The Australian Magnetic Resonance Imaging–Linac P

Seminars in Radiation Oncology 24, 203-206 DOI: 10.1016/j.semradonc.2014.02.015

Citation Report

#	Article	IF	CITATIONS
1	Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems. Medical Physics, 2015, 42, 856-865.	1.6	17
2	Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study. Medical Physics, 2015, 43, 368-377.	1.6	30
3	Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system. Medical Physics, 2015, 42, 5828-5837.	1.6	52
5	Quantification of lung tumor rotation with automated landmark extraction using orthogonal cine MRI images. Physics in Medicine and Biology, 2015, 60, 7165-7178.	1.6	21
6	QA procedures needed for advanced RT techniques and its impact on treatment outcome. Journal of Physics: Conference Series, 2015, 573, 012001.	0.3	5
7	Prostate cancer radiotherapy: potential applications of metal nanoparticles for imaging and therapy. British Journal of Radiology, 2015, 88, 20150256.	1.0	10
8	On-line MR imaging for dose validation of abdominal radiotherapy. Physics in Medicine and Biology, 2015, 60, 8869-8883.	1.6	35
9	AGuIX nanoparticles as a promising platform for image-guided radiation therapy. Cancer Nanotechnology, 2015, 6, 4.	1.9	63
10	Image-guided radiotherapy and motion management in lung cancer. British Journal of Radiology, 2015, 88, 20150100.	1.0	49
11	Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study. International Journal of Radiation Oncology Biology Physics, 2015, 91, 840-848.	0.4	41
12	Proton beam deflection in MRI fields: Implications for MRIâ€guided proton therapy. Medical Physics, 2015, 42, 2113-2124.	1.6	63
13	Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T. Physics in Medicine and Biology, 2015, 60, 5955-5969.	1.6	41
14	Plan Optimization for a Lung Patient on a Parallel Linac-MR System. IFMBE Proceedings, 2015, , 801-804.	0.2	0
15	Geometric validation of selfâ€gating <i>k</i> â€spaceâ€sorted 4Dâ€MRI vs 4Dâ€CT using a respiratory motion phantom. Medical Physics, 2015, 42, 5787-5797.	1.6	12
16	MRI-based IMRT planning for MR-linac: comparison between CT- and MRI-based plans for pancreatic and prostate cancers. Physics in Medicine and Biology, 2016, 61, 3819-3842.	1.6	38
17	A particle filter based autocontouring algorithm for lung tumor tracking using dynamic magnetic resonance imaging. Medical Physics, 2016, 43, 5161-5169.	1.6	14
18	Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Physics in Medicine and Biology, 2016, 61, N80-N89.	1.6	48
19	A novel electron accelerator for MRI-Linac radiotherapy. Medical Physics, 2016, 43, 1285-1294.	1.6	14

#	Article	IF	CITATIONS
20	Minimal skin dose increase in longitudinal rotating biplanar linac-MR systems: examination of radiation energy and flattening filter design. Physics in Medicine and Biology, 2016, 61, 3527-3539.	1.6	24
21	A comparative study of automatic image segmentation algorithms for target tracking in MRâ€IGRT. Journal of Applied Clinical Medical Physics, 2016, 17, 441-460.	0.8	25
22	Online 4D ultrasound guidance for realâ€ŧime motion compensation by MLC tracking. Medical Physics, 2016, 43, 5695-5704.	1.6	33
23	Technical Note: Experimental results from a prototype highâ€field inline MRIâ€linac. Medical Physics, 2016, 43, 5188-5194.	1.6	43
25	Technical Note: A fast online adaptive replanning method for VMAT using flattening filter free beams. Medical Physics, 2016, 43, 2756-2764.	1.6	14
26	Performance of a clinical gridded electron gun in magnetic fields: Implications for MRIâ€linac therapy. Medical Physics, 2016, 43, 5903-5914.	1.6	10
27	Towards real-time MRI-guided 3D localization of deforming targets for non-invasive cardiac radiosurgery. Physics in Medicine and Biology, 2016, 61, 7848-7863.	1.6	21
28	Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MRâ€linac?. Medical Physics, 2016, 43, 3961-3968.	1.6	56
29	Technical Note: Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy. Medical Physics, 2016, 43, 4797-4802.	1.6	49
30	Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI. Physics in Medicine and Biology, 2016, 61, 872-887.	1.6	66
31	Initial experiments with gel-water: towards MRI-linac dosimetry and imaging. Australasian Physical and Engineering Sciences in Medicine, 2016, 39, 921-932.	1.4	7
32	Pushing radiation therapy limitations with theranostic nanoparticles. Nanomedicine, 2016, 11, 997-999.	1.7	18
33	Mitigation of Intra-coil Eddy Currents in Split Gradient Coils in a Hybrid MRI-LINAC System. IEEE Transactions on Biomedical Engineering, 2016, 64, 1-1.	2.5	7
35	Magnetic resonance imaging in lung: a review of its potential for radiotherapy. British Journal of Radiology, 2016, 89, 20150431.	1.0	41
36	Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlentherapie Und Onkologie, 2016, 192, 209-215.	1.0	13
37	Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed. Physics in Medicine and Biology, 2017, 62, 1548-1564.	1.6	39
38	Synthesis of the Cooling Pathways Optimal Layout for MRI Split Gradient Coils. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	0
39	The future of image-guided radiotherapy will be MR guided. British Journal of Radiology, 2017, 90, 20160667.	1.0	147

