fluid Space and Encapsulated Anions in a Crystalline Polymethylene Unit Containing Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 3596-3600.	1.4	2
1042	Encapsulation of metal oxide nanoparticles inside metal-organic frameworks via surfactant-assisted nanoconfined space. Nanotechnology, 2020, 31, 255604.	1.3	5
1043	Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry - A European Journal, 2020, 26, 10912-10935.	1.7	53
1044	Two Isostructural Flexible Porous Coordination Polymers Showing Contrasting Single-Component and Mixture Adsorption Properties for Propylene/Propane. Inorganic Chemistry, 2020, 59, 6047-6052.	1.9	22
1045	Metal–Organic Frameworks with Hexakis(4-carboxyphenyl)benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. Journal of the American Chemical Society, 2020, 142, 9471-9481.	6.6	26
1046	Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society, 2020, 24, 461-473.	2.4	75
1047	Fabrication of mesoporous MOF nanosheets via surfactant-template method for C–S coupling reactions. Microporous and Mesoporous Materials, 2020, 303, 110254.	2.2	19
1048	Tuning the Structures of Metal–Organic Frameworks <i>via</i> a Mixed-Linker Strategy for Ethylene/Ethane Kinetic Separation. Chemistry of Materials, 2020, 32, 3715-3722.	3.2	44
1049	Metal-Organic Framework-Based Engineered Materials—Fundamentals and Applications. Molecules, 2020, 25, 1598.	1.7	75
1050	Time-Resolved <i>in Situ</i> Polymorphic Transformation from One 12-Connected Zr-MOF to Another. , 2020, 2, 499-504.		16

#	Article	IF	CITATIONS
1051	Atomistic insight in the flexibility and heat transport properties of the stimuli-responsive metal–organic framework MIL-53(Al) for water-adsorption applications using molecular simulations. Faraday Discussions, 2021, 225, 301-323.	1.6	17
1052	The role of temperature and adsorbate on negative gas adsorption transitions of the mesoporous metal–organic framework DUT-49. Faraday Discussions, 2021, 225, 168-183.	1.6	19
1053	Identifying the liquid and glassy states of coordination polymers and metal–organic frameworks. Faraday Discussions, 2021, 225, 210-225.	1.6	25
1054	Can 3D electron diffraction provide accurate atomic structures of metal–organic frameworks?. Faraday Discussions, 2021, 225, 118-132.	1.6	34
1055	The micromechanical model to computationally investigate cooperative and correlated phenomena in metal–organic frameworks. Faraday Discussions, 2021, 225, 271-285.	1.6	12
1056	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie, 2021, 133, 7564-7577.	1.6	16
1057	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie - International Edition, 2021, 60, 7488-7501.	7.2	80
1058	Dynamic properties of a flexible metal-organic framework exhibiting a unique "picture frame―like crystal morphology. Nano Research, 2021, 14, 432-437.	5.8	4
1059	Effect of pyridyl donors from organic ligands <i>versus</i> metalloligands on material design. Inorganic Chemistry Frontiers, 2021, 8, 1334-1373.	3.0	18
1060	Influence of flexible side-chains on the breathing phase transition of pillared layer MOFs: a force field investigation. Faraday Discussions, 2021, 225, 324-340.	1.6	12
1061	A 3D Cuâ€Naphthaleneâ€Phosphonate Metal–Organic Framework with Ultraâ€High Electrical Conductivity. Advanced Functional Materials, 2021, 31, 2007294.	7.8	29
1062	Synthesis and therapeutic potential of stimuli-responsive metal-organic frameworks. Chemical Engineering Journal, 2021, 408, 127233.	6.6	25
1063	3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coordination Chemistry Reviews, 2021, 427, 213583.	9.5	86
1064	Simultaneous removal of VOCs and PM2.5 by metal-organic framework coated electret filter media. Journal of Membrane Science, 2021, 618, 118629.	4.1	22
1065	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
1066	Highly CO ₂ Selective Metal–Organic Framework Membranes with Favorable Coulombic Effect. Advanced Functional Materials, 2021, 31, 2006924.	7.8	42
1067	Probing molecular motions in metal-organic frameworks with solid-state NMR. Coordination Chemistry Reviews, 2021, 427, 213563.	9.5	26
1068	Understanding CO2 adsorption in a flexible zeolite through a combination of structural, kinetic and modelling techniques. Separation and Purification Technology, 2021, 256, 117846.	3.9	14

#	Article	IF	CITATIONS
1069	Highly dynamic 1D coordination polymers for adsorption and separation applications. Coordination Chemistry Reviews, 2021, 430, 213661.	9.5	39
1070	Configurational Entropy Driven Highâ€Pressure Behaviour of a Flexible Metal–Organic Framework (MOF). Angewandte Chemie, 2021, 133, 800-806.	1.6	9
1071	Tailoring adsorption induced switchability of a pillared layer MOF by crystal size engineering. CrystEngComm, 2021, 23, 538-549.	1.3	23
1072	Efficient MO Dye Degradation Catalyst of Cu(I)-Based Coordination Complex from Dissolution–Recrystallization Structural Transformation. Crystal Growth and Design, 2021, 21, 333-343.	1.4	12
1073	BNâ€Đoped Metal–Organic Frameworks: Tailoring 2D and 3D Porous Architectures through Molecular Editing of Borazines. Chemistry - A European Journal, 2021, 27, 4124-4133.	1.7	8
1074	Metal–Organic Frameworks and Coordination Polymers Composed of Sulfur-based Nodes. Chemistry Letters, 2021, 50, 523-533.	0.7	23
1075	Porous flexible frameworks: origins of flexibility and applications. Materials Horizons, 2021, 8, 700-727.	6.4	48
1076	Enhanced proton conductivity in a flexible metal–organic framework promoted by single-crystal-to-single-crystal transformation. Chemical Communications, 2021, 57, 65-68.	2.2	14
1077	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	18.7	191
1078	Elucidating the Structural Evolution of a Highly Porous Responsive Metal–Organic Framework (DUT-49(M)) upon Guest Desorption by Time-Resolved in Situ Powder X-ray Diffraction. Crystal Growth and Design, 2021, 21, 270-276.	1.4	5
1079	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
1080	Multi-stimulus linear negative expansion of a breathing M(O ₂ CR) ₄ -node MOF. Faraday Discussions, 2021, 225, 133-151.	1.6	2
1081	Multiple adsorption properties of aptamers on metal-organic frameworks for nucleic acid assay. Biosensors and Bioelectronics, 2021, 176, 112896.	5.3	18
1082	Precise regulating synergistic effect in metal–organic framework for stepwise-controlled adsorption. Inorganic Chemistry Frontiers, 2021, 8, 1666-1674.	3.0	3
1083	Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond. Chemical Science, 2021, 12, 1206-1219.	3.7	44
1084	Multi-responsive luminescent sensors of two water-stable polynuclear Cd organic frameworks: Synthesis, structures and sensing of tetracycline, Cr2O72â~' and Fe3+ ions in water. Microchemical Journal, 2021, 162, 105880.	2.3	14
1085	Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications. Inorganic Chemistry Frontiers, 2021, 8, 590-619.	3.0	74
1086	Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chemical Reviews, 2021, 121, 1286-1424.	23.0	349

#	Article	IF	CITATIONS
1087	Tuning the release rate of volatile molecules by pore surface engineering in metal-organic frameworks. Chinese Chemical Letters, 2021, 32, 1988-1992.	4.8	9
1088	Recent advances in the design of metal–organic frameworks for methane storage and delivery. Journal of Porous Materials, 2021, 28, 213-230.	1.3	13
1089	Configurational Entropy Driven Highâ€Pressure Behaviour of a Flexible Metal–Organic Framework (MOF). Angewandte Chemie - International Edition, 2021, 60, 787-793.	7.2	30
1090	Tuning of magnetic properties of the 2D CN-bridged Ni ^{II} –Nb ^{IV} framework by incorporation of guest cations of alkali and alkaline earth metals. Dalton Transactions, 2021, 50, 7537-7544.	1.6	3
1091	Regulation on Topological Architectures and Gas Adsorption for Cadmium-Azolate-Carboxylate Frameworks by the Ligand Flexibility. Crystal Growth and Design, 2021, 21, 1718-1726.	1.4	17
1092	Modelling drug adsorption in metal–organic frameworks: the role of solvent. RSC Advances, 2021, 11, 17064-17071.	1.7	16
1093	Facilely controllable synthesis of copper-benzothiadiazole complexes <i>via</i> solvothermal reactions: exploring the customized synthetic approach by experiments. Dalton Transactions, 2021, 50, 1816-1823.	1.6	4
1094	A rare 4-fold interpenetrated metal–organic framework constructed from an anionic indium-based node and a cationic dicopper linker. Dalton Transactions, 2021, 50, 6631-6636.	1.6	3
1095	Thermal hysteresis induced by external pressure in a 3D Hofmann-type SCO-MOF. Dalton Transactions, 2021, 50, 1384-1389.	1.6	5
1096	Long afterglow MOFs: a frontier study on synthesis and applications. Materials Chemistry Frontiers, 2021, 5, 6824-6849.	3.2	26
1097	Structural flexibility in crystalline coordination polymers: a journey along the underlying free energy landscape. Dalton Transactions, 2021, 50, 3759-3768.	1.6	12
1098	Homochiral three-dimensional noncentrosymmetric lanthanide coordination polymers directed by chiral linkers: syntheses, crystal structures, and optical properties. CrystEngComm, 2021, 23, 3701-3709.	1.3	6
1099	Understanding the opportunities of metal–organic frameworks (MOFs) for CO ₂ capture and gas-phase CO ₂ conversion processes: a comprehensive overview. Reaction Chemistry and Engineering, 2021, 6, 787-814.	1.9	31
1100	Hydrogen separation and purification with MOF-based materials. Materials Chemistry Frontiers, 2021, 5, 4022-4041.	3.2	23
1102	Guest size limitation in metal–organic framework crystal–glass composites. Journal of Materials Chemistry A, 2021, 9, 8386-8393.	5.2	15
1103	A direct solvent-free conversion approach to prepare mixed-metal metal–organic frameworks from doped metal oxides. Chemical Communications, 2021, 57, 3587-3590.	2.2	8
1104	Synthesis of a new ATN-type zeolitic imidazolate framework through cooperative effects of <i>N</i> , <i>N</i> ,dipropylformamide and <i>n</i> ,	1.3	6
1105	Non-stackable molecules assemble into porous crystals displaying concerted cavity-changing motions. Chemical Science, 2021, 12, 6378-6384.	3.7	7

