The Magnetic Resonance Imaging–Linac System

Seminars in Radiation Oncology 24, 207-209 DOI: 10.1016/j.semradonc.2014.02.009

Citation Report

#	Article	IF	CITATIONS
1	On-line 3 <i>D</i> motion estimation using low resolution MRI. Physics in Medicine and Biology, 2015, 60, N301-N310.	3.0	24
2	Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems. Medical Physics, 2015, 42, 856-865.	3.0	17
3	Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study. Medical Physics, 2015, 43, 368-377.	3.0	30
4	6 Physics and techniquesimage guidanceImage guidanceGuidance, imageStereotactic Spine Radiotherapy: Image Guidance and Patient Immobilization. , 2015, , .		0
5	Quantification of lung tumor rotation with automated landmark extraction using orthogonal cine MRI images. Physics in Medicine and Biology, 2015, 60, 7165-7178.	3.0	21
6	QA procedures needed for advanced RT techniques and its impact on treatment outcome. Journal of Physics: Conference Series, 2015, 573, 012001.	0.4	5
7	Prostate cancer radiotherapy: potential applications of metal nanoparticles for imaging and therapy. British Journal of Radiology, 2015, 88, 20150256.	2.2	10
8	Imaging-Based Treatment Adaptation in Radiation Oncology. Journal of Nuclear Medicine, 2015, 56, 1922-1929.	5.0	27
9	On-line MR imaging for dose validation of abdominal radiotherapy. Physics in Medicine and Biology, 2015, 60, 8869-8883.	3.0	35
10	MRI-guided single fraction ablative radiotherapy for early-stage breast cancer: a brachytherapy versus volumetric modulated arc therapy dosimetry study. Radiotherapy and Oncology, 2015, 117, 477-482.	0.6	21
11	On the suitability of Elekta's Agility 160 MLC for tracked radiation delivery: closed-loop machine performance. Physics in Medicine and Biology, 2015, 60, 2005-2017.	3.0	16
12	Magnetic Resonance Imaging-guided Radiation Therapy: Technological Innovation Provides a New Vision of Radiation Oncology Practice. Clinical Oncology, 2015, 27, 495-497.	1.4	12
13	Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study. International Journal of Radiation Oncology Biology Physics, 2015, 91, 840-848.	0.8	41
14	Evaluating organ delineation, dose calculation and daily localization in an open-MRI simulation workflow for prostate cancer patients. Radiation Oncology, 2015, 10, 37.	2.7	26
15	Technical Note: A Monte Carlo study of magneticâ€fieldâ€induced radiation dose effects in mice. Medical Physics, 2015, 42, 5510-5516.	3.0	13
16	Proton beam deflection in MRI fields: Implications for MRIâ€guided proton therapy. Medical Physics, 2015, 42, 2113-2124.	3.0	63
18	Plan Optimization for a Lung Patient on a Parallel Linac-MR System. IFMBE Proceedings, 2015, , 801-804.	0.3	0
19	Geometric validation of selfâ€gating <i>k</i> â€spaceâ€sorted 4Dâ€MRI vs 4Dâ€CT using a respiratory motion phantom. Medical Physics, 2015, 42, 5787-5797.	3.0	12

#	Article	IF	CITATIONS
20	Awareness, time and dimensions and their link to Medical Radiation Physics and Radiation Oncology. Zeitschrift Fur Medizinische Physik, 2015, 25, 203-205.	1.5	1
21	Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy. Physics in Medicine and Biology, 2016, 61, 1-11.	3.0	30
22	Technological advances in radiotherapy of rectal cancer: opportunities and challenges. Current Opinion in Oncology, 2016, 28, 353-358.	2.4	16
23	A particle filter based autocontouring algorithm for lung tumor tracking using dynamic magnetic resonance imaging. Medical Physics, 2016, 43, 5161-5169.	3.0	14
24	Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Physics in Medicine and Biology, 2016, 61, N80-N89.	3.0	48
25	Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer. Physics in Medicine and Biology, 2016, 61, 8587-8595.	3.0	25
26	The feasibility of atlasâ€based automatic segmentation of MRI for H&N radiotherapy planning. Journal of Applied Clinical Medical Physics, 2016, 17, 146-154.	1.9	25
27	Physically constrained voxelâ€based penalty adaptation for ultraâ€fast IMRT planning. Journal of Applied Clinical Medical Physics, 2016, 17, 172-189.	1.9	14
28	Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with <scp>geant</scp> 4. Medical Physics, 2016, 43, 894-907.	3.0	82
29	Performance of a clinical gridded electron gun in magnetic fields: Implications for MRIâ€linac therapy. Medical Physics, 2016, 43, 5903-5914.	3.0	10
30	Gel dosimetry enables volumetric evaluation of dose distributions from an MR-guided linac. AIP Conference Proceedings, 2016, , .	0.4	4
31	Backscatter dose effects for high atomic number materials being irradiated in the presence of a magnetic field: A Monte Carlo study for the MRI linac. Medical Physics, 2016, 43, 4665-4673.	3.0	10
32	Effects of magnetic field on an optical fibre radiation dosimeter. , 2016, , .		0
33	Technical Note: Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy. Medical Physics, 2016, 43, 4797-4802.	3.0	49
34	MRI-guided prostate adaptive radiotherapy – A systematic review. Radiotherapy and Oncology, 2016, 119, 371-380.	0.6	124
35	An analysis of planned versus delivered airway doses during stereotactic lung radiotherapy for central tumors. Acta Oncológica, 2016, 55, 934-937.	1.8	5
36	Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI. Physics in Medicine and Biology, 2016, 61, 872-887.	3.0	66
37	Functional Imaging in Radiotherapy in the Netherlands: Availability and Impact on Clinical Practice. Clinical Oncology, 2016, 28, e206-e215.	1.4	6

#	ARTICLE Initial experiments with gel-water: towards MRI-linac dosimetry and imaging. Australasian Physical	IF 1.3	CITATIONS
39	and Engineering Sciences in Medicine, 2016, 39, 921-932. Biological responses of human solid tumor cells to Xâ€ray irradiation within a 1.5â€Tesla magnetic field generated by a magnetic resonance imaging–linear accelerator. Bioelectromagnetics, 2016, 37, 471-480.	1.6	12
40	Abdominal organ motion during inhalation and exhalation breath-holds: pancreatic motion at different lung volumes compared. Radiotherapy and Oncology, 2016, 121, 268-275.	0.6	37
41	Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy. Physics in Medicine and Biology, 2016, 61, 5335-5355.	3.0	116
42	Minimizing the magnetic field effect in MR-linac specific QA-tests: the use of electron dense materials. Physics in Medicine and Biology, 2016, 61, N50-N59.	3.0	21
43	Magnetic resonance imaging in lung: a review of its potential for radiotherapy. British Journal of Radiology, 2016, 89, 20150431.	2.2	41
44	Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlentherapie Und Onkologie, 2016, 192, 209-215.	2.0	13
45	Respiratory motion prediction and prospective correction for freeâ€breathing arterial spin″abeled perfusion <scp>MRI</scp> of the kidneys. Medical Physics, 2017, 44, 962-973.	3.0	11
46	Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed. Physics in Medicine and Biology, 2017, 62, 1548-1564.	3.0	39
47	The feasibility of semi-automatically generated red bone marrow segmentations based on MR-only for patients with gynecologic cancer. Radiotherapy and Oncology, 2017, 123, 164-168.	0.6	8
48	Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer. Acta Oncológica, 2017, 56, 787-791.	1.8	24
49	The future of image-guided radiotherapy will be MR guided. British Journal of Radiology, 2017, 90, 20160667.	2.2	147
50	Technical Note: Is bulk electron density assignment appropriate for MRI-only based treatment planning for lung cancer?. Medical Physics, 2017, 44, 3437-3443.	3.0	20
51	Online Adaptive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, 994-1003.	0.8	145
52	Technological Advance Enabling Alternate Fractionation. Medical Radiology, 2017, , 21-30.	0.1	0
53	Real-time auto-adaptive margin generation for MLC-tracked radiotherapy. Physics in Medicine and Biology, 2017, 62, 186-201.	3.0	9
54	The need for multidisciplinarity in specialist training to optimize future patient care. Nature Reviews Clinical Oncology, 2017, 14, 508-517.	27.6	5
55	The integration of <scp>MRI</scp> in radiation therapy: collaboration of radiographers and radiation therapists. Journal of Medical Radiation Sciences, 2017, 64, 61-68.	1.5	47