#	Article	IF	CITATIONS
40	New concept on an integrated interior magnetic resonance imaging and medical linear accelerator system for radiation therapy. Journal of Medical Imaging, 2017, 4, 015004.	0.8	5
41	Technical Note: Is bulk electron density assignment appropriate for MRI-only based treatment planning for lung cancer?. Medical Physics, 2017, 44, 3437-3443.	1.6	20
42	The Australian MRI-Linac Program: measuring profiles and PDD in a horizontal beam. Journal of Physics: Conference Series, 2017, 777, 012035.	0.3	4
43	A particle filter motion prediction algorithm based on an autoregressive model for real-time MRI-guided radiotherapy of lung cancer. Biomedical Physics and Engineering Express, 2017, 3, 035001.	0.6	15
44	A non-axial superconducting magnet design for optimized patient access and minimal SAD for use in a Linac-MR hybrid: proof of concept. Physics in Medicine and Biology, 2017, 62, N147-N160.	1.6	4
45	Future of medical physics: Realâ€ŧime MRIâ€guided proton therapy. Medical Physics, 2017, 44, e77-e90.	1.6	99
46	Magnetic resonance image guidance in external beam radiation therapy planning and delivery. Japanese Journal of Radiology, 2017, 35, 417-426.	1.0	12
47	Technical Note: The design and function of a horizontal patient rotation system for the purposes of fixed-beam cancer radiotherapy. Medical Physics, 2017, 44, 2490-2502.	1.6	12
48	A tool for validating MRI-guided strategies: a digital breathing CT/MRI phantom of the abdominal site. Medical and Biological Engineering and Computing, 2017, 55, 2001-2014.	1.6	29
49	Design and simulation of a short, variable-energy 4 to 10 MV S-band linear accelerator waveguide. Medical Physics, 2017, 44, 2124-2131.	1.6	2
50	Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System. International Journal of Radiation Oncology Biology Physics, 2017, 97, 1095-1104.	0.4	17
51	MRI-guided lung SBRT: Present and future developments. Physica Medica, 2017, 44, 139-149.	0.4	94
52	Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy. Physics in Medicine and Biology, 2017, 62, 2910-2921.	1.6	45
53	Stereotactic radiosurgery planning of vestibular schwannomas: Is <scp>MRI</scp> at 3 Tesla geometrically accurate?. Medical Physics, 2017, 44, 375-381.	1.6	11
54	Simultaneous orthogonal plane imaging. Magnetic Resonance in Medicine, 2017, 78, 1700-1710.	1.9	25
55	Effects of magnetic field orientation and strength on the treatment planning of nonsmall cell lung cancer. Medical Physics, 2017, 44, 6621-6631.	1.6	8
56	Investigation of magnetic field effects on the dose–response of 3D dosimeters for magnetic resonance – image guided radiation therapy applications. Radiotherapy and Oncology, 2017, 125, 426-432.	0.3	39
57	Experimental verification of dose enhancement effects in a lung phantom from inline magnetic fields. Radiotherapy and Oncology, 2017, 125, 433-438.	0.3	13

#	Article	IF	CITATIONS
58	Treating locally advanced lung cancer with a 1.5 T MR-Linac – Effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy. Radiotherapy and Oncology, 2017, 125, 280-285.	0.3	52
59	Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study. Radiotherapy and Oncology, 2017, 125, 485-491.	0.3	30
60	A Monte-Carlo study to assess the effect of 1.5 T magnetic fields on the overall robustness of pencil-beam scanning proton radiotherapy plans for prostate cancer. Physics in Medicine and Biology, 2017, 62, 8470-8482.	1.6	15
61	Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations. Physics in Medicine and Biology, 2017, 62, 6708-6728.	1.6	72
62	Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac. Physics in Medicine and Biology, 2017, 62, 7233-7248.	1.6	108
63	Magnetic field dose effects on different radiation beam geometries for hypofractionated partial breast irradiation. Journal of Applied Clinical Medical Physics, 2017, 18, 62-70.	0.8	23
64	A back-projection algorithm in the presence of an extra attenuating medium: towards EPID dosimetry for the MR-Linac. Physics in Medicine and Biology, 2017, 62, 6322-6340.	1.6	10
65	Impact of robotic ultrasound image guidance on plan quality in SBRT of the prostate. British Journal of Radiology, 2017, 90, 20160926.	1.0	7
66	CyberKnife with integrated <scp>CT</scp> â€onâ€rails: System description and first clinical application for pancreas <scp>SBRT</scp> . Medical Physics, 2017, 44, 4816-4827.	1.6	26
67	Effect of intra-fraction motion on the accumulated dose for free-breathing MR-guided stereotactic body radiation therapy of renal-cell carcinoma. Physics in Medicine and Biology, 2017, 62, 7407-7424.	1.6	32
68	First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Physics in Medicine and Biology, 2017, 62, L41-L50.	1.6	400
69	Robotic ultrasound-guided SBRT of the prostate: feasibility with respect to plan quality. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 149-159.	1.7	15
70	The coil array method for creating a dynamic imaging volume. Magnetic Resonance in Medicine, 2017, 78, 784-793.	1.9	7
71	Increasing the Therapeutic Ratio of Radiotherapy. Cancer Drug Discovery and Development, 2017, , .	0.2	2
72	The impact of a 1.5†T MRI linac fringe field on neighbouring linear accelerators. Physics and Imaging in Radiation Oncology, 2017, 4, 12-16.	1.2	8
74	Inhibition of PCSK9 protects against radiation-induced damage of prostate cancer cells. OncoTargets and Therapy, 2017, Volume 10, 2139-2146.	1.0	26
75	Magnetic resonance imaging in precision radiation therapy for lung cancer. Translational Lung Cancer Research, 2017, 6, 689-707.	1.3	56
76	Feasibility study on 3D image reconstruction from 2D orthogonal cineâ€ <scp>MRI</scp> for <scp>MRI</scp> â€guided radiotherapy. Journal of Medical Imaging and Radiation Oncology, 2018, 62, 389-400.	0.9	44