ARTICLE IF CITATIONS Large breathing effect induced by water sorption in a remarkably stable nonporous cyanide-bridged 1106 3.7 20 coordination polymer. Chemical Science, 2021, 12, 9176-9188. Robust and Environmentally Friendly MOFs., 2021, , 1-31. Modulation of CO₂ adsorption in novel pillar-layered MOFs based on 1108 7 1.6 carboxylate–pyrazole flexible linker. Dalton Transactions, 2021, 50, 2880-2890. An Anionic Indium–Organic Framework with Spirobifluorene-Based Ligand for Selective Adsorption of 1109 1.9 Organic Dyes. Inorganic Chemistry, 2021, 60, 1571-1578. Influence of carbohydrate polymer shaping on organic dye adsorption by a metal–organic framework 1110 1.7 9 in water. RSC Advances, 2021, 11, 23707-23713. Quasi-homogeneous catalytic conversion of CO₂ into quinazolinones inside a 4.6 metal–organic framework microreactor. Green Chemistry, 2021, 23, 5456-5460. Regulating metal–organic frameworks as stationary phases and absorbents for analytical separations. 1112 1.3 17 Analytical Methods, 2021, 13, 1318-1331. Construction of a series of metal-directed MOFs to explore their physical and chemical properties. 1.4 New Journal of Chemistry, 2021, 45, 6438-6449. Two porous Ni-MOFs based on 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine showing solvent determined 1114 structures and distinctive sorption properties toward CO₂ and alkanes. Dalton 1.6 4 Transactions, 2021, 50, 5244-5250. Solvent-mediated framework flexibility of interdigitated 2D layered metal–organic frameworks. 3.2 Materials Chemistry Frontiers, 2021, 5, 3621-3627. Linear negative thermal expansion in Pd(acac)₂. CrystEngComm, 2021, 23, 5425-5429. 1116 3 1.3 Synthesis and characterization of new coordination compounds by the use of 2-pyridinemethanol and 1.3 di- or tricarboxylic acids. CrystEngComm, 2021, 23, 5489-5497. Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous 1118 1.6 34 structures: an emerging class of soft porous crystals. Faraday Discussions, 2021, 231, 9-50. Elucidating pore chemistry within metal–organic frameworks <i>via</i> single crystal X-ray 1.3 diffraction; from fundamental understanding to application. CrystEngComm, 2021, 23, 2185-2195. Interplay of structural dynamics and electronic effects in an engineered assembly of pentacene in a 1120 3.7 18 metal–organic framework. Chemical Science, 2021, 12, 4477-4483. Emergent electrochemical functions and future opportunities of hierarchically constructed 28 metal–organic frameworks and covalent organic frameworks. Nanoscale, 2021, 13, 6341-6356. Using geometric simulation software †GASP' to model conformational flexibility in a family of zinc 1123 1.4 2 metal–organic frameworks. New Journal of Chemistry, 2021, 45, 8728-8737. Tuning the configuration of the flexible metal–alkene-framework affords <u>pure cycloisomers in solid</u> 1124 2.2 state photodimerization. Chemical Communications, 2021, 57, 1129-1132.

#	Article	IF	CITATIONS
1125	Engineering metal–organic frameworks for adsorption-based gas separations: from process to atomic scale. Molecular Systems Design and Engineering, 2021, 6, 841-875.	1.7	36
1126	Organic guest molecule induced ultrafast breathing of an epitaxially grown metal–organic framework on a self-assembled monolayer. Chemical Communications, 2021, 57, 10158-10161.	2.2	0
1127	Metal–organic framework. Interface Science and Technology, 2021, , 279-387.	1.6	13
1128	Crystal Flexibility Design through Local and Global Motility Cooperation. Angewandte Chemie, 2021, 133, 7106-7111.	1.6	0
1129	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	23.0	442
1130	Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Applied Materials & Interfaces, 2021, 13, 7004-7020.	4.0	435
1131	Crystal Flexibility Design through Local and Global Motility Cooperation. Angewandte Chemie - International Edition, 2021, 60, 7030-7035.	7.2	23
1132	Tuning the hexane isomer separation performances of Zeolitic Imidazole Framework-8 using mechanical pressure. Journal of Chemical Physics, 2021, 154, 084702.	1.2	9
1133	17 O solidâ€state NMR at ultrahigh magnetic field of 35.2ÂT: Resolution of inequivalent oxygen sites in different phases of MOF MILâ€53(Al). Magnetic Resonance in Chemistry, 2021, 59, 940-950.	1.1	9
1134	Two flexible cationic metal-organic frameworks with remarkable stability for CO2/CH4 separation. Nano Research, 2021, 14, 3288-3293.	5.8	15
1135	Three-Dimensional Electron Diffraction for Structural Analysis of Beam-Sensitive Metal-Organic Frameworks. Crystals, 2021, 11, 263.	1.0	8
1136	Pressureâ€Responsive Twoâ€Dimensional Metal–Organic Framework Composite Membranes for CO ₂ Separation. Angewandte Chemie, 2021, 133, 11419-11426.	1.6	14
1137	Catalytic effect of solvothermally prepared Cu2(bdc)2(bpy) metal-organic framework on thermal decomposition of ammonium perchlorate. Journal of Solid State Chemistry, 2021, 295, 121940.	1.4	17
1138	Elucidation of Nitrogen Adsorption Behavior of AlMepO-α by In-Situ Powder X-ray Diffraction Study. Bulletin of the Chemical Society of Japan, 2021, 94, 1499-1501.	2.0	0
1139	Pressureâ€Responsive Twoâ€Dimensional Metal–Organic Framework Composite Membranes for CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 11318-11325.	7.2	73
1140	Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angewandte Chemie, 2021, 133, 10282-10290.	1.6	1
1141	A Temporarily Pore-Openable Porous Coordination Polymer for Guest Adsorption/Desorption. Inorganic Chemistry, 2021, 60, 4531-4538.	1.9	10
1142	Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angewandte Chemie - International Edition, 2021, 60, 10194-10202.	7.2	18

#	Article	IF	CITATIONS
1144	Polymorphism and Supramolecular Isomerism: The Impasse of Coordination Polymers. , 0, , .		2
1145	Tuning the gating energy barrier of metal-organic framework for molecular sieving. CheM, 2021, 7, 1006-1019.	5.8	59
1146	Phonons and Adsorption-Induced Deformations in ZIFs: Is It Really a Gate Opening?. Journal of Physical Chemistry C, 2021, 125, 7999-8005.	1.5	10
1147	Structural Transformations in Metal–Organic Frameworks for the Exploration of Their CO ₂ Sorption Behavior at Ambient and High Pressure. Crystal Growth and Design, 2021, 21, 2633-2642.	1.4	5
1148	Tuning the Structural Flexibility for Multi-Responsive Gas Sorption in Isonicotinate-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 16820-16827.	4.0	31
1149	Two novel LMOFs based on the flexible 1, 3-bis(imidazol-1-ylmethyl)benzene: The synthesis, crystal structures and temperature sensing applications. Journal of Molecular Structure, 2021, 1229, 129800.	1.8	4
1150	From Macro- to Nanoscale: Finite Size Effects on Metal–Organic Framework Switchability. Trends in Chemistry, 2021, 3, 291-304.	4.4	41
1151	Exploring the Potential Application of Matrimid® and ZIFs-Based Membranes for Hydrogen Recovery: A Review. Polymers, 2021, 13, 1292.	2.0	12
1152	Mechanoresponsive Porosity in Metal-Organic Frameworks. Trends in Chemistry, 2021, 3, 254-265.	4.4	13
1153	Selective Crystallization of Rareâ€Earth Ions into Cationic Metalâ€Organic Frameworks for Rareâ€Earth Separation. Angewandte Chemie - International Edition, 2021, 60, 11148-11152.	7.2	38
1154	Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. TrAC - Trends in Analytical Chemistry, 2021, 137, 116226.	5.8	61
1155	Selective Crystallization of Rareâ€Earth Ions into Cationic Metalâ€Organic Frameworks for Rareâ€Earth Separation. Angewandte Chemie, 2021, 133, 11248-11252.	1.6	4
1156	Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices. ACS Nano, 2021, 15, 8466-8473.	7.3	7
1157	Control of interpenetration and structural transformations in the interpenetrated MOFs. Coordination Chemistry Reviews, 2021, 435, 213789.	9.5	79
1158	Fabrication of Moisture-Responsive Crystalline Smart Materials for Water Harvesting and Electricity Transduction. Journal of the American Chemical Society, 2021, 143, 7732-7739.	6.6	49
1159	Massive Pressure Amplification by Stimulated Contraction of Mesoporous Frameworks**. Angewandte Chemie, 2021, 133, 11841-11845.	1.6	2
1160	Unraveling the Guestâ€Induced Switchability in the Metalâ€Organic Framework DUTâ€I3(Zn)**. Chemistry - A European Journal, 2021, 27, 9708-9715.	1.7	8
1161	Adaptive response of a metal–organic framework through reversible disorder–disorder transitions. Nature Chemistry, 2021, 13, 568-574.	6.6	53

#	Article	IF	CITATIONS
1162	Thiolate-based One-dimensional Flexible Pb–MOFs Exhibiting a Large Sorption Hysteresis Phenomenon. Chemistry Letters, 2021, 50, 1053-1056.	0.7	0
1163	Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices. Energy Storage Materials, 2021, 37, 396-416.	9.5	44
1164	Massive Pressure Amplification by Stimulated Contraction of Mesoporous Frameworks**. Angewandte Chemie - International Edition, 2021, 60, 11735-11739.	7.2	14
1165	Controlled Synthesis of Large Single Crystals of Metalâ€Organic Framework CPOâ€27â€Ni Prepared by a Modulation Approach: <i>In situ</i> Singleâ€Crystal Xâ€ray Diffraction Studies. Chemistry - A European Journal, 2021, 27, 8537-8546.	1.7	8
1166	Advances in Functional Metalâ€Organic Frameworks Based Onâ€Demand Drug Delivery Systems for Tumor Therapeutics. Advanced NanoBiomed Research, 2021, 1, 2100014.	1.7	24
1167	Characterization of an Isostructural MOF Series of Imidazolate Frameworks Potsdam by Means of Sorption Experiments with Water Vapor. Nanomaterials, 2021, 11, 1400.	1.9	4
1168	High Working Capacity Acetylene Storage at Ambient Temperature Enabled by a Switching Adsorbent Layered Material. ACS Applied Materials & Interfaces, 2021, 13, 23877-23883.	4.0	17
1169	Impact of Crystal Size and Morphology on Switchability Characteristics in Pillared-Layer Metal-Organic Framework DUT-8(Ni). Frontiers in Chemistry, 2021, 9, 674566.	1.8	22
1170	Superprotonic Conductivity of MOFs and Other Crystalline Platforms Beyond 10 ^{â^'1} S cm ^{â^'1} . Advanced Functional Materials, 2021, 31, 2101584.	7.8	93
1171	Molecular Insight into the Swelling of a MOF: A Force-Field Investigation of Methanol Uptake in MIL-88B(Fe)–Cl. Journal of Physical Chemistry C, 2021, 125, 12837-12847.	1.5	13
1172	A 3D MOF based on Adamantoid Tetracopper(II) and Aminophosphine Oxide Cages: Structural Features and Magnetic and Catalytic Properties. Inorganic Chemistry, 2021, 60, 9631-9644.	1.9	7
1173	Continuous Breathing Rare-Earth MOFs Based on Hexanuclear Clusters with Gas Trapping Properties. Journal of the American Chemical Society, 2021, 143, 10250-10260.	6.6	30
1174	Ligand onformerâ€induced Formation of Zirconium–Organic Framework for Methane Storage and MTO Product Separation. Angewandte Chemie, 2021, 133, 16657-16664.	1.6	5
1175	The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. Journal of CO2 Utilization, 2021, 48, 101526.	3.3	41
1176	Reactive oxygen species-responsive nanoplatforms for nucleic acid-based gene therapy of cancer and inflammatory diseases. Biomedical Materials (Bristol), 2021, 16, 042015.	1.7	6
1177	Hysteresis curves reveal the microscopic origin of cooperative CO2 adsorption in diamine-appended metal–organic frameworks. Journal of Chemical Physics, 2021, 154, 214704.	1.2	1
1178	Structure Effects Induced by High Mechanical Compaction of STAMâ€17â€OEt MOF Powders. European Journal of Inorganic Chemistry, 2021, 2021, 2334-2342.	1.0	5
1179	Ligandâ€Conformerâ€Induced Formation of Zirconium–Organic Framework for Methane Storage and MTO Product Separation. Angewandte Chemie - International Edition, 2021, 60, 16521-16528.	7.2	29