#	Article	IF	CITATIONS
56	A particle filter motion prediction algorithm based on an autoregressive model for real-time MRI-guided radiotherapy of lung cancer. Biomedical Physics and Engineering Express, 2017, 3, 035001.	1.2	15
57	Future of medical physics: Realâ€ŧime MRIâ€guided proton therapy. Medical Physics, 2017, 44, e77-e90.	3.0	99
58	Magnetic resonance image guidance in external beam radiation therapy planning and delivery. Japanese Journal of Radiology, 2017, 35, 417-426.	2.4	12
59	A tool for validating MRI-guided strategies: a digital breathing CT/MRI phantom of the abdominal site. Medical and Biological Engineering and Computing, 2017, 55, 2001-2014.	2.8	29
60	Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy. Physics in Medicine and Biology, 2017, 62, 2910-2921.	3.0	45
61	Simultaneous orthogonal plane imaging. Magnetic Resonance in Medicine, 2017, 78, 1700-1710.	3.0	25
62	A novel method for interactive multi-objective dose-guided patient positioning. Physics in Medicine and Biology, 2017, 62, 165-185.	3.0	6
63	Effects of magnetic field orientation and strength on the treatment planning of nonsmall cell lung cancer. Medical Physics, 2017, 44, 6621-6631.	3.0	8
64	Dosimetric feasibility of the hybrid Magnetic Resonance Imaging (MRI)-linac System (MRL) for brain metastases: The impact of the magnetic field. Radiotherapy and Oncology, 2017, 125, 273-279.	0.6	26
65	Spatiotemporal fractionation schemes for liver stereotactic body radiotherapy. Radiotherapy and Oncology, 2017, 125, 357-364.	0.6	15
66	Experimental verification of dose enhancement effects in a lung phantom from inline magnetic fields. Radiotherapy and Oncology, 2017, 125, 433-438.	0.6	13
67	A Monte-Carlo study to assess the effect of 1.5 T magnetic fields on the overall robustness of pencil-beam scanning proton radiotherapy plans for prostate cancer. Physics in Medicine and Biology, 2017, 62, 8470-8482.	3.0	15
68	Performance of a multi leaf collimator system for <scp>MR</scp> â€guided radiation therapy. Medical Physics, 2017, 44, 6504-6514.	3.0	18
69	Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac. Physics in Medicine and Biology, 2017, 62, 7233-7248.	3.0	108
70	Magnetic field dose effects on different radiation beam geometries for hypofractionated partial breast irradiation. Journal of Applied Clinical Medical Physics, 2017, 18, 62-70.	1.9	23
71	A block matching based approach with multiple simultaneous templates for the realâ€ŧime 2D ultrasound tracking of liver vessels. Medical Physics, 2017, 44, 5889-5900.	3.0	26
72	A back-projection algorithm in the presence of an extra attenuating medium: towards EPID dosimetry for the MR-Linac. Physics in Medicine and Biology, 2017, 62, 6322-6340.	3.0	10
73	Modulation of lateral positions of Bragg peaks via magnetic fields inside cancer patients: Toward magnetic field modulated proton therapy. Medical Physics, 2017, 44, 5325-5338.	3.0	5

#	Article	IF	CITATIONS
74	CyberKnife with integrated <scp>CT</scp> â€onâ€rails: System description and first clinical application for pancreas <scp>SBRT</scp> . Medical Physics, 2017, 44, 4816-4827.	3.0	26
75	Dosimetric feasibility of magnetic resonance (MR)-based dose calculation of prostate radiotherapy using multilevel threshold algorithm. Journal of Radiotherapy in Practice, 2017, 16, 415-422.	0.5	0
76	Fast online replanning for interfraction rotation correction in prostate radiotherapy. Medical Physics, 2017, 44, 5034-5042.	3.0	30
77	Alternate Fractionation for Hepatic Tumors. Medical Radiology, 2017, , 173-201.	0.1	0
78	MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro-Oncology, 2017, 19, ii16-ii29.	1.2	49
79	Increasing the Therapeutic Ratio of Radiotherapy. Cancer Drug Discovery and Development, 2017, , .	0.4	2
80	Dynamic MRI of Respiratory Mechanics and Pulmonary Motion. Medical Radiology, 2017, , 163-183.	0.1	1
81	Influence of a transverse magnetic field on the dose deposited by a 6 MV linear accelerator. Current Directions in Biomedical Engineering, 2017, 3, 281-285.	0.4	7
82	Inhibition of PCSK9 protects against radiation-induced damage of prostate cancer cells. OncoTargets and Therapy, 2017, Volume 10, 2139-2146.	2.0	26
83	Brain Tumor Imaging. Journal of Clinical Oncology, 2017, 35, 2432-2438.	1.6	53
84	Feasibility study on 3D image reconstruction from 2D orthogonal cineâ€ <scp>MRI</scp> for <scp>MRI</scp> â€guided radiotherapy. Journal of Medical Imaging and Radiation Oncology, 2018, 62, 389-400.	1.8	44
85	Prospective Respiration Detection in Magnetic Resonance Imaging by a Non-Interfering Noise Navigator. IEEE Transactions on Medical Imaging, 2018, 37, 1751-1760.	8.9	6
86	Beam characterisation of the 1.5 T MRI-linac. Physics in Medicine and Biology, 2018, 63, 085015.	3.0	59
87	Review of Real-Time 3-Dimensional Image Guided Radiation Therapy on Standard-Equipped Cancer Radiation Therapy Systems: Are We at the Tipping Point for the Era of Real-Time Radiation Therapy?. International Journal of Radiation Oncology Biology Physics, 2018, 102, 922-931.	0.8	45
88	A high resolution 2D array detector system for small-field MRI-linac applications. Biomedical Physics and Engineering Express, 2018, 4, 035041.	1.2	6
89	Emerging Magnetic Resonance Imaging Technologies for Radiation Therapy Planning and Response Assessment. International Journal of Radiation Oncology Biology Physics, 2018, 101, 1046-1056.	0.8	39
90	Biophysical Modeling of InÂVivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 100, 1270-1279.	0.8	29
91	Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications. Physics in Medicine and Biology, 2018, 63, 025006.	3.0	20