#	Article	IF	CITATIONS
78	Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field. Physics in Medicine and Biology, 2018, 63, 095001.	1.6	42
79	The need for, and implementation of, image guidance in radiation therapy. Annals of the ICRP, 2018, 47, 160-176.	3.0	6
80	<scp>MR</scp> and <scp>CT</scp> data with multiobserver delineations of organs in the pelvic area—Part of the Gold Atlas project. Medical Physics, 2018, 45, 1295-1300.	1.6	45
81	A high resolution 2D array detector system for small-field MRI-linac applications. Biomedical Physics and Engineering Express, 2018, 4, 035041.	0.6	6
82	Passive magnetic shielding in MRI-Linac systems. Physics in Medicine and Biology, 2018, 63, 075008.	1.6	14
83	Real-time volumetric relative dosimetry for magnetic resonance—image-guided radiation therapy (MR-IGRT). Physics in Medicine and Biology, 2018, 63, 045021.	1.6	17
84	Investigating the effect of a magnetic field on dose distributions at phantom-air interfaces using PRESAGE [®] 3D dosimeter and Monte Carlo simulations. Physics in Medicine and Biology, 2018, 63, 05NT01.	1.6	21
85	Assessment of image quality and scatter and leakage radiation of an integrated <scp>MR</scp> â€ <scp>LINAC</scp> system. Medical Physics, 2018, 45, 1204-1209.	1.6	14
86	Geometric accuracy of the <scp>MR</scp> imaging techniques in the presence of motion. Journal of Applied Clinical Medical Physics, 2018, 19, 168-175.	0.8	1
87	Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT. British Journal of Radiology, 2018, 91, 20170522.	1.0	44
88	Effect of region extraction and assigned mass-density values on the accuracy of dose calculation with magnetic resonance-based volumetric arc therapy planning. Radiological Physics and Technology, 2018, 11, 174-183.	1.0	2
89	A Hybrid Image Registration and Matching Framework for Real-Time Motion Tracking in MRI-Guided Radiotherapy. IEEE Transactions on Biomedical Engineering, 2018, 65, 131-139.	2.5	27
90	Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A "Game Changer―for Prostate Treatment?. International Journal of Radiation Oncology Biology Physics, 2018, 100, 361-373.	0.4	132
91	Technical Note: Penumbral width trimming in solid lung dose profiles for 0.9 and 1.5 T <scp>MRI</scp> â€Linac prototypes. Medical Physics, 2018, 45, 479-487.	1.6	8
92	The development of a 4D treatment planning methodology to simulate the tracking of central lung tumors in an <scp>MRI</scp> â€inac. Journal of Applied Clinical Medical Physics, 2018, 19, 145-155.	0.8	11
93	The role of imaging in the clinical practice of radiation oncology for pancreatic cancer. Abdominal Radiology, 2018, 43, 393-403.	1.0	6
94	Radiation-induced lung toxicity in mice irradiated in a strong magnetic field. PLoS ONE, 2018, 13, e0205803.	1.1	3
95	The effect of density overrides on magnetic resonance-guided radiation therapy planning for lung cancer. Physics and Imaging in Radiation Oncology, 2018, 8, 23-27.	1.2	4

#	Article	IF	CITATIONS
96	The characterization of a large multi-axis ionization chamber array in a 1.5 T MRI linac. Physics in Medicine and Biology, 2018, 63, 225007.	1.6	4
97	SBRT targets that move with respiration. Physica Medica, 2018, 56, 19-24.	0.4	34
98	The impact of 2D cine MR imaging parameters on automated tumor and organ localization for MR-guided real-time adaptive radiotherapy. Physics in Medicine and Biology, 2018, 63, 235005.	1.6	10
99	Fano cavity test for electron Monte Carlo transport algorithms in magnetic fields: comparison between EGSnrc, PENELOPE, MCNP6 and Geant4. Physics in Medicine and Biology, 2018, 63, 195013.	1.6	22
100	Nuts and bolts of 4D-MRI for radiotherapy. Physics in Medicine and Biology, 2018, 63, 21TR01.	1.6	99
101	Magnetic Resonance Imaging only Workflow for Radiotherapy Simulation and Planning in Prostate Cancer. Clinical Oncology, 2018, 30, 692-701.	0.6	47
102	MRI-guidance for motion management in external beam radiotherapy: current status and future challenges. Physics in Medicine and Biology, 2018, 63, 22TR03.	1.6	94
103	Simultaneous motion monitoring and truth-in-delivery analysis imaging framework for MR-guided radiotherapy. Physics in Medicine and Biology, 2018, 63, 235014.	1.6	11
104	Emerging role of MRI in radiation therapy. Journal of Magnetic Resonance Imaging, 2018, 48, 1468-1478.	1.9	89
105	MRI-Linear Accelerator Radiotherapy Systems. Clinical Oncology, 2018, 30, 686-691.	0.6	89
106	Technical Note: Experimental verification of magnetic fieldâ€induced beam deflection and Bragg peak displacement for MRâ€integrated proton therapy. Medical Physics, 2018, 45, 3429-3434.	1.6	30
107	Imageâ€based retrospective 4D <scp>MRI</scp> in external beam radiotherapy: A comparative study with a digital phantom. Medical Physics, 2018, 45, 3161-3172.	1.6	21
108	Ionization chamber correction factors for MR-linacs. Physics in Medicine and Biology, 2018, 63, 11NT03.	1.6	41
109	Accelerated 3D <scp>bSSFP</scp> imaging for treatment planning on an <scp>MRI</scp> â€guided radiotherapy system. Medical Physics, 2018, 45, 2595-2602.	1.6	10
110	Imaging performance of a dedicated radiation transparent RF coil on a 1.0 Tesla inline MRI-linac. Physics in Medicine and Biology, 2018, 63, 135005.	1.6	23
111	A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Physics in Medicine and Biology, 2018, 63, 125008.	1.6	55
112	Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy. Seminars in Radiation Oncology, 2018, 28, 238-247.	1.0	21
113	Patient rotation during linacâ€based photon electron radiotherapy. Journal of Medical Imaging and Radiation Oncology, 2018, 62, 548-552.	0.9	8