#	Article	IF	CITATIONS
1180	Electrochemical performance of spindle-like Fe2Co-MOF and derived magnetic yolk-shell CoFe2O4 microspheres for supercapacitor applications. Journal of Solid State Electrochemistry, 2021, 25, 2189-2200.	1.2	19
1181	Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review. Nanomaterials, 2021, 11, 1638.	1.9	31
1182	Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents. Coordination Chemistry Reviews, 2021, 437, 213852.	9.5	74
1184	A flexible Zr-MOF with dual stimulus responses to temperature and guest molecules. Inorganic Chemistry Communication, 2021, 128, 108597.	1.8	4
1185	Partial Order–Disorder Transformation of Interpenetrated Porous Coordination Polymers. CCS Chemistry, 0, , 1532-1541.	4.6	4
1186	Effect of Phase Transition on the Thermal Transport in Isoreticular DUT Materials. Journal of Physical Chemistry C, 2021, 125, 12991-13001.	1.5	8
1187	Fission gas released from molten salt reactor fuel: the case of noble gas short life radioisotopes for radiopharmaceutical application. Medicine in Novel Technology and Devices, 2021, 10, 100057.	0.9	4
1188	Slacking of Gate Adsorption Behavior on Metal–Organic Frameworks under an External Force. ACS Applied Materials & Interfaces, 2021, 13, 30213-30223.	4.0	10
1189	Metal–Organic Frameworks in Italy: From synthesis and advanced characterization to theoretical modeling and applications. Coordination Chemistry Reviews, 2021, 437, 213861.	9.5	10
1190	Breathing Metal–Organic Polyhedra Controlled by Light for Carbon Dioxide Capture and Liberation. CCS Chemistry, 2021, 3, 1659-1668.	4.6	28
1191	Effect of Topology on Photodynamic Sterilization of Porphyrinic Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 10151-10159.	1.7	29
1192	Single-Crystal to Single-Crystal Transformation of Metal–Organic Framework Nanoparticles for Encapsulation and pH-Stimulated Release of Camptothecin. ACS Applied Nano Materials, 2021, 4, 7191-7198.	2.4	9
1193	Novel synthesis, structural characterization, DFT and TDDFT investigation of â€~Butterfly' like Ag(I)- Structure, 2021, 1235, 130188.	1.8	2
1194	Multiple functional groups in metal–organic frameworks and their positional regioisomerism. Coordination Chemistry Reviews, 2021, 438, 213892.	9.5	28
1195	Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angewandte Chemie - International Edition, 2021, 60, 22148-22165.	7.2	107
1196	25 Jahre retikulÃ r e Chemie. Angewandte Chemie, 2021, 133, 24142.	1.6	6
1197	Frustrated flexibility in metal-organic frameworks. Nature Communications, 2021, 12, 4097.	5.8	55
1198	Dynamic Pendulum Effect of an Exceptionally Flexible <scp>Pillared‣ayer Metalâ€Organic</scp> Framework ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2718-2724.	2.6	7

#	Article	IF	CITATIONS
1199	Single-Metallic Thermoresponsive Coordination Network as a Dual-Parametric Luminescent Thermometer. ACS Applied Materials & Interfaces, 2021, 13, 35905-35913.	4.0	5
1200	Postâ€5ynthetic Modification Unlocks a 2Dâ€toâ€3D Switch in MOF Breathing Response: A Singleâ€Crystalâ€Diffraction Mapping Study. Angewandte Chemie, 2021, 133, 18064-18068.	1.6	1
1201	Metal-organic frameworks for C6–C8 hydrocarbon separations. EnergyChem, 2021, 3, 100057.	10.1	58
1202	Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: A stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage. Food Chemistry, 2021, 349, 129202.	4.2	122
1203	Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction. Science China Chemistry, 2021, 64, 1332-1339.	4.2	68
1204	A Dynamic Chemical Clip in Supramolecular Framework for Sorting Alkylaromatic Isomers using Thermodynamic and Kinetic Preferences. Angewandte Chemie - International Edition, 2021, 60, 19921-19927.	7.2	11
1205	A Dynamic Chemical Clip in Supramolecular Framework for Sorting Alkylaromatic Isomers using Thermodynamic and Kinetic Preferences. Angewandte Chemie, 2021, 133, 20074-20080.	1.6	0
1206	Cluster model of the step-shaped adsorption isotherm in metal–organic frameworks. Microporous and Mesoporous Materials, 2021, 322, 111146.	2.2	4
1207	Ionische Flüssigkeiten und stark eutektische Lösungsmittel in der anorganischen Synthese. Angewandte Chemie, 2021, 133, 22320-22338.	1.6	4
1208	Postâ€5ynthetic Modification Unlocks a 2Dâ€ŧoâ€3D Switch in MOF Breathing Response: A Singleâ€Crystalâ€Diffraction Mapping Study. Angewandte Chemie - International Edition, 2021, 60, 17920-17924.	7.2	13
1209	Density Functional Theory Study of the Structure of the Pillared Hofmann Compound Ni(3-Methyl-4,4′-bipyridine)[Ni(CN) ₄] (Ni-BpyMe or PICNIC-21). Journal of Physical Chemistry C, 2021, 125, 15882-15889.	1.5	3
1210	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	7.2	204
1211	Xylene Recognition in Flexible Porous Coordination Polymer by Guest-Dependent Structural Transition. ACS Applied Materials & Interfaces, 2021, 13, 52144-52151.	4.0	10
1212	Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal–Organic Frameworks for Size-Selective Catalysis. Journal of the American Chemical Society, 2021, 143, 12129-12137.	6.6	73
1213	Introduction of continuous excited-state intermolecular proton transfer process into open yttrium-terephthalate framework for ratiometric fluorescent fluorion detection. Journal of Solid State Chemistry, 2021, 300, 122212.	1.4	12
1214	Highly Porous Ionic Solids Consisting of AuI3CoIII2 Complex Anions and Aqua Metal Cations. Inorganic Chemistry, 2021, 60, 12555-12564.	1.9	3
1215	Towards modeling spatiotemporal processes in metal–organic frameworks. Trends in Chemistry, 2021, 3, 605-619.	4.4	31
1216	Review on Flexible Metalâ€Organic Frameworks. ChemistrySelect, 2021, 6, 8227-8243.	0.7	19

#	Article	IF	CITATIONS
1217	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie, 2021, 133, 20546-20553.	1.6	14
1218	Water-Stable Two-Dimensional Metal–Organic Framework Nanostructures for Fe ³⁺ lons Detection. Crystal Growth and Design, 2021, 21, 5275-5282.	1.4	16
1219	Progresses of hyperpolarized 129Xe NMR application in porous materials and catalysis. Magnetic Resonance Letters, 2021, 1, 11-27.	0.7	6
1220	Large-Scale Molecular Dynamics Simulations Reveal New Insights Into the Phase Transition Mechanisms in MIL-53(Al). Frontiers in Chemistry, 2021, 9, 718920.	1.8	15
1221	Hydrogen Adsorption in Metal–Organic Framework MIL-101(Cr)—Adsorbate Densities and Enthalpies from Sorption, Neutron Scattering, In Situ X-ray Diffraction, Calorimetry, and Molecular Simulations. ACS Applied Energy Materials, 2021, 4, 7839-7847.	2.5	2
1222	Surfactant-induced morphological evolution of Cu(II) metal organic frameworks: Applicable in picomolar quantification of bilirubin. Applied Surface Science, 2021, 557, 149827.	3.1	14
1223	A Porous Coordination Polymer Showing Guest-Amplified Positive and Negative Thermal Expansion. Inorganic Chemistry, 2021, 60, 11893-11896.	1.9	5
1224	Stepwise Observation of lodine Diffusion in a Flexible Coordination Network Having Dual Interactive Sites. Inorganic Chemistry, 2021, 60, 13727-13735.	1.9	2
1225	Davis Computational Spectroscopy Workflow—From Structure to Spectra. Journal of Chemical Information and Modeling, 2021, 61, 4486-4496.	2.5	4
1226	Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis?. Angewandte Chemie - International Edition, 2021, 60, 26038-26052.	7.2	91
1228	State of the art and prospects of chemically and thermally aggressive membrane gas separations: Insights from polymer science. Polymer, 2021, 229, 123988.	1.8	18
1229	Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews, 2021, 121, 10666-10741.	23.0	115
1230	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie - International Edition, 2021, 60, 20383-20390.	7.2	56
1231	Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis?. Angewandte Chemie, 2021, 133, 26242-26256.	1.6	13
1232	Isostructural Hg(II) halide coordination polymers: A comparison of powder XRD, IR, emission and Hirshfeld Surface Analysis. Journal of Molecular Structure, 2021, 1239, 130543.	1.8	1
1233	Fast construction of (Fe2O3)x@Ni-MOF heterostructure nanosheets as highly active catalyst for water oxidation. Journal of Alloys and Compounds, 2022, 892, 162149.	2.8	21
1234	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
1235	A new generation of solid-phase microextraction based on breathing of metal organic framework nanorods MOF-508 for the determination of diazinon and chlorpyrifos in wheat samples. Microchemical Journal, 2021, 171, 106876.	2.3	19

#	Article	IF	CITATIONS
1236	Adsorption of Carbon Dioxide, Methane, and Nitrogen on Zn(dcpa) Metal-Organic Framework. Energies, 2021, 14, 5598.	1.6	7
1237	A unified topology approach to dot-, rod-, and sheet-MOFs. CheM, 2021, 7, 2491-2512.	5.8	30
1238	Structural heterogeneity and dynamics in flexible metal-organic frameworks. Cell Reports Physical Science, 2021, 2, 100544.	2.8	14
1239	Porous Organic Compounds – Small Pores on the Rise. European Journal of Organic Chemistry, 2021, 2021, 5844-5856.	1.2	20
1240	High-hydrophobic ZIF-8@PLA composite aerogel and application for oil-water separation. Separation and Purification Technology, 2021, 270, 118794.	3.9	78
1241	Investigation of CO ₂ Orientational Dynamics through Simulated NMR Line Shapes**. ChemPhysChem, 2021, 22, 2336-2341.	1.0	4
1242	Deformation of Nanoporous Materials in the Process of Binary Adsorption: Methane Displacement by Carbon Dioxide from Coal. Journal of Physical Chemistry C, 2021, 125, 21310-21316.	1.5	6
1243	Oneâ€pot Synthesis of a Truncated Coneâ€shaped Porphyrin Macrocycle and Its Selfâ€assembly into Permanent Porous Material. Chemistry - an Asian Journal, 2021, 16, 3209-3212.	1.7	1
1244	Imparting Superhydrophobicity to Porphyrinic Coordination Frameworks Using Organotin. CCS Chemistry, 0, , 2727-2734.	4.6	0
1245	Metal–Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Accounts of Chemical Research, 2021, 54, 3593-3603.	7.6	29
1246	Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MILâ€53. Chemistry - A European Journal, 2021, 27, 14711-14720.	1.7	9
1247	The structural appeal of metal–organic frameworks in antimicrobial applications. Coordination Chemistry Reviews, 2021, 442, 214007.	9.5	51
1248	Breathingâ€Assisted Selective Adsorption of C ₈ Alkyl Aromatics in Znâ€Based Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 14851-14857.	1.7	4
1249	From Molecules to Frameworks to Superframework Crystals. Advanced Materials, 2021, 33, e2103808.	11.1	26
1250	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
1251	A review on metal-organic frameworks photoelectrochemistry: A headlight for future applications. Coordination Chemistry Reviews, 2021, 445, 214097.	9.5	70
1252	Mo3(C6X6)2 (XÂ=ÂNH,S,O) monolayers: two-dimensional conductive metal–organic frameworks as effective electrocatalysts for the nitrogen reduction reaction. Journal of Energy Chemistry, 2021, 61, 71-76.	7.1	15
1253	A smart magnetically separable MIL-53(Al) MOF-coated nano-adsorbent for antibiotic pollutant removal with rapid and non-contact inductive heat regeneration. Chemical Engineering Journal Advances, 2021, 8, 100160.	2.4	13