	Сп	CITATION REPORT	
#	Article	IF	Citations
92	Does setup on rectal wall improve rectal cancer boost radiotherapy?. Radiation Oncology, 2018, 13, 6	1. 2.7	4
93	Can Technological Improvements Reduce the Cost of Proton Radiation Therapy?. Seminars in Radiation Oncology, 2018, 28, 150-159.	n 2.2	26
94	Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer using MR-guided Tri-60Co unit, MR-guided LINAC, and conventional LINAC-based plans. Practical Radiation Oncology, 2018, 8, e312-e321.	2.1	16
95	Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT. British Journal of Radiology, 2018, 91, 20170522.	2.2	44
96	A Hybrid Image Registration and Matching Framework for Real-Time Motion Tracking in MRI-Guided Radiotherapy. IEEE Transactions on Biomedical Engineering, 2018, 65, 131-139.	4.2	27
97	Particle Filter–Based Target Tracking Algorithm for Magnetic Resonance–Guided Respiratory Compensation: Robustness and Accuracy Assessment. International Journal of Radiation Oncology Biology Physics, 2018, 100, 325-334.	0.8	16
98	Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnet Resonance Imaging–Only Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 100, 199-217.	ic 0.8	235
99	Technical Note: Penumbral width trimming in solid lung dose profiles for 0.9 and 1.5 T <scp>MRI</scp> â€Linac prototypes. Medical Physics, 2018, 45, 479-487.	3.0	8
100	Characterization of a prototype MR-compatible Delta4 QA system in a 1.5 tesla MR-linac. Physics in Medicine and Biology, 2018, 63, 02NT02.	3.0	26
101	Developing and characterizing <scp>MR</scp> / <scp>CT</scp> â€visible materials used in <scp>QAphantoms for <scp>MR</scp>g<scp>RT</scp> systems. Medical Physics, 2018, 45, 773-782.</scp>	scp> 3.0	27
102	The role of imaging in the clinical practice of radiation oncology for pancreatic cancer. Abdominal Radiology, 2018, 43, 393-403.	2.1	6
103	Assessment of positional reproducibility in the head and neck on a 1.5-T MR simulator for an offline MR-guided radiotherapy solution. Quantitative Imaging in Medicine and Surgery, 2018, 8, 925-935.	2.0	4
104	The effect of density overrides on magnetic resonance-guided radiation therapy planning for lung cancer. Physics and Imaging in Radiation Oncology, 2018, 8, 23-27.	2.9	4
105	Noninvasive cardiac arrhythmia ablation with particle beams. Medical Physics, 2018, 45, e1024-e1035	. 3.0	16
106	Technical Note: EPID 's response to 6Â MV photons in a strong, parallel magnetic field. Medical Physic: 2018, 46, 340-344.	s, 3.0	1
107	Adaptive radiotherapy for head and neck cancer. Acta Oncológica, 2018, 57, 1284-1292.	1.8	81
108	Magnetic Resonance-guided Radiotherapy — Can We Justify More Expensive Technology?. Clinical Oncology, 2018, 30, 677-679.	1.4	11
109	Development of Tissue Equivalent Materials for a Multi-modality (CT&MRI) Phantom in MRI-guided Radiation Treatment. Journal of the Korean Physical Society, 2018, 73, 1012-1018.	0.7	0

#	Article	IF	CITATIONS
110	Simultaneous motion monitoring and truth-in-delivery analysis imaging framework for MR-guided radiotherapy. Physics in Medicine and Biology, 2018, 63, 235014.	3.0	11
111	Emerging role of MRI in radiation therapy. Journal of Magnetic Resonance Imaging, 2018, 48, 1468-1478.	3.4	89
112	MRI-Linear Accelerator Radiotherapy Systems. Clinical Oncology, 2018, 30, 686-691.	1.4	89
113	Technical Note: Experimental verification of magnetic fieldâ€induced beam deflection and Bragg peak displacement for MRâ€integrated proton therapy. Medical Physics, 2018, 45, 3429-3434.	3.0	30
114	Imageâ€based retrospective 4D <scp>MRI</scp> in external beam radiotherapy: A comparative study with a digital phantom. Medical Physics, 2018, 45, 3161-3172.	3.0	21
115	A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Physics in Medicine and Biology, 2018, 63, 125008.	3.0	55
116	The Use of Ultrasound Imaging in the External Beam Radiotherapy Workflow of Prostate Cancer Patients. BioMed Research International, 2018, 2018, 1-16.	1.9	30
117	Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy. Seminars in Radiation Oncology, 2018, 28, 238-247.	2.2	21
118	Image-guided radiotherapy for prostate cancer. Translational Andrology and Urology, 2018, 7, 308-320.	1.4	44
119	The Future of Radiotherapy in Bladder Cancer. , 2018, , 123-129.		0
121	On the direct acquisition of beam's-eye-view images in MRI for integration with external beam radiotherapy. Physics in Medicine and Biology, 2018, 63, 125002.	3.0	6
122	MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network. International Journal of Radiation Oncology Biology Physics, 2018, 102, 801-812.	0.8	102
123	Experimental evaluation of the impact of low tesla transverse magnetic field on dose distribution in presence of tissue interfaces. Physica Medica, 2018, 53, 80-85.	0.7	22
124	Technical Note: Experimental characterization of the dose deposition in parallel MRIâ€linacs at various magnetic field strengths. Medical Physics, 2019, 46, 5152-5158.	3.0	7
125	Design and feasibility of a flexible, on-body, high impedance coil receive array for a 1.5 T MR-linac. Physics in Medicine and Biology, 2019, 64, 185004.	3.0	22
126	Technical design and concept of a 0.35 T MR-Linac. Clinical and Translational Radiation Oncology, 2019, 18, 98-101.	1.7	210
127	Rapid acquisition of the 3D MRI gradient impulse response function using a simple phantom measurement. Magnetic Resonance in Medicine, 2019, 82, 2146-2159.	3.0	22
128	Measurement validation of treatment planning for a MR‣inac. Journal of Applied Clinical Medical Physics, 2019, 20, 28-38.	1.9	18

#	Article	IF	CITATIONS
129	Beyond T2 and 3T: New MRI techniques for clinicians. Clinical and Translational Radiation Oncology, 2019, 18, 87-97.	1.7	10
130	ReconSocket: a low-latency raw data streaming interface for real-time MRI-guided radiotherapy. Physics in Medicine and Biology, 2019, 64, 185008.	3.0	7
131	Low-density gel dosimeter for measurement of the electron return effect in an MR-linac. Physics in Medicine and Biology, 2019, 64, 205016.	3.0	12
132	The transformation of radiation oncology using real-time magnetic resonance guidance: A review. European Journal of Cancer, 2019, 122, 42-52.	2.8	136
133	Experimental characterization of magnetically focused electron contamination at the surface of a highâ€field inline MRIâ€linac. Medical Physics, 2019, 46, 5780-5789.	3.0	16
134	Soft-tissue prostate intrafraction motion tracking in 3D cine-MR for MR-guided radiotherapy. Physics in Medicine and Biology, 2019, 64, 235008.	3.0	26
135	Development and validation of a 1.5ÂT MRâ€Linac full accelerator head and cryostat model for Monte Carlo dose simulations. Medical Physics, 2019, 46, 5304-5313.	3.0	19
136	Wearable Haptic Pneumatic Device for Creating the Illusion of Lateral Motion on the Arm. , 2019, , .		20
137	Evaluation of a simplified optimizer for MRâ€guided adaptive RT in case of pancreatic cancer. Journal of Applied Clinical Medical Physics, 2019, 20, 20-30.	1.9	8
138	IPEM Topical Report: A 2018 IPEM survey of MRI use for external beam radiotherapy treatment planning in the UK. Physics in Medicine and Biology, 2019, 64, 175021.	3.0	21
140	Multiresolution radial MRI to reduce IDLE time in pre-beam imaging on an MR-Linac (MR-RIDDLE). Physics in Medicine and Biology, 2019, 64, 055011.	3.0	13
141	Twoâ€dimensional EPID dosimetry for an MRâ€linac: Proof of concept. Medical Physics, 2019, 46, 4193-4203.	3.0	12
142	Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patchâ€based threeâ€dimensional convolutional neural network. Medical Physics, 2019, 46, 4095-4104.	3.0	67
143	MRI for Radiotherapy. , 2019, , .		4
144	Real-time intrafraction motion monitoring in external beam radiotherapy. Physics in Medicine and Biology, 2019, 64, 15TR01.	3.0	130
145	A feasibility study for highâ€resolution silicon array detector performance in the magnetic field of a permanent magnet system. Medical Physics, 2019, 46, 4224-4232.	3.0	1
146	MRI Linac Systems. , 2019, , 155-168.		6
147	Technical note: MLC-tracking performance on the Elekta unity MRI-linac. Physics in Medicine and Biology, 2019, 64, 15NT02.	3.0	39