#	Article	IF	CITATIONS
114	On the direct acquisition of beam's-eye-view images in MRI for integration with external beam radiotherapy. Physics in Medicine and Biology, 2018, 63, 125002.	1.6	6
115	Feasibility of polymer gel-based measurements of radiation isocenter accuracy in magnetic fields. Physics in Medicine and Biology, 2018, 63, 11NT02.	1.6	18
116	Technical Note: Experimental characterization of the dose deposition in parallel MRIâ€linacs at various magnetic field strengths. Medical Physics, 2019, 46, 5152-5158.	1.6	7
117	Design and feasibility of a flexible, on-body, high impedance coil receive array for a 1.5 T MR-linac. Physics in Medicine and Biology, 2019, 64, 185004.	1.6	22
118	Technical Note: Realâ€ŧime 3D MRI in the presence of motion for MRIâ€guided radiotherapy: 3D Dynamic keyhole imaging with superâ€resolution. Medical Physics, 2019, 46, 4631-4638.	1.6	8
119	Modelling the x-ray source for the Australian MRI-Linac. Journal of Physics: Conference Series, 2019, 1154, 012025.	0.3	0
120	Gradient Field Deviation (GFD) Correction Using a Hybrid-Norm Approach With Wavelet Sub-Band Dependent Regularization: Implementation for Radial MRI at 9.4 T. IEEE Transactions on Biomedical Engineering, 2019, 66, 2693-2701.	2.5	5
121	Technical design and concept of a 0.35 T MR-Linac. Clinical and Translational Radiation Oncology, 2019, 18, 98-101.	0.9	210
122	Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MRâ€only breast radiotherapy. Medical Physics, 2019, 46, 4135-4147.	1.6	37
123	Time-resolved volumetric MRI in MRI-guided radiotherapy: an <i>in silico</i> comparative analysis. Physics in Medicine and Biology, 2019, 64, 185013.	1.6	23
124	Motion Management in Stereotactic Body Radiation Therapy. , 2019, , 195-215.		1
125	Measurement validation of treatment planning for a MR‣inac. Journal of Applied Clinical Medical Physics, 2019, 20, 28-38.	0.8	18
126	A novel transport sweep architecture for efficient deterministic patient dose calculations in MRI-guided radiotherapy. Physics in Medicine and Biology, 2019, 64, 185012.	1.6	5
127	Stereotactic body radiation therapy with optional focal lesion ablative microboost in prostate cancer: Topical review and multicenter consensus. Radiotherapy and Oncology, 2019, 140, 131-142.	0.3	24
128	Beyond T2 and 3T: New MRI techniques for clinicians. Clinical and Translational Radiation Oncology, 2019, 18, 87-97.	0.9	10
129	Single patient convolutional neural networks for real-time MR reconstruction: a proof of concept application in lung tumor segmentation for adaptive radiotherapy. Physics in Medicine and Biology, 2019, 64, 195002.	1.6	9
130	Measurement of isocenter alignment accuracy and image distortion of an 0.35 T MR-Linac system. Physics in Medicine and Biology, 2019, 64, 205011.	1.6	32
131	The transformation of radiation oncology using real-time magnetic resonance guidance: A review. European Journal of Cancer, 2019, 122, 42-52.	1.3	136

#	Article	IF	CITATIONS
132	End-to-end test of an online adaptive treatment procedure in MR-guided radiotherapy using a phantom with anthropomorphic structures. Physics in Medicine and Biology, 2019, 64, 225003.	1.6	25
133	Polymer gel-based measurements of the isocenter accuracy in an MR-LINAC. Journal of Physics: Conference Series, 2019, 1305, 012007.	0.3	5
134	The MD Anderson experience with 3D dosimetry and an MR-linac. Journal of Physics: Conference Series, 2019, 1305, 012011.	0.3	5
135	Polymer gel dosimetry in the presence of a strong magnetic field. Journal of Physics: Conference Series, 2019, 1305, 012014.	0.3	2
136	Experimental characterization of magnetically focused electron contamination at the surface of a highâ€field inline MRIâ€linac. Medical Physics, 2019, 46, 5780-5789.	1.6	16
137	Soft-tissue prostate intrafraction motion tracking in 3D cine-MR for MR-guided radiotherapy. Physics in Medicine and Biology, 2019, 64, 235008.	1.6	26
138	MRI-guided proton therapy planning: accounting for an inline MRI fringe field. Physics in Medicine and Biology, 2019, 64, 215015.	1.6	17
139	IPEM Topical Report: A 2018 IPEM survey of MRI use for external beam radiotherapy treatment planning in the UK. Physics in Medicine and Biology, 2019, 64, 175021.	1.6	21
140	MRI commissioning of 1.5T MR-linac systems – a multi-institutional study. Radiotherapy and Oncology, 2019, 132, 114-120.	0.3	111
141	Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiotherapy and Oncology, 2019, 133, 156-162.	0.3	80
142	Multiresolution radial MRI to reduce IDLE time in pre-beam imaging on an MR-Linac (MR-RIDDLE). Physics in Medicine and Biology, 2019, 64, 055011.	1.6	13
143	A dual-purpose MRI acquisition to combine 4D-MRI and dynamic contrast-enhanced imaging for abdominal radiotherapy planning. Physics in Medicine and Biology, 2019, 64, 06NT02.	1.6	7
144	MRI for Radiotherapy. , 2019, , .		4
145	Real-time intrafraction motion monitoring in external beam radiotherapy. Physics in Medicine and Biology, 2019, 64, 15TR01.	1.6	130
146	A feasibility study for highâ€resolution silicon array detector performance in the magnetic field of a permanent magnet system. Medical Physics, 2019, 46, 4224-4232.	1.6	1
147	MRI Linac Systems. , 2019, , 155-168.		6
148	MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiation Oncology, 2019, 14, 92.	1.2	252
149	Technical Note: The first live treatment on a 1.0 Tesla inline <scp>MRI</scp> â€linac. Medical Physics, 2019, 46, 3254-3258.	1.6	13