#	Article	IF	CITATIONS
1254	The design, synthesis and fluorescent sensing applications of a thermo-sensitive Zn-MOF. Journal of Solid State Chemistry, 2021, 303, 122476.	1.4	4
1255	A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. Journal of CO2 Utilization, 2021, 53, 101715.	3.3	58
1256	Programmable and Reversible Self-assembly of 3D Architectures Actuated by Flexible Metal–Organic Frameworks. Sensors and Actuators B: Chemical, 2021, 346, 130388.	4.0	5
1257	Natural gas dehydration by adsorption using MOFs and silicas: A review. Separation and Purification Technology, 2021, 276, 119409.	3.9	33
1258	Multifunctionality of weak ferromagnetic porphyrin-based MOFs: selective adsorption in the liquid and gas phase. CrystEngComm, 2021, 23, 4205-4213.	1.3	0
1259	Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50, 5366-5396.	18.7	130
1260	Flexibility and Switchable Porosity in Metal-Organic Frameworks: Phenomena, Characterization and Functions. , 2021, , 328-375.		2
1261	Water-assisted spin-flop antiferromagnetic behaviour of hydrophobic Cu-based metal–organic frameworks. Dalton Transactions, 2021, 50, 5754-5758.	1.6	5
1262	Stabilization of liquid active guests <i>via</i> nanoconfinement into a flexible microporous metal–organic framework. CrystEngComm, 2021, 23, 7262-7269.	1.3	6
1263	Two-dimensional MOF-based liquid marbles: surface energy calculations and efficient oil–water separation using a ZIF-9-III@PVDF membrane. Journal of Materials Chemistry A, 2021, 9, 23651-23659.	5.2	20
1264	Coordination Polymers and Polymer Nanofibers for Effective Adsorptive Desulfurization. , 2021, , 730-783.		0
1265	Expanding the NUIG MOF family: synthesis and characterization of new MOFs for selective CO ₂ adsorption, metal ion removal from aqueous systems, and drug delivery applications. Dalton Transactions, 2021, 50, 6997-7006.	1.6	11
1266	Towards correlating dimensionality and topology in luminescent MOFs based on terephthalato and bispyridyl-like ligands. Dalton Transactions, 2021, 50, 9269-9282.	1.6	5
1267	A flexible microporous framework with temperature-dependent gate-opening behaviours for C2 gases. Chemical Communications, 2021, 57, 3785-3788.	2.2	3
1268	Two-dimensional conjugated metal–organic frameworks (2D <i>c</i> -MOFs): chemistry and function for MOFtronics. Chemical Society Reviews, 2021, 50, 2764-2793.	18.7	242
1269	A novel Cd-MOF with enhanced thermo-sensitivity: the rational design, synthesis and multipurpose applications. Inorganic Chemistry Frontiers, 2021, 8, 3096-3104.	3.0	13
1270	The electrochemical reduction of a flexible Mn(ii) salen-based metal–organic framework. Dalton Transactions, 2021, 50, 12821-12825.	1.6	0
1271	Research Progress in Metal-Organic Framework and Its Composites for Separation of C ₂ Based on Sieving Multiple Effects. Acta Chimica Sinica, 2021, 79, 459.	0.5	13

#	Article	IF	CITATIONS
1272	Confined Transformation of Organometalâ€Encapsulated MOFs into Spinel CoFe ₂ O ₄ /C Nanocubes for Lowâ€Temperature Catalytic Oxidation. Advanced Functional Materials, 2020, 30, 1910257.	7.8	57
1273	Mehr als nur ein Netzwerk: Strukturierung retikulär Materialien im Nanoâ€, Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
1274	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H 2 by Calcium Trimesate. Angewandte Chemie, 2020, 132, 16322-16328.	1.6	8
1275	Purely Physisorptionâ€Based COâ€Selective Gateâ€Opening in Microporous Organically Pillared Layered Silicates. Angewandte Chemie - International Edition, 2018, 57, 564-568.	7.2	7
1276	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
1277	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H ₂ by Calcium Trimesate. Angewandte Chemie - International Edition, 2020, 59, 16188-16194.	7.2	28
1278	Flexible ZIFs: probing guestâ€induced flexibility with CO ₂ , N ₂ and Ar adsorption. Journal of Chemical Technology and Biotechnology, 2019, 94, 3787-3792.	1.6	33
1279	Crystal engineering of porous coordination networks for C3 hydrocarbon separation. SmartMat, 2021, 2, 38-55.	6.4	44
1280	The Amazing Chemistry of Metal-Organic Frameworks. , 2017, , 339-369.		3
1281	Particle size effects in the kinetic trapping of a structurally-locked form of a flexible MOF. CrystEngComm, 2016, 18, 4172-4179.	1.3	28
1282	Naphthalimide-containing coordination polymer with mechanoresponsive luminescence and excellent metal ion sensing properties. Dalton Transactions, 2020, 49, 3174-3180.	1.6	20
1283	Dynamic porous coordination polymers built-up from flexible 4,4′-dithiodibenzoate and rigid N-based ligands. Dalton Transactions, 2020, 49, 13142-13151.	1.6	4
1284	Surface-coordinated metal–organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale, 2020, 12, 12712-12730.	2.8	35
1285	Powder sample-positioning system for neutron scattering allowing gas delivery in top-loading cryofurnaces. Journal of Applied Crystallography, 2016, 49, 705-711.	1.9	11
1286	Structural aspects of displacive transformations: what can optical microscopy contribute? Dehydration of Sm2(C2O4)3·10H2O as a case study. IUCrJ, 2017, 4, 588-597.	1.0	21
1287	Framework disorder and its effect on selective hysteretic sorption of a T-shaped azole-based metal–organic framework. IUCrJ, 2019, 6, 85-95.	1.0	10
1288	Interactions Between Building Blocks of the Zn2(BDC)2DABCO Metal-Organic Framework. Journal of Structural Chemistry, 2020, 61, 161-165.	0.3	3
1289	A Novel 2d Zinc(II) Coordination Polymer Based on 2,2'-bipyridine-4,4'-dicarboxylic Acid: Synthesis, Crystal Structure and Photoluminescence Property. Chemistry Journal of Moldova, 2018, 13, 30-35.	0.3	2
#	Article	IF	CITATIONS
------	---	------	-----------
1290	A Study on Constitutional Isomerism in Covalent Organic Frameworks: Controllable Synthesis, Transformation, and Distinct Difference in Properties. CCS Chemistry, 2020, 2, 139-145.	4.6	59
1291	Flexibility of Metal-Organic Framework Tunable by Crystal Size at the Micrometer to Submillimeter Scale for Efficient Xylene Isomer Separation. Research, 2019, 2019, 9463719.	2.8	39
1292	Molecularly engineered switchable photo-responsive membrane in gas separation for environmental protection. Environmental Engineering Research, 2020, 25, 447-461.	1.5	13
1293	Supramolecular metal-based molecules and materials for biomedical applications. , 2021, , .		1
1294	The crystalline sponge method: quantum chemical <i>in silico</i> derivation and analysis of guest binding energies. CrystEngComm, 2021, 23, 7570-7575.	1.3	2
1295	Coordination modulated on-off switching of flexibility in a metal–organic framework. Chemical Science, 2021, 12, 14893-14900.	3.7	7
1296	ResponZIF Structures: Zeolitic Imidazolate Frameworks as Stimuli-Responsive Materials. ACS Applied Materials & Interfaces, 2021, 13, 50602-50642.	4.0	20
1297	Integration of Fluorescent Functionality into Pressure-Amplifying Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 7964-7971.	3.2	7
1298	Layerâ€byâ€Layer Growth of Preferredâ€Oriented MOF Thin Film on Nanowire Array for Highâ€Performance Chemiresistive Sensing. Angewandte Chemie - International Edition, 2021, 60, 25758-25761.	7.2	83
1299	Layerâ€byâ€layer Growth of Preferredâ€Oriented MOF Thin Film on Nanowire Array for Highâ€Performance Chemiresistive Sensing. Angewandte Chemie, 2021, 133, 25962.	1.6	2
1300	Probing Molecular Motions in Metal–Organic Frameworks by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2021, 143, 17947-17952.	6.6	12
1301	An elastic metal–organic crystal with a densely catenated backbone. Nature, 2021, 598, 298-303.	13.7	50
1302	Ultrafast catalytic reduction of toxic nitroaromatics and organic colouring dyes by using Au/ZIF-11: Efficient wastewater treatment. Journal of Water Process Engineering, 2021, 44, 102362.	2.6	12
1304	Exotic Functions of Flexible Coordination Polymer Crystals. Bulletin of Japan Society of Coordination Chemistry, 2018, 71, 30-38.	0.1	0
1305	A survey on application of MOFs in chemistry. Current Chemistry Letters, 2019, 8, 97-116.	0.5	1
1308	Flexible H2S sensors: Fabricated by growing NO2-UiO-66 on electrospun nanofibers for detecting ultralow concentration H2S. Applied Surface Science, 2022, 573, 151446.	3.1	22
1309	Local structure determination using total scattering data. , 2023, , 222-247.		1
1310	Coordination Polymers and Polymer Nanofibers for Effective Adsorptive Desulfurization. Advances in Chemical and Materials Engineering Book Series, 2020, , 168-234.	0.2	3

#	Article	IF	CITATIONS
1312	Flexibility of a Metal–Organic Framework Enhances Gas Separation and Enables Quantum Sieving. Chemistry of Materials, 2021, 33, 8886-8894.	3.2	23
1313	Flexible Alkali–Halogen Bonding in Two Dimensional Alkali-Metal Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12, 10808-10814.	2.1	11
1314	Inclusion of cyclodextrins in a metallosupramolecular framework via structural transformations. CrystEngComm, 0, , .	1.3	1
1315	Sustainable synthesis of a new semiamorphous Ti-BDC MOF material and the photocatalytic performance of its ternary composites with Ag3PO4 and g-C3N4. Applied Surface Science, 2022, 578, 151996.	3.1	20
1316	Coordination Polymers of Ni(II) with Thiophene Ligands: Synthesis, Structures, and Magnetic Properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 664-669.	0.3	5
1317	Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials. Frontiers in Chemistry, 2021, 9, 772059.	1.8	11
1318	Solvothermal Synthesis of a Novel Calcium Metal-Organic Framework: High Temperature and Electrochemical Behaviour. Molecules, 2021, 26, 7048.	1.7	7
1319	The chemistry and applications of flexible porous coordination polymers. EnergyChem, 2021, 3, 100067.	10.1	66
1320	Coordinationâ€Induced Band Gap Reduction in a Metal–Organic Framework. Chemistry - A European Journal, 2022, 28, e202104041.	1.7	4
1321	Synthesis, Characterization and Catalytic Potency of Zn-based MOF for Knoevenagel Condensation Reaction. International Journal for Research in Applied Science and Engineering Technology, 2021, 9, 730-735.	0.1	0
1322	Water Modulated Framework Flexibility in NH2-MIL-125: Highlights from 13C Nuclear Magnetic Resonance. Heat Transfer Engineering, 0, , 1-11.	1.2	1
1323	Amide-Functionalized Metal–Organic Frameworks Coupled with Open Fe/Sc Sites for Efficient Acetylene Purification. Inorganic Chemistry, 2021, 60, 18473-18482.	1.9	8
1324	MOFs in the time domain. Nature Reviews Chemistry, 2022, 6, 9-30.	13.8	34
1325	Structural resolution and mechanistic insight into hydrogen adsorption in flexible ZIF-7. Chemical Science, 2021, 12, 15620-15631.	3.7	18
1326	Molecule in soft-crystal at ground and excited states: Theoretical approach. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100482.	5.6	5
1327	Synthesis, structures and properties of metal–organic frameworks prepared using a semi-rigid tricarboxylate linker. CrystEngComm, 2022, 24, 863-876.	1.3	5
1328	MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.	18.7	148
1329	Dynamic ring-opening polymerization, D-ROP: Applications in coordination polymers. Coordination Chemistry Reviews, 2022, 454, 214342.	9.5	4