#	Article	IF	CITATIONS
148	Technical Note: Consistency of PTW30013 and FC65â€G ion chamber magnetic field correction factors. Medical Physics, 2019, 46, 3739-3745.	3.0	10
149	Deformable image registration for radiation therapy: principle, methods, applications and evaluation. Acta Oncológica, 2019, 58, 1225-1237.	1.8	74
150	Current status of intensityâ€modulated radiation therapy for prostate cancer: History, clinical results and future directions. International Journal of Urology, 2019, 26, 775-784.	1.0	18
151	In vitro biological response of cancer and normal tissue cells to proton irradiation not affected by an added magnetic field. Radiotherapy and Oncology, 2019, 137, 125-129.	0.6	9
152	Practical Clinical Workflows for Online and Offline Adaptive Radiation Therapy. Seminars in Radiation Oncology, 2019, 29, 219-227.	2.2	95
153	Head and Neck Cancer Adaptive Radiation Therapy (ART): Conceptual Considerations for the Informed Clinician. Seminars in Radiation Oncology, 2019, 29, 258-273.	2.2	59
154	Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clinical and Translational Radiation Oncology, 2019, 18, 54-59.	1.7	330
155	Impact of inline magnetic fields on dose distributions for VMAT in lung tumor. Physica Medica, 2019, 59, 100-106.	0.7	4
156	Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiation Oncology, 2019, 14, 71.	2.7	100
157	Simultaneous acquisition of orthogonal plane cine imaging and isotropic 4D-MRI using super-resolution. Radiotherapy and Oncology, 2019, 136, 121-129.	0.6	15
158	Evaluation of plan quality in radiotherapy planning with an MR-linac. Physics and Imaging in Radiation Oncology, 2019, 10, 19-24.	2.9	21
159	Dose evaluation of MRI-based synthetic CT generated using a machine learning method for prostate cancer radiotherapy. Medical Dosimetry, 2019, 44, e64-e70.	0.9	30
160	A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning. Medical Image Analysis, 2019, 54, 220-237.	11.6	31
162	Value of Three-Dimensional Imaging Systems for Image-Guided Carbon Ion Radiotherapy. Cancers, 2019, 11, 297.	3.7	16
163	Large field of view distortion assessment in a lowâ€field MR â€linac. Medical Physics, 2019, 46, 2347-2355.	3.0	21
165	Direct measurement of ion chamber correction factors, k _Q and k _B , in a 7 MV MRI-linac. Physics in Medicine and Biology, 2019, 64, 105025.	3.0	29
166	Perturbation effect of parallel-plate ionization chambers on buildup dose measurements in transverse magnetic fields. Physica Medica, 2019, 59, 112-116.	0.7	0
167	A retrospective 4Dâ€ <scp>MRI</scp> based on 2D diaphragm profiles for lung cancer patients. Journal of Medical Imaging and Radiation Oncology, 2019, 63, 360-369.	1.8	10

#	Article	IF	CITATIONS
168	A Technique to Rapidly Generate Synthetic Computed Tomography for Magnetic Resonance Imaging–Guided Online Adaptive Replanning: An Exploratory Study. International Journal of Radiation Oncology Biology Physics, 2019, 103, 1261-1270.	0.8	13
169	4D-MRI in Radiotherapy. , 0, , .		5
170	A pilot study of highly accelerated 3D MRI in the head and neck position verification for MR-guided radiotherapy. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1255-1269.	2.0	5
171	Geant4 Monte Carlo investigation of the magnetic field effect on dose distributions in low-density regions in magnetic resonance image-guided radiation therapy. Physica Medica, 2019, 68, 17-34.	0.7	3
172	A preferred patient decubitus positioning for magnetic resonance image guided online adaptive radiation therapy of pancreatic cancer. Physics and Imaging in Radiation Oncology, 2019, 12, 22-29.	2.9	1
173	Blurring the lines for better visualisation. Radiography, 2019, 25, 91-93.	2.1	2
174	Commissioning of a water calorimeter as a primary standard for absorbed dose to water in magnetic fields. Physics in Medicine and Biology, 2019, 64, 035013.	3.0	15
175	A ROI-based global motion model established on 4DCT and 2D cine-MRI data for MRI-guidance in radiation therapy. Physics in Medicine and Biology, 2019, 64, 045002.	3.0	28
176	Adopting Advanced Radiotherapy Techniques in the Treatment of Paediatric Extracranial Malignancies: Challenges and Future Directions. Clinical Oncology, 2019, 31, 50-57.	1.4	2
177	Role and future of MRI in radiation oncology. British Journal of Radiology, 2019, 92, 20180505.	2.2	52
178	On the accuracy of bulk synthetic CT for MR-guided online adaptive radiotherapy. Radiologia Medica, 2020, 125, 157-164.	7.7	24
179	Intrafractional motion management in external beam radiotherapy. Journal of X-Ray Science and Technology, 2020, 27, 1071-1086.	1.0	4
180	Surface and near-surface dose measurements at beam entry and exit in a 1.5 T MR-Linac using optically stimulated luminescence dosimeters. Physics in Medicine and Biology, 2020, 65, 045012.	3.0	9
181	Generalized simultaneous multiâ€orientation 2D imaging. Magnetic Resonance in Medicine, 2020, 84, 847-856.	3.0	1
182	Dosimetric impact of soft-tissue based intrafraction motion from 3D cine-MR in prostate SBRT. Physics in Medicine and Biology, 2020, 65, 025012.	3.0	13
183	A daily endâ€ŧoâ€end quality assurance workflow for MRâ€guided online adaptive radiation therapy on MR‣inac. Journal of Applied Clinical Medical Physics, 2020, 21, 205-212.	1.9	22
184	Automated air region delineation on MRI for synthetic CT creation. Physics in Medicine and Biology, 2020, 65, 025009.	3.0	4
185	The noise navigator: a surrogate for respiratory-correlated 4D-MRI for motion characterization in radiotherapy. Physics in Medicine and Biology, 2020, 65, 01NT02.	3.0	7

#	Article	IF	Citations
186	Comparison of dose distributions between transverse magnetic fields of 0.35ÂT and 1.5ÂT for radiotherapy in lung tumor using Monte Carlo calculation. Medical Dosimetry, 2020, 45, 179-185.	0.9	1
187	Prototype of a Morphological Positioning Robot for Radiology. IEEE Access, 2020, 8, 11447-11455.	4.2	Ο
188	Water calorimetry in MRâ€linac: Direct measurement of absorbed dose and determination of chamber. Medical Physics, 2020, 47, 6458-6469.	3.0	9
189	Focal salvage treatment for radiorecurrent prostate cancer: A magnetic resonance-guided stereotactic body radiotherapy versus high-dose-rate brachytherapy planning study. Physics and Imaging in Radiation Oncology, 2020, 15, 60-65.	2.9	6
190	Impact of Magnetic Field on Dose Distribution in MR-Guided Radiotherapy of Head and Neck Cancer. Frontiers in Oncology, 2020, 10, 1739.	2.8	10
191	Impact of varying air cavity on planning dosimetry for rectum patients treated on a 1.5ÂT hybrid MRâ€linac system. Journal of Applied Clinical Medical Physics, 2020, 21, 144-152.	1.9	9
192	Feasibility of using a commercial collapsed cone dose engine for 1.5T MR-LINAC online independent dose verification. Physica Medica, 2020, 80, 288-296.	0.7	16
193	Dosimetric evaluation of MR-derived synthetic-CTs for MR-only proton treatment planning. Medical Dosimetry, 2020, 45, 264-270.	0.9	1
194	Initial clinical experience of Stereotactic Body Radiation Therapy (SBRT) for liver metastases, primary liver malignancy, and pancreatic cancer with 4D-MRI based online adaptation and real-time MRI monitoring using a 1.5 Tesla MR-Linac. PLoS ONE, 2020, 15, e0236570.	2.5	49
195	Al2O3:C and Al2O3:C,Mg optically stimulated luminescence 2D dosimetry applied to magnetic resonance guided radiotherapy. Radiation Measurements, 2020, 138, 106439.	1.4	15
196	Towards MR-guided electron therapy: Measurement and simulation of clinical electron beams in magnetic fields. Physica Medica, 2020, 78, 83-92.	0.7	1
197	Impact of lung density on isolated lung tumor dose in VMAT using inline MR-Linac. Physica Medica, 2020, 80, 65-74.	0.7	0
198	The Pivotal Role of the Therapeutic Radiographer/Radiation Therapist in Image-guided Radiotherapy Research and Development. Clinical Oncology, 2020, 32, 852-860.	1.4	14
199	The MOMENTUM Study: An International Registry for the Evidence-Based Introduction of MR-Guided Adaptive Therapy. Frontiers in Oncology, 2020, 10, 1328.	2.8	81
200	Characterization of an inorganic scintillator for smallâ€field dosimetry in MRâ€guided radiotherapy. Journal of Applied Clinical Medical Physics, 2020, 21, 244-251.	1.9	10
201	Development of an extended Macro Monte Carlo method for efficient and accurate dose calculation in magnetic fields. Medical Physics, 2020, 47, 6519-6530.	3.0	3
202	International survey; current practice in On-line adaptive radiotherapy (ART) delivered using Magnetic Resonance Image (MRI) guidance. Technical Innovations and Patient Support in Radiation Oncology, 2020, 16, 1-9.	1.9	14
203	Evaluation of Deep Learning to Augment Image-Guided Radiotherapy for Head and Neck and Prostate Cancers. JAMA Network Open, 2020, 3, e2027426.	5.9	42