#	Article	IF	CITATIONS
150	Impact of magnetic fields on dose measurement with small ion chambers illustrated in highâ€resolution response maps. Medical Physics, 2019, 46, 3298-3305.	1.6	2
151	Impact of inline magnetic fields on dose distributions for VMAT in lung tumor. Physica Medica, 2019, 59, 100-106.	0.4	4
152	Simultaneous acquisition of orthogonal plane cine imaging and isotropic 4D-MRI using super-resolution. Radiotherapy and Oncology, 2019, 136, 121-129.	0.3	15
153	Evaluation of plan quality in radiotherapy planning with an MR-linac. Physics and Imaging in Radiation Oncology, 2019, 10, 19-24.	1.2	21
154	Comparing the effectiveness and efficiency of various gating approaches for PBS proton therapy of pancreatic cancer using 4D-MRI datasets. Physics in Medicine and Biology, 2019, 64, 085011.	1.6	10
155	Monte Carlo simulations of out-of-field surface doses due to the electron streaming effect in orthogonal magnetic fields. Physics in Medicine and Biology, 2019, 64, 115029.	1.6	27
157	Large field of view distortion assessment in a lowâ€field MR â€linac. Medical Physics, 2019, 46, 2347-2355.	1.6	21
158	EPSM 2018, Engineering and Physical Sciences in Medicine. Australasian Physical and Engineering Sciences in Medicine, 2019, 42, 285-401.	1.4	7
159	Direct measurement of ion chamber correction factors, k _Q and k _B , in a 7 MV MRI-linac. Physics in Medicine and Biology, 2019, 64, 105025.	1.6	29
160	A retrospective 4Dâ€ <scp>MRI</scp> based on 2D diaphragm profiles for lung cancer patients. Journal of Medical Imaging and Radiation Oncology, 2019, 63, 360-369.	0.9	10
161	Realizing the potential of magnetic resonance image guided radiotherapy in gynaecological and rectal cancer. British Journal of Radiology, 2019, 92, 20180670.	1.0	15
162	Geant4 Monte Carlo investigation of the magnetic field effect on dose distributions in low-density regions in magnetic resonance image-guided radiation therapy. Physica Medica, 2019, 68, 17-34.	0.4	3
163	The Influence of Magnetic Fields (0.05 T ≤8 ≤7 T) on the Response of Personal Thermoluminescent Dosimeters to Ionizing Radiation. Health Physics, 2019, 117, 345-352.	0.3	1
164	Potential benefit of MRI-guided IMRT for flank irradiation in pediatric patients with Wilms' tumor. Acta Oncol³gica, 2019, 58, 243-250.	0.8	15
165	Commissioning of a water calorimeter as a primary standard for absorbed dose to water in magnetic fields. Physics in Medicine and Biology, 2019, 64, 035013.	1.6	15
166	Calculation of absorbed dose in radiotherapy by solution of the linear Boltzmann transport equations. Physics in Medicine and Biology, 2019, 64, 02TR01.	1.6	17
167	A ROI-based global motion model established on 4DCT and 2D cine-MRI data for MRI-guidance in radiation therapy. Physics in Medicine and Biology, 2019, 64, 045002.	1.6	28
168	Biological effects of static magnetic field exposure in the context of MR-guided radiotherapy. British Journal of Radiology, 2019, 92, 20180484.	1.0	16

#	Article	IF	CITATIONS
169	Adopting Advanced Radiotherapy Techniques in the Treatment of Paediatric Extracranial Malignancies: Challenges and Future Directions. Clinical Oncology, 2019, 31, 50-57.	0.6	2
170	Commissioning of a 4D MRI phantom for use in MRâ€guided radiotherapy. Medical Physics, 2019, 46, 25-33.	1.6	3
171	Role and future of MRI in radiation oncology. British Journal of Radiology, 2019, 92, 20180505.	1.0	52
172	Magnetic resonanceâ€guided radiation therapy: A review. Journal of Medical Imaging and Radiation Oncology, 2020, 64, 163-177.	0.9	104
173	Lewis Acid and Base Catalysis of YNbO 4 Toward Aqueousâ€Phase Conversion of Hexose and Triose Sugars to Lactic Acid in Water. ChemCatChem, 2020, 12, 350-359.	1.8	18
174	First application of a highâ€resolution silicon detector for proton beam Bragg peak detection in a 0.95 T magnetic field. Medical Physics, 2020, 47, 181-189.	1.6	4
175	Geometric distortion characterization and correction for the 1.0ÂT Australian MRlâ€linac system using an inverse electromagnetic method. Medical Physics, 2020, 47, 1126-1138.	1.6	11
176	Generalized simultaneous multiâ€orientation 2D imaging. Magnetic Resonance in Medicine, 2020, 84, 847-856.	1.9	1
177	Dosimetric impact of soft-tissue based intrafraction motion from 3D cine-MR in prostate SBRT. Physics in Medicine and Biology, 2020, 65, 025012.	1.6	13
178	Impact of Magnetic Field on Dose Distribution in MR-Guided Radiotherapy of Head and Neck Cancer. Frontiers in Oncology, 2020, 10, 1739.	1.3	10
179	Enhanced MRI-guided radiotherapy with gadolinium-based nanoparticles: preclinical evaluation with an MRI-linac. Cancer Nanotechnology, 2020, 11, .	1.9	9
180	ADC measurements on the Unity MR-linac – A recommendation on behalf of the Elekta Unity MR-linac consortium. Radiotherapy and Oncology, 2020, 153, 106-113.	0.3	60
181	Dosimetry in magnetic fields with dedicated MR-compatible ionization chambers. Physica Medica, 2020, 80, 259-266.	0.4	3
182	Feasibility of using a commercial collapsed cone dose engine for 1.5T MR-LINAC online independent dose verification. Physica Medica, 2020, 80, 288-296.	0.4	16
183	Towards MR-guided electron therapy: Measurement and simulation of clinical electron beams in magnetic fields. Physica Medica, 2020, 78, 83-92.	0.4	1
184	Current Status of Anatomical Magnetic Resonance Imaging in Brachytherapy and External Beam Radiotherapy Planning and Delivery. Clinical Oncology, 2020, 32, 817-827.	0.6	5
185	Impact of lung density on isolated lung tumor dose in VMAT using inline MR-Linac. Physica Medica, 2020, 80, 65-74.	0.4	0
186	Imaging and radiation isocentre determination for inline MR-guided radiotherapy systems – proof of principle using MR-phantom with embedded monolithic silicon detector. Journal of Physics: Conference Series, 2020, 1662, 012008.	0.3	0