#	Article	IF	CITATIONS
1330	Low temperature heat capacity and thermodynamic functions of Al-MIL-53-X metal-organic frameworks. Chemical Thermodynamics and Thermal Analysis, 2022, 5, 100027.	0.7	1
1331	Nano-porous bimetallic organic frameworks (Fe/Co)-BDC, a breathing MOF for rapid and capacitive removal of Cr-oxyanions from water. Journal of Water Process Engineering, 2022, 46, 102537.	2.6	21
1332	Metal-Organic Framework Derived CeO2 Based Two-Dimensional Layered Nanocomposites for Selective Electrochemical Dopamine Detection. , 2020, , .		0
1333	Exploration of structural transition phenomenon in flexible metal–organic framework formed on polymer substrate. CrystEngComm, 2021, 23, 8498-8505.	1.3	1
1334	A systematic examination of the impacts of MOF flexibility on intracrystalline molecular diffusivities. Journal of Materials Chemistry A, 2022, 10, 4242-4253.	5.2	25
1335	Halogen bonding in cadmium(<scp>ii</scp>) MOFs: its influence on the structure and on the nitroaldol reaction in aqueous medium. Dalton Transactions, 2022, 51, 1019-1031.	1.6	22
1336	Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis. Nature Communications, 2022, 13, 282.	5.8	83
1337	Structural phase transitions in flexible DUT-8(Ni) under high hydrostatic pressure. Physical Chemistry Chemical Physics, 2022, 24, 3788-3798.	1.3	11
1338	A solvent driven dual responsive actuator based on MOF/polymer composite. Sensors and Actuators B: Chemical, 2022, 358, 131448.	4.0	17
1339	Synthesis, crystal structure, and topology of a polycatenated bismuth coordination polymer. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, 77, 231-236.	0.3	2
1340	Coordination Flexibility Aided CO ₂ â€specific Gating in an Iron Isonicotinate MOF. Chemistry - an Asian Journal, 2022, 17, .	1.7	7
1341	Ligand isomerism fine-tunes structure and stability in zinc complexes of fused pyrazolopyridines. Dalton Transactions, 2022, 51, 1056-1069.	1.6	3
1342	Chemosensing technology for rapid detection of emerging contaminants. , 2022, , 407-464.		1
1343	Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility. Chemical Communications, 2022, 58, 1139-1142.	2.2	6
1344	Are you using the right probe molecules for assessing the textural properties of metal–organic frameworks?. Journal of Materials Chemistry A, 2021, 10, 157-173.	5.2	33
1345	NUIG4: A biocompatible pcu metal–organic framework with an exceptional doxorubicin encapsulation capacity. Journal of Materials Chemistry B, 2022, 10, 1378-1385.	2.9	4
1346	Tuning the switching pressure in square lattice coordination networks by metal cation substitution. Materials Advances, 2022, 3, 1240-1247.	2.6	9
1347	Acetylene storage performance of [Ni(4,4′-bipyridine) ₂ (NCS) ₂] _{<i>n</i>} , a switching square lattice coordination network. Chemical Communications, 2022, 58, 1534-1537.	2.2	6

#	Article	IF	CITATIONS
1348	Molecular solid solutions for advanced materials – homeomorphic or heteromorphic. CrystEngComm, 2022, 24, 1309-1318.	1.3	4
1349	Gating effect for gas adsorption in microporous materials—mechanisms and applications. Chemical Society Reviews, 2022, 51, 1139-1166.	18.7	34
1350	Metalâ€Organic Framework Glass Anode with an Exceptional Cyclingâ€Induced Capacity Enhancement for Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2110048.	11.1	83
1351	Photochromic Metal–Organic Framework for High-Resolution Inkless and Erasable Printing. ACS Applied Materials & Interfaces, 2022, 14, 8458-8463.	4.0	22
1352	Nano-Porous Composites of Activated Carbon–Metal Organic Frameworks (Fe-BDC@AC) for Rapid Removal of Cr (VI): Synthesis, Adsorption, Mechanism, and Kinetics Studies. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1924-1934.	1.9	25
1353	Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. Journal of the American Chemical Society, 2022, 144, 2685-2693.	6.6	23
1354	Direct observation of porous coordination polymer surfaces by atomic force microscopy. Japanese Journal of Applied Physics, 0, , .	0.8	1
1355	Tuning the Highâ€Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution. Angewandte Chemie, 0, , .	1.6	0
1356	Tuning the Highâ€Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
1357	A Muconate Bridged Bipyridyl Appended Binuclear Cu(Ii) Complex Reveals Dissimilar Affinities to DNA and Bsa Protein. SSRN Electronic Journal, 0, , .	0.4	0
1358	Three-dimensional electron diffraction: a powerful structural characterization technique for crystal engineering. CrystEngComm, 2022, 24, 2719-2728.	1.3	5
1359	A multifunctional anionic metal–organic framework for high proton conductivity and photoreduction of CO ₂ induced by cation exchange. Dalton Transactions, 2022, 51, 4798-4805.	1.6	7
1360	Reversible mechanochromic studies on AIE-inspired smart materials and their applications in HCHO sensing. Dalton Transactions, 2022, 51, 6332-6338.	1.6	5
1361	A Review on Anion-Pillared Metal Organic Framework (Apmof) and its Composites with the Balance of Adsorption Capacity and Separation Selectivity for Efficient Gas Separation. SSRN Electronic Journal, 0, , .	0.4	0
1362	Flexible metal–organic frameworks for gas storage and separation. Dalton Transactions, 2022, 51, 4608-4618.	1.6	66
1363	Facile solvothermal synthesis of a MIL-47(V) metal–organic framework for a high-performance Epoxy/MOF coating with improved anticorrosion properties. RSC Advances, 2022, 12, 9008-9022.	1.7	15
1366	Mechanical Force Induced Formation of Extrinsic Micropores in Coordination Polymers. Inorganic Chemistry, 2022, 61, 3379-3386.	1.9	1
1367	Post-Synthetic Modification of a Metal–Organic Framework Glass. Chemistry of Materials, 2022, 34, 2187-2196.	3.2	27

#	Article	IF	CITATIONS
1368	Flexible Metal–Organic Frameworks as CO ₂ Adsorbents en Route to Energyâ€Efficient Carbon Capture. Small Structures, 2022, 3, .	6.9	15
1369	Dynamic Full olor Tuning of Organic Chromophore in a Multiâ€Stimuliâ€Responsive 2D Flexible MOF. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
1370	Mixedâ€matrix gas separation membranes for sustainable future: A mini review. Polymers for Advanced Technologies, 2022, 33, 1747-1761.	1.6	17
1371	Hydrogen-Bonded Framework of a Cobalt(II) Complex Showing Superior Stability and Field-Induced Slow Magnetic Relaxation. Inorganic Chemistry, 2022, 61, 3754-3762.	1.9	29
1372	Dynamic Full olor Tuning of Organic Chromophore in a Multi‣timuliâ€Responsive 2D Flexible MOF. Angewandte Chemie, 2022, 134, .	1.6	9
1373	Structural Insight of MOFs under Combined Mechanical and Adsorption Stimuli. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
1374	Decoding the Gate Opening Mechanism of the Flexible Framework RPM3–Zn upon Hydrocarbon Inclusion. Chemistry of Materials, 2022, 34, 3246-3252.	3.2	3
1375	Stimuli-Responsive Crystalline Smart Materials: From Rational Design and Fabrication to Applications. Accounts of Chemical Research, 2022, 55, 1047-1058.	7.6	68
1376	Discovery of Colossal Breathing-Caloric Effect under Low Applied Pressure in the Hybrid Organic–Inorganic MIL-53(Al) Material. Chemistry of Materials, 2022, 34, 3323-3332.	3.2	13
1377	Role of Molecular Simulations in the Design of Metal–Organic Frameworks for Gas-Phase Thermocatalysis: A Perspective. Journal of Physical Chemistry C, 2022, 126, 6111-6118.	1.5	2
1378	Structural Insight of MOFs under Combined Mechanical and Adsorption Stimuli. Angewandte Chemie, 2022, 134, .	1.6	2
1379	Tuning Adsorption-Induced Responsiveness of a Flexible Metal–Organic Framework JUK-8 by Linker Halogenation. Chemistry of Materials, 2022, 34, 3430-3439.	3.2	6
1380	A Rare Flexible Metal–Organic Framework Based on a Tailorable Mn ₈ â€Cluster Showing Smart Responsiveness to Aromatic Guests and Capacity for Gas Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
1381	A Rare Flexible Metal–Organic Framework Based on a Tailorable Mn ₈ â€Cluster Showing Smart Responsiveness to Aromatic Guests and Capacity for Gas Separation. Angewandte Chemie, 2022, 134, .	1.6	2
1382	Assembly of π-Stacking Helical Peptides into a Porous and Multivariable Proteomimetic Framework. Journal of the American Chemical Society, 2022, 144, 7001-7009.	6.6	16
1383	Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study. Microporous and Mesoporous Materials, 2022, 336, 111796.	2.2	6
1384	A muconate bridged bipyridyl appended binuclear Cu(II) complex reveals dissimilar affinities to DNA and BSA protein. Polyhedron, 2022, 219, 115813.	1.0	3
1385	<i>In Situ</i> Mapping and Local Negative Uptake Behavior of Adsorbates in Individual Pores of Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 20747-20757.	6.6	5