#	Article	IF	CITATIONS
204	4D-MRI driven MR-guided online adaptive radiotherapy for abdominal stereotactic body radiation therapy on a high field MR-Linac: Implementation and initial clinical experience. Clinical and Translational Radiation Oncology, 2020, 23, 72-79.	1.7	71
205	Medical physics challenges in clinical MR-guided radiotherapy. Radiation Oncology, 2020, 15, 93.	2.7	101
206	Daily adaptive radiotherapy for patients with prostate cancer using a high field MR-linac: Initial clinical experiences and assessment of delivered doses compared to a C-arm linac. Clinical and Translational Radiation Oncology, 2020, 23, 35-42.	1.7	56
207	Radiation therapy for patients with locally advanced pancreatic cancer: Evolving techniques and treatment strategies. Current Problems in Cancer, 2020, 44, 100607.	2.0	17
208	What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging, 2020, 20, 38.	2.8	35
209	Patient doses from image-guided radiation therapy. Physica Medica, 2020, 72, 30-31.	0.7	2
210	A review of the role of MRI in diagnosis and treatment of early stage lung cancer. Clinical and Translational Radiation Oncology, 2020, 24, 16-22.	1.7	37
211	Clustering effects in nanoparticle-enhanced βâ^' emitting internal radionuclide therapy: a Monte Carlo study. Physics in Medicine and Biology, 2020, 65, 125007.	3.0	1
212	3D dosimetric verification of unity MR-linac treatments by portal dosimetry. Radiotherapy and Oncology, 2020, 146, 161-166.	0.6	8
213	Stereotactic Radiotherapy for the Management of Refractory Ventricular Tachycardia: Promise and Future Directions. Frontiers in Cardiovascular Medicine, 2020, 7, 108.	2.4	23
214	Prostate intrafraction motion during the preparation and delivery of MR-guided radiotherapy sessions on a 1.5T MR-Linac. Radiotherapy and Oncology, 2020, 151, 88-94.	0.6	75
215	Accuracy of automatic deformable structure propagation for high-field MRI guided prostate radiotherapy. Radiation Oncology, 2020, 15, 32.	2.7	21
216	Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging. Radiotherapy and Oncology, 2020, 145, 88-94.	0.6	52
217	Thermal Ablation versus SBRT in liver tumours: pros and cons. Medical Oncology, 2020, 37, 52.	2.5	10
218	3-Dimensional target coverage assessment for MRI guided esophageal cancer radiotherapy. Radiotherapy and Oncology, 2020, 147, 1-7.	0.6	11
219	The noise navigator for MRI-guided radiotherapy: an independent method to detect physiological motion. Physics in Medicine and Biology, 2020, 65, 12NT01.	3.0	1
220	Measurement of surface dose in an MR‣inac with optically stimulated luminescence dosimeters for IMRT beam geometries. Medical Physics, 2020, 47, 3133-3142.	3.0	8
221	Preliminary Study of the Intel RealSense D415 Camera for Monitoring Respiratory Like Motion of an Irregular Surface. IEEE Sensors Journal, 2021, 21, 14443-14453.	4.7	2

#	Article	IF	CITATIONS
222	Technical Note: Design and commissioning of a water phantom for proton dosimetry in magnetic fields. Medical Physics, 2021, 48, 505-512.	3.0	3
223	Initial Feasibility and Clinical Implementation of Daily MR-Guided Adaptive Head and Neck Cancer Radiation Therapy on a 1.5T MR-Linac System: Prospective R-IDEAL 2a/2b Systematic Clinical Evaluation of Technical Innovation. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1606-1618.	0.8	52
224	Online adaptive MR-guided radiotherapy for rectal cancer; feasibility of the workflow on a 1.5T MR-linac: clinical implementation and initial experience. Radiotherapy and Oncology, 2021, 154, 172-178.	0.6	58
226	A narrative review of MRI acquisition for MR-guided-radiotherapy in prostate cancer. Quantitative Imaging in Medicine and Surgery, 2022, 12, 1585-1607.	2.0	17
227	Synthesis and applications of functionalized nanoparticles in biomedicine and radiotherapy. , 2021, , 193-218.		2
228	An end-to-end assessment on the accuracy of adaptive radiotherapy in an MR-linac. Physics in Medicine and Biology, 2021, 66, 055021.	3.0	11
229	Proof-of-concept delivery of intensity modulated arc therapy on the Elekta Unity 1.5 T MR-linac. Physics in Medicine and Biology, 2021, 66, 04LT01.	3.0	20
230	Use of magnetic resonance imaging-guided radiotherapy for breast cancer: a scoping review protocol. Systematic Reviews, 2021, 10, 44.	5.3	2
231	Longitudinal acquisition repeatability of MRI radiomics features: An ACR MRI phantom study on two MRI scanners using a 3D T1W TSE sequence. Medical Physics, 2021, 48, 1239-1249.	3.0	12
232	End-to-end validation of the geometric dose delivery performance of MR linac adaptive radiotherapy. Physics in Medicine and Biology, 2021, 66, 045034.	3.0	12
233	Magnetic modeling of actively shielded rotating MRI magnets in the presence of environmental steel. Physics in Medicine and Biology, 2021, 66, 045004.	3.0	1
234	Quantitative investigation of dose accumulation errors from intra-fraction motion in MRgRT for prostate cancer. Physics in Medicine and Biology, 2021, 66, 065002.	3.0	7
235	Evaluation of daily online contour adaptation by radiation therapists for prostate cancer treatment on an MRI-guided linear accelerator. Clinical and Translational Radiation Oncology, 2021, 27, 50-56.	1.7	32
236	Towards an Image-Informed Mathematical Model of In Vivo Response to Fractionated Radiation Therapy. Cancers, 2021, 13, 1765.	3.7	13
237	Delivery of online adaptive magnetic resonance guided radiotherapy based on isodose boundaries. Physics and Imaging in Radiation Oncology, 2021, 18, 78-81.	2.9	5
238	On the use of low-dimensional temporal subspace constraints to reduce reconstruction time and improve image quality of accelerated 4D-MRI. Radiotherapy and Oncology, 2021, 158, 215-223.	0.6	5
239	MRI-Guided Radiation Therapy. Advances in Oncology, 2021, 1, 29-39.	0.2	1
240	Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives. Physica Medica, 2021, 85, 175-191.	0.7	60