#	Article	IF	CITATIONS
187	Dosimetric and geometric end-to-end accuracy of a magnetic resonance guided linear accelerator. Physics and Imaging in Radiation Oncology, 2020, 16, 109-112.	1.2	13
188	Medical physics challenges in clinical MR-guided radiotherapy. Radiation Oncology, 2020, 15, 93.	1.2	101
189	Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy. Radiation Oncology, 2020, 15, 104.	1.2	59
190	Impact of a parallel magnetic field on radiation dose beneath thin copper and aluminum foils. Biomedical Physics and Engineering Express, 2020, 6, 037002.	0.6	3
191	Influence of 0.35ÂT magnetic field on the response of EBT3 and EBTâ€XD radiochromic films. Medical Physics, 2020, 47, 4543-4552.	1.6	7
192	Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling. Physics in Medicine and Biology, 2020, 65, 08NT03.	1.6	3
193	Characterizing MR Imaging isocenter variation in MRgRT. Biomedical Physics and Engineering Express, 2020, 6, 035009.	0.6	10
194	Dosimetric Optimization and Commissioning of a High Field Inline MRI-Linac. Frontiers in Oncology, 2020, 10, 136.	1.3	11
195	MRI-LINAC beam profile measurements using a plastic scintillation dosimeter Physica Medica, 2020, 73, 111-116.	0.4	4
196	Feasibility of markerless fluoroscopic real-time tumor detection for adaptive radiotherapy: development and end-to-end testing. Physics in Medicine and Biology, 2020, 65, 115002.	1.6	5
197	Fast geometric distortion correction using a deep neural network: Implementation for the 1 Tesla MRIâ€Linac system. Medical Physics, 2020, 47, 4303-4315.	1.6	4
198	MRI-Based Upper Abdominal Organs-at-Risk Atlas for Radiation Oncology. International Journal of Radiation Oncology Biology Physics, 2020, 106, 743-753.	0.4	21
199	Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging. Radiotherapy and Oncology, 2020, 145, 88-94.	0.3	52
200	3-Dimensional target coverage assessment for MRI guided esophageal cancer radiotherapy. Radiotherapy and Oncology, 2020, 147, 1-7.	0.3	11
201	Preliminary Study of the Intel RealSense D415 Camera for Monitoring Respiratory Like Motion of an Irregular Surface. IEEE Sensors Journal, 2021, 21, 14443-14453.	2.4	2
202	Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a Code of Practice. Physics in Medicine and Biology, 2021, 66, 05TR02.	1.6	33
203	MRI-guided Radiation Therapy: An Emerging Paradigm in Adaptive Radiation Oncology. Radiology, 2021, 298, 248-260.	3.6	83
204	Nonrigid 3D motion estimation at high temporal resolution from prospectively undersampled kâ€space data using lowâ€rank MRâ€MOTUS. Magnetic Resonance in Medicine, 2021, 85, 2309-2326	1.9	18