#	Article	IF	CITATIONS
1386	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	5.2	33
1387	Synthesis of Coordination Polymers and Discrete Complexes from the Reaction of Copper(II) Carboxylates with Pyrazole: Role of Carboxylates Basicity. Crystal Growth and Design, 2022, 22, 1032-1044.	1.4	5
1388	Correlation between the Metal and Organic Components, Structure Property, and Gas-Adsorption Capacity of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2021, 61, 5785-5792.	2.5	3
1389	Mixed-Metal Ni ²⁺ –Mn ²⁺ Paddle Wheels in the Metal–Organic Framework DUT-8(Ni _{1–<i>x</i>} Mn _{<i>x</i>}) as Electron Paramagnetic Resonance Probes for Monitoring the Structural Phase Transition. Journal of Physical Chemistry C, 2022, 126, 625-633.	1.5	5
1390	Quantum Buckling in Metal–Organic Framework Materials. Nano Letters, 2021, 21, 10341-10345.	4.5	1
1391	CCIQS-1: A Dynamic Metal–Organic Framework with Selective Guest-Triggered Porosity Switching. Chemistry of Materials, 2022, 34, 669-677.	3.2	6
1392	Performance of GFN1-xTB for periodic optimization of metal organic frameworks. Physical Chemistry Chemical Physics, 2022, 24, 10906-10914.	1.3	4
1393	A 2D/1D heterojunction nanocomposite built from polymeric carbon nitride and MIL-88A(Fe) derived α-Fe ₂ O ₃ for enhanced photocatalytic degradation of rhodamine B. New Journal of Chemistry, 0, , .	1.4	2
1394	Highly-fluorescent BODIPY-functionalised metallacages as drug delivery systems: synthesis, characterisation and cellular accumulation studies. Dalton Transactions, 2022, 51, 7476-7490.	1.6	8
1395	Materials Formed by Combining Inorganic Glasses and Metalâ€Organic Frameworks. Chemistry - A European Journal, 2022, 28, .	1.7	7
1396	Cooperative light-induced breathing of soft porous crystals via azobenzene buckling. Nature Communications, 2022, 13, 1951.	5.8	33
1397	Isotope-selective pore opening in a flexible metal-organic framework. Science Advances, 2022, 8, eabn7035.	4.7	28
1400	Tunable acetylene sorption by flexible catenated metal–organic frameworks. Nature Chemistry, 2022, 14, 816-822.	6.6	62
1401	Recent advancement in bimetallic metal organic frameworks (M′MOFs): synthetic challenges and applications. Inorganic Chemistry Frontiers, 2022, 9, 3003-3033.	3.0	18
1402	Electrically Conductive Photoluminescent Porphyrin Phosphonate Metal–Organic Frameworks. Advanced Optical Materials, 2022, 10, .	3.6	8
1403	Research on the mechanism and application of rigid and flexible metal-organic frameworks in selective adsorption. Journal of Physics: Conference Series, 2022, 2254, 012028.	0.3	0
1404	Synthesis, structure and luminescent properties of Zn(II) metal–organic frameworks constructed by flexible and rigid ligands. Polyhedron, 2022, 222, 115880.	1.0	7
1405	An adsorbent with flexible nanoscopic pores. Science, 2022, 376, 457-458.	6.0	3

#	Article	IF	CITATIONS
1406	MD Studies of Methanol Confined in the Metal-Organic Framework MOF MIL-88B-Cl. Journal of Molecular Liquids, 2022, , 119252.	2.3	0
1407	Customized Synthesis: Solvent- and Acid-Assisted Topology Evolution in Zirconium-Tetracarboxylate Frameworks. Inorganic Chemistry, 2022, 61, 7980-7988.	1.9	13
1408	Chiral Lanthanum Metal–Organic Framework with Gated CO ₂ Sorption and Concerted Framework Flexibility. Journal of the American Chemical Society, 2022, 144, 8725-8733.	6.6	18
1409	Microwave-Assisted Synthesis of the Flexible Iron-based MIL-88B Metal–Organic Framework for Advanced Energetic Systems. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2538-2556.	1.9	10
1410	Recent advances in the tuning of the organic framework materials – The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404.	5.0	7
1411	Flexible ligand for Metal-Organic frameworks with simultaneous Large-Pore and antenna effect emission. Chemical Engineering Journal, 2022, 443, 136532.	6.6	39
1412	Reciprocal regulation between MOFs and polymers. Coordination Chemistry Reviews, 2022, 466, 214601.	9.5	25
1413	Two-dimensional metal–organic frameworks as efficient electrocatalysts for bifunctional oxygen evolution/reduction reactions. Journal of Materials Chemistry A, 2022, 10, 13005-13012.	5.2	21
1414	Mechanically interlocked molecules in metal–organic frameworks. Chemical Society Reviews, 2022, 51, 4949-4976.	18.7	27
1415	Mixedâ€Ligand Metalâ€Organic Frameworks: Synthesis and Characterization of New MOFs Containing Pyridineâ€2,6â€dimethanolate and Benzeneâ€1,4â€dicarboxylate Ligands. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	3
1416	Double-Accessible Open Metal Sites in Metal–Organic Frameworks with Suitable Pore Size for Efficient Xe/Kr Separation. Industrial & Engineering Chemistry Research, 2022, 61, 7361-7369.	1.8	12
1417	Methane storage in flexible and dynamical metal–organic frameworks. Chemical Physics Reviews, 2022, 3, .	2.6	7
1418	Coordination/metal–organic cages inside out. Coordination Chemistry Reviews, 2022, 467, 214612.	9.5	29
1419	Reversible Crystalâ [~] 'Amorphous Transformation Assisted by Loss and Adsorption of Coordination Water Molecules and Ionic Conduction in Two Isomorphous Decavanadate-Type Polyoxometalates. SSRN Electronic Journal, 0, , .	0.4	0
1420	Covalent Organic Frameworksâ€Based Membranes as Promising Modalities from Preparation to Separation Applications: An Overview. Chemical Record, 2022, 22, .	2.9	10
1421	Strategies for the Improvement of Hydrogen Physisorption in Metal-Organic Frameworks and Advantages of Flexibility for the Enhancement. Journal of Molecular and Engineering Materials, 2022, 10, .	0.9	2
1422	An artificial olfactory sensor based on flexible metal–organic frameworks for sensing VOCs. Chemical Engineering Journal, 2022, 446, 137098.	6.6	24
1423	Metalâ^'Organic Frameworks for Capturing Carbon Dioxide from Flue Gas. ACS Symposium Series, 0, , 355-391.	0.5	1

#	Article	IF	CITATIONS
1424	Modification of Metalâ^'Organic Frameworks for CO ₂ Capture. ACS Symposium Series, 0, , 269-308.	0.5	2
1425	Cyclodextrin metal–organic frameworks and derivatives: recent developments and applications. Chemical Society Reviews, 2022, 51, 5175-5213.	18.7	44
1426	How to get maximum structure information from anisotropic displacement parameters obtained by three-dimensional electron diffraction: an experimental study on metal–organic frameworks. IUCrJ, 2022, 9, 480-491.	1.0	2
1427	A spin-crossover framework endowed with pore-adjustable behavior by slow structural dynamics. Nature Communications, 2022, 13, .	5.8	14
1428	Current trends in stimuli-responsive nanotheranostics based on metal–organic frameworks for cancer therapy. Materials Today, 2022, 57, 192-224.	8.3	25
1429	Reversible crystalâ^amorphous transformation assisted by loss and adsorption of coordination water molecules and ionic conduction in two isomorphous decavanadate-type polyoxometalates. Journal of Solid State Chemistry, 2022, 314, 123309.	1.4	4
1430	Long-Lived Internal Charge-Separated State in Two-Dimensional Metal–Organic Frameworks Improving Photocatalytic Performance. ACS Energy Letters, 2022, 7, 2323-2330.	8.8	24
1431	Photoinduced Phase Transition of Ce-UiO-66 to Ce-BDC-OH. Inorganic Chemistry, 0, , .	1.9	4
1432	Solid-state NMR studies of metal ion and solvent influences upon the flexible metal-organic framework DUT-8. Solid State Nuclear Magnetic Resonance, 2022, 120, 101809.	1.5	5
1433	Facile Synthesis of Fe-Based Metal-Organic-Framework Mil88-A (Fe) Impregnated with Hybrid Ag3po4-Gcn Composite for the Effective Degradation of Diclofenac. SSRN Electronic Journal, 0, , .	0.4	0
1434	Preparation of an interpenetrating bimetal metal–organic framework <i>via</i> metal metathesis used for promoting gas adsorption. Inorganic Chemistry Frontiers, 2022, 9, 5434-5443.	3.0	3
1435	Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 2022, 46, 13818-13837.	1.4	61
1436	Homochiral Organic Molecular Cage Rcc3-R-Modified Silica as a New Multi-Mode and Multi-Functional Stationary Phase for High Performance Liquid Chromtagraphy. SSRN Electronic Journal, 0, , .	0.4	0
1437	Dynamic Variation of Responsive Metal-Organic Frameworks toward Specific Stimuli. Bulletin of Japan Society of Coordination Chemistry, 2022, 79, 50-57.	0.1	0
1438	Frontiers of CO2 Capture and Utilization (CCU) towards Carbon Neutrality. Advances in Atmospheric Sciences, 2022, 39, 1252-1270.	1.9	30
1439	Temperature Driven Transformation of the Flexible Metal–Organic Framework DUTâ€8(Ni). Chemistry - A European Journal, 2022, 28, .	1.7	7
1440	Self-Adaptive Dirhodium Complexes in a Metal–Organic Framework for Synthesis of N–H Aziridines. ACS Applied Materials & Interfaces, 2022, 14, 30714-30723.	4.0	3
1441	Guest-responsive thermal expansion in the Zr–porphyrin metal–organic framework PCN-222. APL Materials, 2022, 10, .	2.2	5

#	Article	IF	CITATIONS
1442	Computational Predictions for Effective Separation of Xenon/Krypton Gas Mixtures in the MFM Family of Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 11475-11486.	1.5	7
1443	Heat capacity of flexible MOFs M2(bdc)2(dabco) (M = Co, Ni, Cu, Zn). Microporous and Mesoporous Materials, 2022, 341, 112093.	2.2	0
1444	Multi-dimensional metal-organic frameworks based on mixed linkers: Interplay between structural flexibility and functionality. Coordination Chemistry Reviews, 2022, 469, 214645.	9.5	21
1445	Perspectives on strategies for improving ultra-deep desulfurization of liquid fuels through hydrotreatment: Catalyst improvement and feedstock pre-treatment. Frontiers in Chemistry, 0, 10, .	1.8	6
1446	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041.	1.0	2
1447	X-ray Diffraction and Molecular Simulations in the Study of Metal–Organic Frameworks for Membrane Gas Separation. Langmuir, 2022, 38, 9441-9453.	1.6	5
1448	MoS ₂ and WS ₂ Nanosheets Decorated on Metal–Organic Framework-Derived Cobalt/Carbon Nanostructures as Electrocatalysts for Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 10696-10703.	2.4	10
1449	A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coordination Chemistry Reviews, 2022, 470, 214714.	9.5	32
1450	Recent advances in microporous metal–organic frameworks as promising adsorbents for gas separation. Journal of Materials Chemistry A, 2022, 10, 17878-17916.	5.2	29
1451	Designing Adsorptive Gating via Linker Side-Chain Functionalization in a Honeycomb-MOF. Journal of Physical Chemistry C, 2022, 126, 12755-12764.	1.5	4
1452	Research Progress Based on Regulation of Tumor Microenvironment Redox and Drug-Loaded Metal-Organic Frameworks. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-12.	1.9	1
1453	Fundamentals of hydrogen storage in nanoporous materials. Progress in Energy, 2022, 4, 042013.	4.6	18
1454	Direct Location of Organic Molecules in Framework Materials by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2022, 144, 15165-15174.	6.6	9
1455	Precise Introduction of Single Vanadium Site into Indium–Organic Framework for CO ₂ Capture and Photocatalytic Fixation. Inorganic Chemistry, 2022, 61, 14131-14139.	1.9	13
1456	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	7.8	46
1457	Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Advanced Drug Delivery Reviews, 2022, 190, 114496.	6.6	84
1458	Topochemical Synthesis of Ca ₃ CrN ₃ H Involving a Rotational Structural Transformation for Catalytic Ammonia Synthesis. Angewandte Chemie - International Edition, 2022, 61,	7.2	12
1459	Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. Nano Letters, 2022, 22, 6972-6981.	4.5	18