#	Article	IF	CITATIONS
241	Monte Carlo study of dosimetric impact of gadolinium contrast medium in transverse field MR-Linac system. Physica Medica, 2021, 86, 19-30.	0.7	0
242	Acceptance procedure for the linear accelerator component of the 1.5 T MRIâ€linac. Journal of Applied Clinical Medical Physics, 2021, 22, 45-59.	1.9	21
243	Patterns of Care, Tolerability, and Safety of the First Cohort of Patients Treated on a Novel High-Field MR-Linac Within the MOMENTUM Study: Initial Results From a Prospective Multi-Institutional Registry. International Journal of Radiation Oncology Biology Physics, 2021, 111, 867-875.	0.8	37
244	An investigation of using logâ€file analysis for automated patientâ€specific quality assurance in MRgRT. Journal of Applied Clinical Medical Physics, 2021, 22, 183-188.	1.9	11
245	Variations in Demand across England for the Magnetic Resonance-Linac Technology, Simulated Utilising Local-level Demographic and Cancer Data in the Malthus Project. Clinical Oncology, 2021, 33, e285-e294.	1.4	5
246	Technical Note: Endâ€ŧoâ€end verification of an MR‣inac using a dynamic motion phantom. Medical Physics, 2021, 48, 5479-5489.	3.0	8
247	Evolution of the gross tumour volume extent during radiotherapy for glioblastomas. Radiotherapy and Oncology, 2021, 160, 40-46.	0.6	12
248	Integration of quantitative imaging biomarkers in clinical trials for MR-guided radiotherapy: Conceptual guidance for multicentre studies from the MR-Linac Consortium Imaging Biomarker Working Group. European Journal of Cancer, 2021, 153, 64-71.	2.8	21
249	3D T1-weighted turbo spin echo contrast-enhanced MRI at 1.5ÂT for frameless brain metastases radiotherapy. Journal of Cancer Research and Clinical Oncology, 2022, 148, 1749-1759.	2.5	1
250	Extension and validation of a GPUâ€Monte Carlo dose engine gDPM for 1.5 T MRâ€LINAC online independent dose verification. Medical Physics, 2021, 48, 6174-6183.	3.0	12
251	The effect of the magnetic fields from three different configurations of the MRIgRT systems on the dose deposition from lateral opposing photon beams in a laryngeal geometry – A Monte Carlo study. Radiation Medicine and Protection, 2021, 2, 103-111.	0.8	3
252	Accuracy and precision of apparent diffusion coefficient measurements on a 1.5ÂT MR-Linac in central nervous system tumour patients. Radiotherapy and Oncology, 2021, 164, 155-162.	0.6	19
253	Chemical exchange saturation transfer MRI in central nervous system tumours on a 1.5ÂT MR-Linac. Radiotherapy and Oncology, 2021, 162, 140-149.	0.6	14
254	Longitudinal assessment of quality assurance measurements in a 1.5T MRâ€linac: Part l—Linear accelerator. Journal of Applied Clinical Medical Physics, 2021, 22, 190-201.	1.9	10
255	Reliability of MRI radiomics features in MRâ€guided radiotherapy for prostate cancer: Repeatability, reproducibility, and withinâ€subject agreement. Medical Physics, 2021, 48, 6976-6986.	3.0	23
256	1.5T Magnetic Resonance-Guided Stereotactic Body Radiotherapy for Localized Prostate Cancer: Preliminary Clinical Results of Clinician- and Patient-Reported Outcomes. Cancers, 2021, 13, 4866.	3.7	11
257	MR-Linac Radiotherapy – The Beam Angle Selection Problem. Frontiers in Oncology, 2021, 11, 717681.	2.8	7
258	Analysis of data to Advance Personalised Therapy with MR-Linac (ADAPT-MRL). Clinical and Translational Radiation Oncology, 2021, 31, 64-70.	1.7	3

#	ARTICLE	IF	CITATIONS
259	Quantitative Magnetic Resonance Imaging for Biological Image-Guided Adaptive Radiotherapy. Frontiers in Oncology, 2020, 10, 615643.	2.8	37
260	Magnetic Resonance Imaging for Target Delineation and Daily Treatment Modification. Seminars in Radiation Oncology, 2018, 28, 178-184.	2.2	34
261	State of the art in magnetic resonance imaging. Physics Today, 2020, 73, 34-40.	0.3	4
262	Problems and Promises of Introducing the Magnetic Resonance Imaging Linear Accelerator Into Routine Care: The Case of Prostate Cancer. Frontiers in Oncology, 2020, 10, 1741.	2.8	22
263	Target Volume Delineation Using Diffusion-weighted Imaging for MR-guided Radiotherapy: A Case Series of Laryngeal Cancer Validated by Pathology. Cureus, 2018, 10, e2465.	0.5	6
264	Dosimetric Feasibility of Utilizing the ViewRay Magnetic Resonance Guided Linac System for Image-guided Spine Stereotactic Body Radiation Therapy. Cureus, 2019, 11, e6364.	0.5	8
265	Intermittent radiotherapy as alternative treatment for recurrent high grade glioma: a modeling study based on longitudinal tumor measurements. Scientific Reports, 2021, 11, 20219.	3.3	17
267	A practical methodology to improve the dosimetric accuracy of MR-based radiotherapy simulation for brain tumors. Physica Medica, 2021, 91, 1-12.	0.7	2
268	Novel Imaging for Treatment Planning or Tumor Response. Cancer Drug Discovery and Development, 2017, , 203-239.	0.4	0
269	Advances in verification and delivery techniques. Imaging in Medical Diagnosis and Therapy, 2017, , 321-336.	0.0	0
270	MRI-based IGRT for lung cancer. Imaging in Medical Diagnosis and Therapy, 2017, , 369-384.	0.0	0
271	Retroperitoneal Metastasis Abutting Small Bowel: A Novel Magnetic Resonance-Guided Radiation Approach. Cureus, 2018, 10, e2412.	0.5	5
272	Motion Management. , 2019, , 107-116.		2
273	Radiation Treatment Planning in Pediatric Oncology. Pediatric Oncology, 2019, , 323-333.	0.5	0
274	MRI at the Time of External Beam Treatment. , 2019, , 169-188.		1
275	Multiâ€Contrast Fourâ€dimensional Magnetic Resonance Imaging (MCâ€4Dâ€MRI): development and initial evaluation in liver tumor patients. Medical Physics, 2021, 48, 7984.	3.0	5
276	Low Tesla MRI in-Room Gating during Radiotherapy. Medical Radiology, 2020, , 129-136.	0.1	0
278	Improving the imaging performance of the 1.5 T MR-linac using a flexible, 32-channel, on-body receive array. Physics in Medicine and Biology, 2020, 65, 215008.	3.0	6

#	Article	IF	CITATIONS
279	Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians. Ca-A Cancer Journal for Clinicians, 2022, 72, 34-56.	329.8	45
280	Deep learning-based 3D in vivo dose reconstruction with an electronic portal imaging device for magnetic resonance-linear accelerators: a proof of concept study. Physics in Medicine and Biology, 2021, 66, 235011.	3.0	2
281	Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatment. Radiotherapy and Oncology, 2022, 167, 165-171.	0.6	30
282	Phantom assessment of three-dimensional geometric distortion of a dedicated wide-bore MR-simulator for radiotherapy. Biomedical Physics and Engineering Express, 2022, 8, 025003.	1.2	0
283	A multi-institutional comparison of dosimetric data for a 0.35 T MR-linac. Physics in Medicine and Biology, 2022, 67, 05NT01.	3.0	8
284	Longitudinal assessment of quality assurance measurements in a 1.5ÂT MRâ€linac: Part Il—Magnetic resonance imaging. Journal of Applied Clinical Medical Physics, 2022, 23, e13586.	1.9	4
285	Characterizing magnetically focused contamination electrons by offâ€axis irradiation on an inline MRIâ€Linac. Journal of Applied Clinical Medical Physics, 2022, , e13591.	1.9	5
286	Multiâ€parametric magnetic resonance imaging for radiation treatment planning. Medical Physics, 2022, 49, 2836-2845.	3.0	1
287	Evaluation of MU2net as an online secondary dose check for MR guided radiation therapy with the Elekta unity MR linac. Physical and Engineering Sciences in Medicine, 2022, 45, 429-441.	2.4	3
288	Monte Carlo study of small-field dosimetry for an ELEKTA Unity MR-Linac system. Radiation Physics and Chemistry, 2022, 194, 110036.	2.8	2
289	Online adaptive MR-guided stereotactic radiotherapy for unresectable malignancies in the upper abdomen using a 1.5T MR-linac. Acta Oncológica, 2022, 61, 111-115.	1.8	26
290	Converging Proton Minibeams with Magnetic Fields for Optimized Radiation Therapy: A Proof of Concept. Cancers, 2022, 14, 26.	3.7	2
291	Automatic Contour Refinement for Deep Learning Auto-segmentation of Complex Organs in MRI-guided Adaptive Radiation Therapy. Advances in Radiation Oncology, 2022, 7, 100968.	1.2	10
292	Experimental characterisation of the magnetic field correction factor, <i>îº</i> → _{<i>B</i>} , for Roos chambers in a parallel MRI-linac. Physics in Medicine and Biology, 2022, , .	3.0	1
293	Case Report: MR-Guided Adaptive Radiotherapy, Some Room to Maneuver. Frontiers in Oncology, 2022, 12, 877452.	2.8	0
295	CoilGen: Openâ€source MR coil layout generator. Magnetic Resonance in Medicine, 2022, 88, 1465-1479.	3.0	4
296	A mask-compatible, radiolucent, 8-channel head and neck receive array for MRI-guided radiotherapy treatments and pre-treatment simulation. Physics in Medicine and Biology, 2022, 67, 135006.	3.0	1
297	Accumulated bladder wall dose is correlated with patient-reported acute urinary toxicity in prostate cancer patients treated with stereotactic, daily adaptive MR-guided radiotherapy. Radiotherapy and Oncology, 2022, 171, 182-188.	0.6	13