#	Article	IF	CITATIONS
207	Real-Time Non-Rigid 3D Respiratory Motion Estimation for MR-Guided Radiotherapy Using MR-MOTUS. IEEE Transactions on Medical Imaging, 2022, 41, 332-346.	5.4	15
208	Magnetic modeling of actively shielded rotating MRI magnets in the presence of environmental steel. Physics in Medicine and Biology, 2021, 66, 045004.	1.6	1
209	In-line MRI-LINAC depth dose measurements using an in-house plastic scintillation dosimeter. Biomedical Physics and Engineering Express, 2021, 7, 025012.	0.6	1
210	Technical Note: Validation of an automatic ACR phantom quality assurance tool for an MRâ€guided radiotherapy system. Medical Physics, 2021, 48, 1540-1545.	1.6	3
211	ReUINet: A fast GNL distortion correction approach on a 1.0ÂT MRI‣inac scanner. Medical Physics, 2021, 48, 2991-3002.	1.6	3
212	A Comparison of the Distortion in the Same Field MRI and MR-Linac System With a 3D Printed Phantom. Frontiers in Oncology, 2021, 11, 579451.	1.3	2
213	Calculations of magnetic field correction factors for ionization chambers in a transverse magnetic field using Monte Carlo code TOPAS. Radiation Physics and Chemistry, 2021, 183, 109405.	1.4	0
214	Monte Carlo study of dosimetric impact of gadolinium contrast medium in transverse field MR-Linac system. Physica Medica, 2021, 86, 19-30.	0.4	0
215	Variations in Demand across England for the Magnetic Resonance-Linac Technology, Simulated Utilising Local-level Demographic and Cancer Data in the Malthus Project. Clinical Oncology, 2021, 33, e285-e294.	0.6	5
216	The effect of the magnetic fields from three different configurations of the MRIgRT systems on the dose deposition from lateral opposing photon beams in a laryngeal geometry – A Monte Carlo study. Radiation Medicine and Protection, 2021, 2, 103-111.	0.4	3
217	Accuracy and precision of apparent diffusion coefficient measurements on a 1.5ÂT MR-Linac in central nervous system tumour patients. Radiotherapy and Oncology, 2021, 164, 155-162.	0.3	19
218	Towards magnetic-field-modulated radiotherapy (MagMRT) with an MR-LINAC—a Monte Carlo study. Physics in Medicine and Biology, 2021, 66, 205014.	1.6	2
219	Time domain principal component analysis for rapid, realâ€ŧime 2D MRI reconstruction from undersampled data. Medical Physics, 2021, 48, 6724-6739.	1.6	2
220	Deep learning based syntheticâ€CT generation in radiotherapy and PET: A review. Medical Physics, 2021, 48, 6537-6566.	1.6	90
221	Longitudinal assessment of quality assurance measurements in a 1.5T MRâ€linac: Part l—Linear accelerator. Journal of Applied Clinical Medical Physics, 2021, 22, 190-201.	0.8	10
222	Intra-fractional per-beam adaptive workflow to mitigate the need for a rotating gantry during MRI-guided proton therapy. Physics in Medicine and Biology, 2021, 66, 18NT01.	1.6	2
223	Abdominal synthetic CT reconstruction with intensity projection prior for MRI-only adaptive radiotherapy. Physics in Medicine and Biology, 2021, 66, 204001.	1.6	10
224	Analysis of data to Advance Personalised Therapy with MR-Linac (ADAPT-MRL). Clinical and Translational Radiation Oncology, 2021, 31, 64-70.	0.9	3

#	Article	IF	CITATIONS
225	Magnetic Resonance Imaging for Target Delineation and Daily Treatment Modification. Seminars in Radiation Oncology, 2018, 28, 178-184.	1.0	34
226	On the feasibility of absolute 3D dosimetry using LiF thermoluminescence detectors and polymer gels on a 0.35T MR-LINAC. Physics in Medicine and Biology, 2020, 65, 215002.	1.6	5
227	Technical feasibility of magnetic resonance fingerprinting on a 1.5T MRI-linac. Physics in Medicine and Biology, 2020, 65, 22NT01.	1.6	18
228	Evaluation of MRI-derived surrogate signals to model respiratory motion. Biomedical Physics and Engineering Express, 2020, 6, 045015.	0.6	12
229	Measurements of human tolerance to horizontal rotation within an MRI scanner: Towards gantryâ€free radiation therapy. Journal of Medical Imaging and Radiation Oncology, 2021, 65, 112-119.	0.9	5
230	Investigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy. Journal of Cancer Research and Therapeutics, 2018, 14, 184-195.	0.3	7
231	Intermittent radiotherapy as alternative treatment for recurrent high grade glioma: a modeling study based on longitudinal tumor measurements. Scientific Reports, 2021, 11, 20219.	1.6	17
232	Photon Monte Carlo Dose Calculation. Series in Medical Physics and Biomedical Engineering, 2015, , 243-257.	0.1	0
233	Novel Imaging for Treatment Planning or Tumor Response. Cancer Drug Discovery and Development, 2017, , 203-239.	0.2	0
234	Advances in verification and delivery techniques. Imaging in Medical Diagnosis and Therapy, 2017, , 321-336.	0.0	0
235	MRI-based IGRT for lung cancer. Imaging in Medical Diagnosis and Therapy, 2017, , 369-384.	0.0	0
236	Practical Implications of Ferromagnetic Artifacts in Low-field MRI-guided Radiotherapy. Cureus, 2018, 10, e2359.	0.2	4
237	Motion Management. , 2019, , 107-116.		2
238	Radiation Treatment Planning in Pediatric Oncology. Pediatric Oncology, 2019, , 323-333.	0.5	0
239	MRI at the Time of External Beam Treatment. , 2019, , 169-188.		1
240	Interobserver variability in target volume delineation for CT/MRI simulation and MRI-guided adaptive radiotherapy in rectal cancer. British Journal of Radiology, 2021, 94, 20210350.	1.0	10
241	High-Field MRI In-Room Guidance for Radiotherapy Adaptation. Medical Radiology, 2020, , 107-128.	0.0	0
242	Feasibility of streamline upwind Petrov-Galerkin angular stabilization of the linear Boltzmann transport equation with magnetic fields. Biomedical Physics and Engineering Express, 2021, 7, 015017.	0.6	0