#		IF	CITATIONS
1460	phosphotungstate immobilized on MIL-101 nanocages based on Cr-N coordination. Journal of Molecular Structure, 2023, 1271, 133973.	1.8	3
1461	Flexible Coordination Network Exhibiting Water Vapor–Induced Reversible Switching between Closed and Open Phases. ACS Applied Materials & Interfaces, 2022, 14, 39560-39566.	4.0	6
1462	Topochemical Synthesis of Ca ₃ CrN ₃ H Involving a Rotational Structural Transformation for Catalytic Ammonia Synthesis. Angewandte Chemie, 2022, 134, .	1.6	2
1463	Large breathing effect in ZIF-65(Zn) with expansion and contraction of the SOD cage. Nature Communications, 2022, 13, .	5.8	6
1464	Treatment Activity of Ho(III)-Based Coordination Polymer on Liver Cancer by the Inhibition of Vascular Endothelial Growth Factor Signaling Pathway Activity. Journal of Biomaterials and Tissue Engineering, 2022, 12, 1988-1993.	0.0	0
1465	Crystalline Metalâ€Peptide Networks: Structures, Applications, and Future Outlook. ChemBioChem, 2023, 24, .	1.3	3
1466	Metal-organic frameworks derived from chalcone dicarboxylic acid: New topological characters and initial catalytic properties. Inorganica Chimica Acta, 2022, 543, 121166.	1.2	1
1467	lsomer recognition by dynamic guest-adaptive ligand rotation in a metal–organic framework with local flexibility. Chemical Science, 2022, 13, 11896-11903.	3.7	2
1468	Functions and fundamentals of porous molecular crystals sustained by labile bonds. Chemical Communications, 2022, 58, 11887-11897.	2.2	9
1469	An approach for the pore-centred description of adsorption in hierarchical porous materials. CrystEngComm, 2022, 24, 7326-7334.	1.3	2
1470	Naphthalene-Grafted Mof as a Unique Fluorescent Sensor for "Turn-Off―Detection for Fe3+ and "Turn-On―Detection for Clo4- in Different Solvents with High Selectivity and Sensitivity. SSRN Electronic Journal, 0, , .	0.4	0
1471	The importance of crystal size for breathing kinetics in MIL-53(Al). Chemical Communications, 2022, 58, 10492-10495.	2.2	6
1472	Nitroxyl radical-containing flexible porous coordination polymer for controllable size-aelective aerobic oxidation of alcohols. Chemical Communications, 2022, 58, 9026-9029.	2.2	2
1473	Construction of Acylamide-Functionalized Mofs for Efficient Catalysis on the Conversion of Co2. SSRN Electronic Journal, 0, , .	0.4	0
1474	Supramolecular modification of a metal–organic framework increases sorption switching: insights into reversible structural deformation of ZIF-8. Journal of Materials Chemistry A, O, , .	5.2	0
1475	Multivariate zeolitic imidazolate frameworks with an inverting trend in flexibility. Chemical Communications, 2022, 58, 11394-11397.	2.2	4
1476	Molecular tiltation and supramolecular interactions induced uniaxial NTE and biaxial PTE in bis-imidazole-based co-crystals. New Journal of Chemistry, 2022, 46, 18465-18470.	1.4	5
1477	X-ray diffraction for probing free energy profiles and self-diffusivity of gases in metal–organic frameworks. CrystEngComm, 2022, 24, 6302-6308.	1.3	1

#	Article	IF	Citations
1478	Cadmium(II)-Organic Frameworks Containing the 1,3-Bis(2-methylimidazolyl)propane Ligand. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 504-509.	0.3	5
1479	Mechanically Interlocked Molecule-Based Porous Crystal and Its Mechanical Properties. Nihon Kessho Gakkaishi, 2022, 64, 213-218.	0.0	0
1480	On the Role of Flexibility for Adsorptive Separation. Accounts of Chemical Research, 2022, 55, 2966-2977.	7.6	33
1481	Nanoparticle assembled structures for matter assays in human flowing systems. Matter, 2022, 5, 2760-2786.	5.0	2
1482	Charge Transport of Coordination Polymers Containing Rhodium Paddlewheel Units. Journal of Physical Chemistry C, 2022, 126, 16421-16428.	1.5	1
1483	Stimuliâ€Responsive of Flexible Silver–Organic Framework Film with Molecular Rotors Based on Methylene Rotation. Small Structures, 2022, 3, .	6.9	4
1484	Flexible ligand–Gd dye-encapsulated dual-emission metal–organic framework. Dalton Transactions, 2022, 51, 17895-17901.	1.6	10
1485	A series of entangled MOFs constructed from flexible dipyridyl piperazine and rigid dicarboxylate: interpenetration, self-penetration, and polycatenation. CrystEngComm, 2022, 24, 7906-7914.	1.3	1
1486	Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chemical Society Reviews, 2022, 51, 9068-9126.	18.7	30
1487	Reversibly Phase-Transformative Zeolitic Imidazolate Framework-108 and the Membrane Separation Utility. Inorganic Chemistry, 2022, 61, 17342-17352.	1.9	1
1488	Single-Crystalline Hydrogen-Bonded Crosslinked Organic Frameworks and Their Dynamic Guest Sorption. Accounts of Materials Research, 2022, 3, 1186-1200.	5.9	9
1489	Metal-organic framework-based smart nanoplatforms for biosensing, drug delivery, and cancer theranostics. Inorganic Chemistry Communication, 2023, 147, 110145.	1.8	9
1490	Recent advances and potential applications of flexible adsorption and separation materials: A review. Energy Science and Engineering, 2023, 11, 952-973.	1.9	0
1491	Tunable Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks Triggered by CO ₂ Sorption. Journal of the American Chemical Society, 2022, 144, 20363-20371.	6.6	33
1492	Model-Based Analysis of a Highly Efficient CO ₂ Separation Process Using Flexible Metal–Organic Frameworks with Isotherm Hysteresis. ACS Sustainable Chemistry and Engineering, 2022, 10, 14935-14947.	3.2	6
1493	Enhanced regenerability of metal-organic frameworks adsorbents: Influence factors and improved methods. Journal of Environmental Chemical Engineering, 2022, 10, 108737.	3.3	4
1494	Naphthalene-grafted MOF as a unique fluorescent sensor for "turn-off―detection for Fe3+ and "turn-on―detection for ClO4- in different solvents with high selectivity and sensitivity. Sensors and Actuators B: Chemical, 2023, 374, 132837.	4.0	12
1495	Cluster-based metal–organic frameworks. , 2023, , 129-156.		1

	Сіт.	ation Report	
# 1496	ARTICLE Mixed matrix membranes for H2/CO2 gas separation- a critical review. Fuel, 2023, 333, 126285.	IF 3.4	Citations 27
1497	Cutting-edge molecular modelling to unveil new microscopic insights into the guest-controlled flexibility of metal–organic frameworks. Chemical Science, 2022, 13, 14336-14345.	3.7	2
1498	Room temperature synthesis of pillared-layer metal–organic frameworks (MOFs). RSC Advances, 202 12, 32652-32658.	.2, 1.7	3
1499	Visibleâ€lightâ€switchable azobenzenes: Molecular design, supramolecular systems, and applications. Natural Sciences, 2023, 3, .	1.0	15
1500	Strong interfacial interactions of ZnS/Cu-TCPP hybrids contribute to excellent nonlinear optical absorption. Materials Today Physics, 2022, 29, 100920.	2.9	6
1501	Spatiotemporal Design of the Metal–Organic Framework DUTâ€8(M). Advanced Materials, 2023, 35	,. 11.1	15
1502	Novel strategies for the formulation and processing of aluminum metal-organic framework-based sensing systems toward environmental monitoring of metal ions. Journal of Hazardous Materials, 2023, 444, 130422.	6.5	4
1503	Rational design and engineering of efficient metal organic framework for visible light-driven photocatalytic carbon-di-oxide reduction. Inorganica Chimica Acta, 2023, 546, 121287.	1.2	4
1504	Hydration-Facilitated Coordination Tuning of Metal–Organic Frameworks toward Water-Responsive Fluorescence and Proton Conduction. Inorganic Chemistry, 2022, 61, 18789-18794.	1.9	4
1505	Construction of Acylamide-functionalized MOFs for efficient catalysis on the conversion of CO2. Molecular Catalysis, 2022, 533, 112786.	1.0	2
1506	Evaluation of ZIF-8 flexible force fields for structural and mechanical properties. Microporous and Mesoporous Materials, 2023, 348, 112406.	2.2	6
1507	New Hg(<scp>ii</scp>) coordination polymers based on a thioimidazole ligand with good performance to detoxify Hg(<scp>ii</scp>) and reversibly capture iodine. Dalton Transactions, 0, , .	1.6	0
1508	Scalable synthesis of MIL-88A(Fe) for efficient aerobic oxidation of cyclohexene to 2-cyclohexene-1-ol. Molecular Catalysis, 2023, 535, 112899.	1.0	3
1509	Adsorbate-dependent phase switching in the square lattice topology coordination network [Ni(4,4′-bipyridine) ₂ (NCS) ₂] _{<i>n</i>} . Chemical Communicat 2023, 59, 559-562.	tions, 2.2	4
1510	Elucidating phase transformation of Eu-based metal organic framework with intermediate isolation and theoretical calculations. CrystEngComm, 0, , .	1.3	0
1511	Assessment of the robustness of MIL-88A in an aqueous solution: Experimental and DFT investigations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 288, 11617	79. ^{1.7}	8
1512	Synthesis, characterization, and gas adsorption performance of an efficient hierarchical ZIF-11@ZIF-8 core–shell metal–organic framework (MOF). Separation and Purification Technology, 2023, 307, 122679.	3.9	17
1513	Untangling Framework Confinements: A Dynamical Study on Bulky Aromatic Molecules in MFI Zeolites. ACS Catalysis, 2022, 12, 15288-15297.	5.5	1