#	Article	IF	CITATIONS
298	Development of a GPU-superposition Monte Carlo code for fast dose calculation in magnetic fields. Physics in Medicine and Biology, 2022, 67, 125002.	3.0	4
299	Neurovascular-Sparing MR-Guided Adaptive Radiotherapy in Prostate Cancer; Defining the Potential Population for Erectile Function-Sparing Treatment. Journal of Sexual Medicine, 2022, 19, 1196-1200.	0.6	4
300	Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. Biophysics Reviews, 2022, 3, .	2.7	21
301	TransDose: a transformer-based UNet model for fast and accurate dose calculation for MR-LINACs. Physics in Medicine and Biology, 2022, 67, 125013.	3.0	6
302	A Prior Knowledge-Guided, Deep Learning-Based Semiautomatic Segmentation for Complex Anatomy on Magnetic Resonance Imaging. International Journal of Radiation Oncology Biology Physics, 2022, 114, 349-359.	0.8	4
303	Opportunities for improving brain cancer treatment outcomes through imaging-based mathematical modeling of the delivery of radiotherapy and immunotherapy. Advanced Drug Delivery Reviews, 2022, 187, 114367.	13.7	15
304	Development and implementation of an automatic air delineation technique for MRI-guided adaptive radiation therapy. Physics in Medicine and Biology, 2022, 67, 145011.	3.0	4
305	MR-LINAC-Guided Adaptive Radiotherapy for Gastric MALT: Two Case Reports and a Literature Review. Radiation, 2022, 2, 259-267.	1.4	0
306	MRI-guided Radiotherapy (MRgRT) for Treatment of Oligometastases: Review of Clinical Applications and Challenges. International Journal of Radiation Oncology Biology Physics, 2022, 114, 950-967.	0.8	10
307	Benchmarking daily adaptation using fully automated radiotherapy treatment plan optimization for rectal cancer. Physics and Imaging in Radiation Oncology, 2022, 24, 7-13.	2.9	3
308	History of Technological Advancements towards MR-Linac: The Future of Image-Guided Radiotherapy. Journal of Clinical Medicine, 2022, 11, 4730.	2.4	16
309	Adaptive magnetic resonance image guided radiation for intact localized prostate cancer how to optimally test a rapidly emerging technology. Frontiers in Oncology, 0, 12, .	2.8	1
310	Top-Level Design and Simulated Performance of the First Portable CT-MR Scanner. IEEE Access, 2022, 10, 102325-102333.	4.2	1
311	Multi-view Unet for Automated GI Tract Segmentation. , 2022, , .		4
312	Advances in Image-Guided Radiotherapy in the Treatment of Oral Cavity Cancer. Cancers, 2022, 14, 4630.	3.7	6
313	Assessment of intrafractional prostate motion and its dosimetric impact in MRI-guided online adaptive radiotherapy with gating. Strahlentherapie Und Onkologie, 2023, 199, 544-553.	2.0	5
314	Adaptive dose painting for prostate cancer. Frontiers in Oncology, 0, 12, .	2.8	2
315	Predicting necessity of daily online adaptive replanning based on wavelet image features for MRI guided adaptive radiation therapy. Radiotherapy and Oncology, 2022, 176, 165-171.	0.6	5

#	Article	IF	CITATIONS
316	Ultrasonography in Image-Guided Radiotherapy: Current Status and Future Challenges. , 2022, , 201-220.		0
317	Management of Locally Advanced/Metastatic Disease: Radiation Oncology. , 2022, , 107-124.		0
318	Magnetic Resonance-Guided Adaptive Radiotherapy: Technical Concepts. , 2022, , 135-158.		0
319	Ion chamber magnetic field correction factors measured via microDiamond cross-calibration from a conventional linac to MRI-linac. Frontiers in Physics, 0, 10, .	2.1	0
321	Autoâ€detection of necessity for MRIâ€guided online adaptive replanning using a machine learning classifier. Medical Physics, 0, , .	3.0	1
322	On the feasibility of cardiac substructure sparing in magnetic resonance imaging guided stereotactic lung radiotherapy. Medical Physics, 0, , .	3.0	2
323	Magnetic Resonance Imaging–guided Focal Boost to Intraprostatic Lesions Using External Beam Radiotherapy for Localized Prostate Cancer: A Systematic Review and Meta-analysis. European Urology Oncology, 2023, 6, 116-127.	5.4	6
324	Determining the reliable feature change in longitudinal radiomics studies: A methodological approach using the reliable change index. Medical Physics, 0, , .	3.0	0
325	Crossâ€engine transformation based fast dose calculation for MRI‣inac online treatment planning. Medical Physics, 0, , .	3.0	1
326	European Groundshot—addressing Europe's cancer research challenges: a Lancet Oncology Commission. Lancet Oncology, The, 2023, 24, e11-e56.	10.7	35
327	Patient preferences for treatment modalities for localised prostate cancer. BJUI Compass, 0, , .	1.3	0
328	Treatment planning and delivery workflow steps in MR-guided adaptive RT. Advances in Magnetic Resonance Technology and Applications, 2023, , 153-167.	0.1	0
329	MR linac radiation therapy: A real-time personalized approach for prostate cancer. Advances in Magnetic Resonance Technology and Applications, 2023, , 341-365.	0.1	0
330	Immobilization and patient positioning considerations when using MRI for radiotherapy treatment planning. Advances in Magnetic Resonance Technology and Applications, 2023, , 123-151.	0.1	0
331	Basics of MR imaging for the radiation oncologist. Advances in Magnetic Resonance Technology and Applications, 2023, , 5-32.	0.1	0
332	Technical concepts of MRI-Linac (MRL). Advances in Magnetic Resonance Technology and Applications, 2023, , 33-61.	0.1	0
333	Integrated MRI-linac systems: The new paradigm for precision adaptive radiotherapy and biological image-guidance?. Radiotherapy and Oncology, 2022, 176, 249-250.	0.6	1
334	Magnetic Resonance-Guided Adaptive Radiation Therapy for Prostate Cancer: The First Results from the MOMENTUM study—An International Registry for the Evidence-Based Introduction of Magnetic Resonance-Guided Adaptive Radiation Therapy. Practical Radiation Oncology, 2023, 13, e261-e269.	2.1	5