#	Article	IF	CITATIONS
243	Improving the imaging performance of the 1.5 T MR-linac using a flexible, 32-channel, on-body receive array. Physics in Medicine and Biology, 2020, 65, 215008.	1.6	6
244	Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians. Ca-A Cancer Journal for Clinicians, 2022, 72, 34-56.	157.7	45
245	Deep learning-based 3D in vivo dose reconstruction with an electronic portal imaging device for magnetic resonance-linear accelerators: a proof of concept study. Physics in Medicine and Biology, 2021, 66, 235011.	1.6	2
246	MR-guided radiotherapy for prostate cancer: state of the art and future perspectives. British Journal of Radiology, 2022, 95, 20210800.	1.0	13
247	Integrated MRIâ€guided proton therapy planning: Accounting for the full MRI field in a perpendicular system. Medical Physics, 2022, 49, 1853-1873.	1.6	9
248	MRI-Guided Online Adaptive Stereotactic Body Radiation Therapy of Liver and Pancreas Tumors on an MR-Linac System. Cancers, 2022, 14, 716.	1.7	18
249	A portable magnet for radiation biology and dosimetry studies in magnetic fields. Medical Physics, 2022, 49, 1924-1931.	1.6	0
250	Longitudinal assessment of quality assurance measurements in a 1.5ÂT MRâ€linac: Part Il—Magnetic resonance imaging. Journal of Applied Clinical Medical Physics, 2022, 23, e13586.	0.8	4
251	Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiotherapy and Oncology, 2022, 170, 37-47.	0.3	15
252	Monte Carlo study of small-field dosimetry for an ELEKTA Unity MR-Linac system. Radiation Physics and Chemistry, 2022, 194, 110036.	1.4	2
253	Clinical implementation and feasibility of long-course fractionated MR-guided chemoradiotherapy for patients with esophageal cancer: An R-IDEAL stage 1b/2a evaluation of technical innovation. Clinical and Translational Radiation Oncology, 2022, 34, 82-89.	0.9	5
254	Experimental characterisation of the magnetic field correction factor, <i>îº</i> → _{<i>B</i>} , for Roos chambers in a parallel MRI-linac. Physics in Medicine and Biology, 2022, , .	1.6	1
255	Integrated MRI-guided radiotherapy — opportunities and challenges. Nature Reviews Clinical Oncology, 2022, 19, 458-470.	12.5	47
257	A mask-compatible, radiolucent, 8-channel head and neck receive array for MRI-guided radiotherapy treatments and pre-treatment simulation. Physics in Medicine and Biology, 2022, 67, 135006.	1.6	1
258	Fibre-Optic Dosimetry for MRI-LINACs: A Mini-Review. Frontiers in Physics, 0, 10, .	1.0	3
259	Longitudinal Stability of MRI QA up to Two Years on Eight Clinical 1.5 T MR-Linacs. Frontiers in Physics, 0, 10, .	1.0	1
260	MRI-guided Radiotherapy (MRgRT) for Treatment of Oligometastases: Review of Clinical Applications and Challenges. International Journal of Radiation Oncology Biology Physics, 2022, 114, 950-967.	0.4	10
261	Development of a vendor neutral MRI distortion quality assurance workflow. Journal of Applied Clinical Medical Physics, 2022, 23, .	0.8	6

#	Article	IF	CITATIONS
262	History of Technological Advancements towards MR-Linac: The Future of Image-Guided Radiotherapy. Journal of Clinical Medicine, 2022, 11, 4730.	1.0	16
263	Magnetic-field-modulated radiotherapy (MagMRT) in inhomogeneous medium and its potential applications. Biomedical Physics and Engineering Express, 2022, 8, 065012.	0.6	1
264	Advances in Image-Guided Radiotherapy in the Treatment of Oral Cavity Cancer. Cancers, 2022, 14, 4630.	1.7	6
265	The future of MRI in radiation therapy: Challenges and opportunities for the MR community. Magnetic Resonance in Medicine, 2022, 88, 2592-2608.	1.9	13
266	Magnetic Resonance-Guided Adaptive Radiotherapy: Technical Concepts. , 2022, , 135-158.		0
267	Fast Isocenter Determination Using 3D Polymer Gel Dosimetry with Kilovoltage Cone-Beam CT Reading and the PolyGeVero-CT Software Package for Linac Quality Assurance in Radiotherapy. Materials, 2022, 15, 6807.	1.3	5
268	Ion chamber magnetic field correction factors measured via microDiamond cross-calibration from a conventional linac to MRI-linac. Frontiers in Physics, 0, 10, .	1.0	0
269	The dosimetric error due to uncorrected tumor rotation during realâ€time adaptive prostate stereotactic body radiation therapy. Medical Physics, 2023, 50, 20-29.	1.6	5
270	Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnology, 2022, 13, .	1.9	11
271	Ensemble learning and personalized training for the improvement of unsupervised deep learningâ€based synthetic CT reconstruction. Medical Physics, 2023, 50, 1436-1449.	1.6	2
272	Technical concepts of MRI-Linac (MRL). Advances in Magnetic Resonance Technology and Applications, 2023, , 33-61.	0.0	0
273	Integrated MRI-linac systems: The new paradigm for precision adaptive radiotherapy and biological image-guidance?. Radiotherapy and Oncology, 2022, 176, 249-250.	0.3	1
274	ICRU REPORT 97: MRI-Guided Radiation Therapy Using MRI-Linear Accelerators. Journal of the ICRU, 2022, 22, 1-100.	6.0	12
275	Repeatability of MRI for radiotherapy planning for pelvic, brain, and head and neck malignancies. Frontiers in Physics, 0, 10, .	1.0	1
276	Prediction of adaptive strategies based on deformation vector field features for MRâ€guided adaptive radiotherapy of prostate cancer. Medical Physics, 0, , .	1.6	1
277	Image Guided Radiation Therapy. Progress in Medical Physics, 2022, 33, 37-52.	0.5	0
278	A model for gastrointestinal tract motility in a 4D imaging phantom of human anatomy. Medical Physics, 2023, 50, 3066-3075.	1.6	2
279	ACPSEM position paper: dosimetry for magnetic resonance imaging linear accelerators. Physical and Engineering Sciences in Medicine, 2023, 46, 1-17.	1.3	0

#	Article	IF	CITATIONS
280	ACPSEM position paper: the safety of magnetic resonance imaging linear accelerators. Physical and Engineering Sciences in Medicine, 2023, 46, 19-43.	1.3	2
281	Magnetic field induced dose effects in radiation therapy using MRâ€linacs. Medical Physics, 2023, 50, 3623-3636.	1.6	6
283	Respiratory motion management. , 2023, , 41-51.		1
298	The Australian MRI-Linac: A 10-Year Journey. , 2024, , 425-432.		0