#	Article	IF	CITATIONS
1514	Selective Separation of Hazardous Chemicals from Vapor Phase by an Easily Accessible Breathing Coordination Polymer Derived from Terpyridyl/terephthalate Mixed Ligands. Chemistry - A European Journal, 2023, 29, .	1.7	1
1515	Materials Design for N2O Capture: Separation in Gas Mixtures. Catalysts, 2022, 12, 1539.	1.6	1
1516	Time-resolved in-situ X-ray diffraction and crystal structure analysis of porous coordination polymer CPL-1 in CO2 adsorption. Journal of Solid State Chemistry, 2022, , 123796.	1.4	3
1517	Vacuum-Induced Guest <i>N</i> , <i>N</i> ′-Diethylformamide Binding in a Metastable Cd ₅ -Based Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 20227-20231.	1.9	1
1518	CO2-Selective Capture from Light Hydrocarbon Mixtures by Metal-Organic Frameworks: A Review. Clean Technologies, 2023, 5, 1-24.	1.9	3
1519	<scp>MOFs</scp> in Emerging Solar Cells . Chinese Journal of Chemistry, 2023, 41, 695-709.	2.6	8
1520	Breathing Behaviour Modification of Gallium MILâ€53 Metal–Organic Frameworks Induced by the Bridging Framework Inorganic Anion. Chemistry - A European Journal, 2023, 29, .	1.7	1
1521	Fabrication of Defectâ€Engineered MOFâ€801 Membrane for Efficient Dye Rejection. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	4
1522	Exploring the phase stability in interpenetrated diamondoid covalent organic frameworks. Communications Chemistry, 2023, 6, .	2.0	7
1523	Functionality-Induced Locking of Zeolitic Imidazolate Frameworks. Chemistry of Materials, 2023, 35, 490-498.	3.2	5
1524	Structural Phase Transformations Induced by Guest Molecules in a Nickel-Based 2D Square Lattice Coordination Network. Chemistry of Materials, 2023, 35, 783-791.	3.2	6
1525	Effects of MOF linker rotation and functionalization on methane uptake and diffusion. Molecular Systems Design and Engineering, 2023, 8, 527-537.	1.7	1
1526	Propagating MOF flexibility at the macroscale: the case of MOF-based mechanical actuators. Chemical Communications, 0, , .	2.2	1
1527	Strategies for designing metal–organic frameworks with superprotonic conductivity. Coordination Chemistry Reviews, 2023, 479, 214995.	9.5	19
1528	Largely Entangled Diamondoid Framework with High-Density Urea and Divergent Metal Nodes for Selective Scavenging of CO ₂ and Molecular Dimension-Mediated Size-Exclusive H-Bond Donor Catalysis. Inorganic Chemistry, 2023, 62, 871-884.	1.9	9
1529	A 0D/2D Heterojunction Composite of Polymeric Carbon Nitride and ZIF-8-Derived ZnO for Photocatalytic Organic Pollutant Degradation. Crystals, 2023, 13, 47.	1.0	1
1530	Strengthening Intraframework Interaction within Flexible MOFs Demonstrates Simultaneous Sieving Acetylene from Ethylene and Carbon Dioxide. Advanced Science, 2023, 10, .	5.6	17
1531	Particle size-dependent flexibility in DUT-8(Cu) pillared layer metal–organic framework. Dalton Transactions, 2023, 52, 2816-2824.	1.6	5

#	Article	IF	CITATIONS
1532	Flexing of a Metal–Organic Framework upon Hydrocarbon Adsorption: Atomic Level Insights from Neutron Scattering. Chemistry of Materials, 2023, 35, 1387-1394.	3.2	5
1533	Porosity Engineering of Hyper-Cross-Linked Polymers Based on Fine-Tuned Rigidity in Building Blocks and High-Pressure Methane Storage Applications. Macromolecules, 2023, 56, 1213-1222.	2.2	7
1534	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie, 2023, 135, .	1.6	14
1535	Construction of 3D interpenetrated dual linker coordination polymers of Zn(II) by varying the length and flexibility of bis(pyridyl) linkers. Journal of Molecular Structure, 2023, 1280, 135042.	1.8	1
1536	Photo-responsive metal–organic frameworks – design strategies and emerging applications in photocatalysis and adsorption. Materials Advances, 2023, 4, 1258-1285.	2.6	4
1537	Metal-organic frameworks for C2H2/CO2 separation: Recent development. Coordination Chemistry Reviews, 2023, 482, 215093.	9.5	23
1538	Enhanced photocatalytic activity of MIL-88 a impregnated with Ag3PO4/GCN for the degradation of diclofenac sodium. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 292, 116453.	1.7	5
1539	First-principle study on the lattice-directed missing linker defect in zirconium based metal-organic framework (MOF-801): Electronic properties and interaction with hydrogen. Materials Today Communications, 2023, 35, 105967.	0.9	2
1540	Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coordination Chemistry Reviews, 2023, 484, 215111.	9.5	20
1541	Metal organic frameworks as promising sensing tools for electrochemical detection of persistent heavy metal ions from water matrices: A concise review. Chemosphere, 2023, 318, 137920.	4.2	12
1542	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	81
1543	Hydrocarbon Sorption in Flexible MOFs—Part II: Understanding Adsorption Kinetics. Nanomaterials, 2023, 13, 601.	1.9	2
1544	Metal Doping to Control Gate Opening and Increase Methane Working Capacity in Isostructural Flexible Diamondoid Networks. ChemSusChem, 2023, 16, .	3.6	2
1545	Dimensional expansion of 1D zigzag chains to a 2D two-fold interpenetrated metal–organic framework for adsorption of lanthanide cations and white light emission. CrystEngComm, 2023, 25, 1637-1642.	1.3	0
1546	Review on sustainable synthesis of semi-amorphous Ti-BDS MOF material, activated carbon, and graphene. Materials Today: Proceedings, 2023, , .	0.9	0
1547	Reversible transformations between the non-porous phases of a flexible coordination network enabled by transient porosity. Nature Chemistry, 2023, 15, 542-549.	6.6	31
1548	A highly efficient metal oxide incorporated metal organic framework [Nd ₂ O ₃ -MIL(Fe)-88A] for the electrochemical detection of dichlorvos. RSC Advances, 2023, 13, 5565-5575.	1.7	3
1550	Controlling the Flexibility of Carbazoleâ€Based Metal–Organic Frameworks by Substituent Effects. Chemistry - A European Journal, 0, , .	1.7	0

#	Article	IF	CITATIONS
1551	Insertion of CO ₂ in metal ion-doped two-dimensional covalent organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
1553	Metal–Organic Framework Flowers as a Naked-Eye Colorimetric Indicator of Trace Water. ACS Applied Materials & Interfaces, 2023, 15, 13526-13534.	4.0	4
1555	Mixed-Matrix Membranes Containing Porous Materials for Gas Separation: From Metal–Organic Frameworks to Discrete Molecular Cages. Engineering, 2023, 23, 40-55.	3.2	8
1556	Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chemical Reviews, 2023, 123, 2737-2831.	23.0	32
1557	Engineering Metal–Organic Frameworks for Selective Separation of Hexane Isomers Using 3-Dimensional Linkers. Journal of the American Chemical Society, 2023, 145, 6434-6441.	6.6	14
1558	Surprising Use of the Business Innovation Bass Diffusion Model To Accurately Describe Adsorption Isotherm Types I, III, and V. Langmuir, 2023, 39, 4475-4482.	1.6	7
1559	Shape-Memory Effect Triggered by π–π Interactions in a Flexible Terpyridine Metal–Organic Framework. , 2023, 5, 1256-1260.		5
1560	Computational Modelling of MOF Mechanics: From Elastic Behaviour to Phase Transformations. , 2023, , 113-204.		0
1561	Brightening Blue Photoluminescence in Nonemission MOFâ€⊋ by Pressure Treatment Engineering. Advanced Materials, 2023, 35, .	11.1	11
1562	Mechanical Energy Absorption of Metal–Organic Frameworks. , 2023, , 267-338.		0
1563	Rational Design and Assembly of Two-Dimensional Layered Metal–Organic Frameworks: Structure, Morphology, Fluorescence Regulation, and High Iodine Adsorption. Crystal Growth and Design, 0, , .	1.4	0
1564	Introducing anthracene and amino groups into Ln-OFs for the photoreduction of Cr(<scp>vi</scp>) without additional photosensitizers or cocatalysts. Inorganic Chemistry Frontiers, 2023, 10, 2626-2635.	3.0	2
1565	A path forward: Understanding and mitigating defects in polycrystalline membranes. Progress in Materials Science, 2023, 137, 101123.	16.0	7
1566	Solvent-free synthesis of a new perfluorinated MIL-53(Al) with a temperature-induced breathing effect. Molecular Systems Design and Engineering, 2023, 8, 586-590.	1.7	1
1567	Targeted Synthesis of a Highly Stable Aluminium Phosphonate Metal–Organic Framework Showing Reversible HCl Adsorption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1568	Covalent organic framework atropisomers with multiple gas-triggered structural flexibilities. Nature Materials, 2023, 22, 636-643.	13.3	46
1569	Targeted Synthesis of a Highly Stable Aluminium Phosphonate Metal–Organic Framework Showing Reversible HCl Adsorption. Angewandte Chemie, 2023, 135, .	1.6	0
1570	Entropy driven disorder–order transition of a metal–organic framework with frustrated flexibility. APL Materials, 2023, 11, .	2.2	1

#	Article	IF	CITATIONS
1571	Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
1572	Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System. Angewandte Chemie, 2023, 135, .	1.6	0
1573	Metal–organic rotaxane frameworks constructed from a cucurbit[8]uril-based ternary complex for the selective detection of antibiotics. Chemical Communications, 2023, 59, 5890-5893.	2.2	2
1574	Water-induced structural transformation of zinc supramolecular complex based on a terpyridine carboxylate ligand: Crystal structure and fluorescence sensing. Journal of Solid State Chemistry, 2023, 323, 124064.	1.4	1
1575	Super Proton Conductivity Through Control of Hydrogenâ€Bonding Networks in Flexible Metal–Organic Frameworks. Small, 2023, 19, .	5.2	3
1576	The impact of solution <i>vs</i> . slurry <i>vs</i> . mechanochemical syntheses upon the sorption performance of a 2D switching coordination network. Inorganic Chemistry Frontiers, 2023, 10, 3821-3827.	3.0	1
1577	Green Synthesis Approaches toward Preparation of ZIF-76 and Its Thermal Behavior. Crystal Growth and Design, 2023, 23, 3754-3760.	1.4	3
1582	Raman spectroscopy, an ideal tool for studying the physical properties and applications of metal–organic frameworks (MOFs). Chemical Society Reviews, 2023, 52, 3397-3437.	18.7	13
1593	Metal–organic frameworks (an overview). , 2023, , 1-38.		0
1594	A 2D flexible cobalt-MOF: reversible solid-state structural transformation, two-step and gate-opening adsorption behaviours, and selective adsorption of C ₂ H ₂ over CO ₂ and CH ₄ . Dalton Transactions, 2023, 52, 8198-8203.	1.6	1
1607	Metal–Organic Frameworks (MOFs): The Next Generation of Materials for Catalysis, Gas Storage, and Separation. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 1757-1781.	1.9	15
1612	Modulated self-assembly of three flexible Cr(<scp>iii</scp>) PCPs for SO ₂ adsorption and detection. Chemical Communications, 2023, 59, 8115-8118.	2.2	2
1620	Functional dynamics in framework materials. Communications Chemistry, 2023, 6, .	2.0	5
1636	Tuning the guest-induced spatiotemporal response of isostructural dynamic frameworks towards efficient gas separation and storage. Journal of Materials Chemistry A, 2023, 11, 18646-18650.	5.2	2
1642	Advancing metal–organic frameworks' materials chemistry. Advances in Inorganic Chemistry, 2023, , 69-118.	0.4	0
1644	Use of Metal–Organic Frameworks in the Separation/Identification Stage of Analysis. , 2023, , 201-227.		0
1659	Introduction to metal–organic frameworks. , 2024, , 1-24.		0
1710	Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nature Energy, 2024, 9, 121-133.	19.8	1

			(,
#	Article	IF	CITATIONS
1711	Unravelling abnormal in-plane stretchability of two-dimensional metal–organic frameworks by machine learning potential molecular dynamics. Nanoscale, 2024, 16, 3438-3447.	2.8	0
1719	Development of new generation magnets based on porous coordination polymers. , 2024, , 317-339.		0
1734	The Dynamic View: Multiscale Characterisation Techniques for Flexible Frameworks. , 2024, , 145-230.		0
1735	Flexible Properties: Adsorptive Storage and Separation. , 2024, , 62-144.		0
1736	Theoretical Understanding and Insights on Flexible Metal–Organic Frameworks. , 2024, , 231-303.		0
1737	New Dimensions of Flexible MOFs: Toward Complex Systems and Devices. , 2024, , 304-367.		0