#	Article	IF	CITATIONS
335	Old dogs, new tricks: <scp>MRâ€Linac</scp> training and credentialing of radiation oncologists, radiation therapists and medical physicists. Journal of Medical Radiation Sciences, 2023, 70, 99-106.	1.5	2
336	A pilot study of <scp>MRI</scp> radiomics for highâ€risk prostate cancer stratification in 1.5 T <scp>MR</scp> â€guided radiotherapy. Magnetic Resonance in Medicine, 2023, 89, 2088-2099.	3.0	5
337	Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac. Physics in Medicine and Biology, 2023, 68, 04NT01.	3.0	4
338	U-Net Model with Transfer Learning Model as a Backbone for Segmentation of Gastrointestinal Tract. Bioengineering, 2023, 10, 119.	3.5	16
339	Biologically Equivalent Dose Comparison Between Magnetic Resonance-Guided Adaptive and Computed Tomography-Guided Internal Target Volume-Based Stereotactic Body Radiotherapy for Liver Tumors. Cureus, 2023, , .	0.5	0
340	Deep learning-based prediction of deliverable adaptive plans for MR-guided adaptive radiotherapy: A feasibility study. Frontiers in Oncology, 0, 13, .	2.8	4
341	Dosimetric characterization of a novel commercial plastic scintillation detector with an MRâ€Linac. Medical Physics, 2023, 50, 2525-2539.	3.0	5
342	Prediction of adaptive strategies based on deformation vector field features for MRâ€guided adaptive radiotherapy of prostate cancer. Medical Physics, 0, , .	3.0	1
343	Adaptive hypofractionted and stereotactic body radiotherapy for lung tumors with real-time MRI guidance. Frontiers in Oncology, 0, 13, .	2.8	5
344	Deep learning based automatic contour refinement for inaccurate auto-segmentation in MR-guided adaptive radiotherapy. Physics in Medicine and Biology, 2023, 68, 055004.	3.0	2
345	Compact Design of 40 kV 100 A High-Voltage Pulsed-Power Modulator for Driving X-Band Magnetrons. IEEE Transactions on Power Electronics, 2023, 38, 7598-7609.	7.9	2
346	Intrafraction motion analysis in online adaptive radiotherapy for esophageal cancer. Physics and Imaging in Radiation Oncology, 2023, 26, 100432.	2.9	Ο
347	An ESTRO-ACROP guideline on quality assurance and medical physics commissioning of online MRI guided radiotherapy systems based on a consensus expert opinion. Radiotherapy and Oncology, 2023, 181, 109504.	0.6	5
348	A model for gastrointestinal tract motility in a 4D imaging phantom of human anatomy. Medical Physics, 2023, 50, 3066-3075.	3.0	2
349	ACPSEM position paper: dosimetry for magnetic resonance imaging linear accelerators. Physical and Engineering Sciences in Medicine, 2023, 46, 1-17.	2.4	0
350	Built-in wavelet-induced smoothness to reduce plan complexity in intensity modulated radiation therapy (IMRT). Physics in Medicine and Biology, 2023, 68, 065013.	3.0	1
351	Biology-Guided Radiation Therapy. Surgical Oncology Clinics of North America, 2023, 32, 553-568.	1.5	1
352	Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers, 2023, 15, 2081.	3.7	5

#	Article	IF	Citations
353	Automated deep learning auto-segmentation of air volumes for MRI-guided online adaptive radiation therapy of abdominal tumors. Physics in Medicine and Biology, 2023, 68, 125011.	3.0	1
354	Feasibility study of adaptive radiotherapy for esophageal cancer using artificial intelligence autosegmentation based on MR-Linac. Frontiers in Oncology, 0, 13, .	2.8	0
355	A new workflow of the on-line 1.5-T MR-guided adaptive radiation therapy. Japanese Journal of Radiology, 2023, 41, 1316-1322.	2.4	1
356	Institutionalisation of convergent medical innovation: an empirical study of the MRI-guided linear accelerator in the Netherlands and the United States. Innovation: Management, Policy and Practice, 0, , 1-22.	3.9	0
357	A patient-specific deep learning framework for 3D motion estimation and volumetric imaging during lung cancer radiotherapy. Physics in Medicine and Biology, 2023, 68, 14NT01.	3.0	0
358	Improving accelerated 3D imaging in MRI-guided radiotherapy for prostate cancer using a deep learning method. Radiation Oncology, 2023, 18, .	2.7	1
359	Simultaneous <scp>T₂</scp> â€weighted realâ€ŧime <scp>MRI</scp> of two orthogonalÂslices. Magnetic Resonance in Medicine, 0, , .	3.0	0
360	A planning-based feasibility study of MR-Linac treatment for anal cancer radiation therapy. Medical Dosimetry, 2023, , .	0.9	0
361	Integration of operator-validated contours in deformable image registration for dose accumulation in radiotherapy. Physics and Imaging in Radiation Oncology, 2023, 27, 100483.	2.9	0
362	Diffusion-weighted imaging on an MRI-linear accelerator to identify adversely prognostic tumour regions in glioblastoma during chemoradiation. Radiotherapy and Oncology, 2023, 188, 109873.	0.6	2
363	Investigation of autosegmentation techniques on T2â€weighted MRI for offâ€line dose reconstruction in MRâ€linac workflow for head and neck cancers. Medical Physics, 2024, 51, 278-291.	3.0	1
364	Impact of abdominal compression on intra-fractional motion and delivered dose in magnetic resonance image-guided adaptive radiation ablation of adrenal gland metastases. Physica Medica, 2023, 114, 102682.	0.7	0
365	Very fast digital 2D rigid motion estimation directly on continuous k-space data using an RNN. Biomedical Signal Processing and Control, 2024, 87, 105413.	5.7	0
366	Biomedical advances and future prospects of high-precision three-dimensional radiotherapy and four-dimensional radiotherapy. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2023, , .	3.8	0
367	MR-LINAC: Elekta Unity. , 2023, , 277-284.		0
368	Online Adaptive MRI-Guided Stereotactic Body Radiotherapy for Pancreatic and Other Intra-Abdominal Cancers. Cancers, 2023, 15, 5272.	3.7	0
369	Treatment of Central Nervous System Tumors on Combination MR-Linear Accelerators: Review of Current Practice and Future Directions. Cancers, 2023, 15, 5200.	3.7	1
370	MRI-Guided Adaptive Radiation Therapy. Seminars in Radiation Oncology, 2024, 34, 84-91.	2.2	1

#	Article	IF	CITATIONS
371	The Use of MR-Guided Radiation Therapy for Head and Neck Cancer and Recommended Reporting Guidance. Seminars in Radiation Oncology, 2024, 34, 69-83.	2.2	1
372	Impact of intrafraction motion in pancreatic cancer treatments with MR-guided adaptive radiation therapy. Frontiers in Oncology, 0, 13, .	2.8	0
373	Experimental validation of multi-fraction online adaptations in magnetic resonance guided radiotherapy. Physics and Imaging in Radiation Oncology, 2023, 28, 100507.	2.9	0
374	MR-Linac Dosimetry: Current Approaches and Challenges. Journal of Physics: Conference Series, 2023, 2630, 012005.	0.4	0
375	Patient expectation and experience of MR-guided radiotherapy using a 1.5T MR-Linac. Technical Innovations and Patient Support in Radiation Oncology, 2024, 29, 100224.	1.9	0
376	Performance characterization of a novel hybrid dosimetry insert for simultaneous spatial, temporal, and motionâ€included dosimetry for MRâ€linac. Medical Physics, 0, , .	3.0	0
377	Quality of life and clinical outcomes in rectal cancer patients treated on a 1.5T MR-Linac within the MOMENTUM study. Clinical and Translational Radiation Oncology, 2024, 45, 100721.	1.7	0
378	MR-LINAC, a New Partner in Radiation Oncology: Current Landscape. Cancers, 2024, 16, 270.	3.7	0
379	The First Low-Field MRI-Guided Radiation Therapy Hybrid Integrated System: MRIdian. , 2024, , 149-173.		0