Identification of erythroferrone as an erythroid regulat

Nature Genetics 46, 678-684 DOI: 10.1038/ng.2996

Citation Report

#	Article	IF	CITATIONS
1	L'érythroferrone, un régulateur de l'homéostasie du fer. Hematologie, 2014, 20, 198-199.	0.0	0
3	Iron clad: iron homeostasis and the diagnosis of hereditary iron overload. Hematology American Society of Hematology Education Program, 2014, 2014, 202-209.	0.9	5
4	Mechanisms of plasma nonâ€ŧransferrin bound iron generation: insights from comparing transfused diamond blackfan anaemia with sickle cell and thalassaemia patients. British Journal of Haematology, 2014, 167, 692-696.	1.2	54
5	Iron age: novel targets for iron overload. Hematology American Society of Hematology Education Program, 2014, 2014, 216-221.	0.9	10
6	Hereditary xerocytosis revisited. American Journal of Hematology, 2014, 89, 1142-1146.	2.0	47
7	Pulmonary Arteriovenous Malformations. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1217-1228.	2.5	172
8	Erythropoietin for critically ill trauma patients. Journal of Trauma and Acute Care Surgery, 2014, 77, 774-779.	1.1	5
10	Circulating factors are involved in hypoxia-induced hepcidin suppression. Blood Cells, Molecules, and Diseases, 2014, 53, 204-210.	0.6	20
12	Erythroferrone contributes to recovery from anemia of inflammation. Blood, 2014, 124, 2569-2574.	0.6	132
13	Impact of iron overload and potential benefit from iron chelation in low-risk myelodysplastic syndrome. Blood, 2014, 124, 873-881.	0.6	100
14	Molecular liaisons between erythropoiesis and iron metabolism. Blood, 2014, 124, 479-482.	0.6	111
15	Management of Iron-Deficiency Anemia in Inflammatory Bowel Disease. Medicine (United States), 2015, 94, e963.	0.4	67
16	Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing. Hematology American Society of Hematology Education Program, 2015, 2015, 19-25.	0.9	32
17	Elevated hepcidin serum level in response to inflammatory and iron signals in exercising athletes is independent of moderate supplementation with vitamin C and E. Physiological Reports, 2015, 3, e12475.	0.7	19
18	RAPâ€011, an activin receptor ligand trap, increases hemoglobin concentration in hepcidin transgenic mice. American Journal of Hematology, 2015, 90, 8-14.	2.0	29
20	Hepcidin: regulation of the master iron regulator. Bioscience Reports, 2015, 35, .	1.1	159
21	The second transferrin receptor regulates red blood cell production in mice. Blood, 2015, 125, 1170-1179.	0.6	130
22	Hepcidin is suppressed by erythropoiesis in hemoglobin E β-thalassemia and β-thalassemia trait. Blood, 2015, 125, 873-880.	0.6	56

ATION RED

#	Article	IF	CITATIONS
23	Macrophages and iron trafficking at the birth and death of red cells. Blood, 2015, 125, 2893-2897.	0.6	142
24	TfR2 links iron metabolism and erythropoiesis. Blood, 2015, 125, 1055-1056.	0.6	21
25	Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood, 2015, 126, 2031-2037.	0.6	245
26	Erythroferrone: the missing link in β-thalassemia?. Blood, 2015, 126, 1974-1975.	0.6	2
28	Hepcidin/Ferritin Quotient Helps to Predict Spontaneous Recovery from Iron Loss following Blood Donation. Transfusion Medicine and Hemotherapy, 2015, 42, 390-395.	0.7	7
29	Recent Advances in Iron Metabolism. Medicine and Science in Sports and Exercise, 2015, 47, 1596-1604.	0.2	52
30	The Iron age of host–microbe interactions. EMBO Reports, 2015, 16, 1482-1500.	2.0	186
31	Iron, oxygen, and the pulmonary circulation. Journal of Applied Physiology, 2015, 119, 1421-1431.	1.2	22
32	The (II)logic of iron reduction therapy for steatohepatitis. Hepatology, 2015, 62, 668-670.	3.6	7
33	New insights into iron regulation and erythropoiesis. Current Opinion in Hematology, 2015, 22, 199-205.	1.2	142
34	Circulatory contributors to the phenotype in hereditary hemorrhagic telangiectasia. Frontiers in Genetics, 2015, 06, 101.	1.1	22
35	New perspectives on the molecular basis of the interaction between oxygen homeostasis and iron metabolism. Hypoxia (Auckland, N Z), 2015, 3, 93.	1.9	11
36	Effects of Pregnancy and Lactation on Iron Metabolism in Rats. BioMed Research International, 2015, 2015, 1-9.	0.9	16
37	Interaction between Erythropoiesis and Iron Metabolism in Human β-thalassemia - Recent Advances and New Therapeutic Approaches. , 2015, , .		2
38	latrogenic Iron Overload in Dialysis Patients. , 2015, , .		0
39	Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. Journal of Clinical Investigation, 2015, 126, 389-401.	3.9	75
40	How I Diagnose Non-thalassemic Microcytic Anemias. Seminars in Hematology, 2015, 52, 270-278.	1.8	16
41	Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nature Reviews Nephrology, 2015, 11, 394-410.	4.1	235

	C	CITATION REPORT	
#	Article	IF	Citations
42	Jekyll and Hyde: the role of heme oxygenase-1 in erythroid biology. Haematologica, 2015, 100, 567-5	68. 1.7	3
43	Regulation of Iron Metabolism by Hepcidin under Conditions of Inflammation. Journal of Biological Chemistry, 2015, 290, 18975-18983.	1.6	116
45	Saturated Fatty Acids Induce Post-transcriptional Regulation of HAMP mRNA via AU-rich Element-binding Protein, Human Antigen R (HuR). Journal of Biological Chemistry, 2015, 290, 24178-24189.	1.6	19
46	Impaired hepcidin expression in alpha-1-antitrypsin deficiency associated with iron overload and progressive liver disease. Human Molecular Genetics, 2015, 24, 6254-6263.	1.4	30
47	Mouse genetic background impacts both on iron and non-iron metals parameters and on their relationships. BioMetals, 2015, 28, 733-743.	1.8	16
48	Erythropoietic drive is the strongest predictor of hepcidin level in adults with sickle cell disease. Blood Cells, Molecules, and Diseases, 2015, 55, 304-307.	0.6	19
49	Iron deficiency: new insights into diagnosis and treatment. Hematology American Society of Hematology Education Program, 2015, 2015, 8-13.	0.9	109
50	The erythroblastic island as an emerging paradigm in the anemia of inflammation. Immunologic Research, 2015, 63, 75-89.	1.3	49
51	Reversal of hemochromatosis by apotransferrin in non-transfused and transfused Hbbth3/+ (heterozygous b1/b2 globin gene deletion) mice. Haematologica, 2015, 100, 611-622.	1.7	48
52	Adaptation of iron requirement to hypoxic conditions at high altitude. Journal of Applied Physiology, 2015, 119, 1432-1440.	1.2	88
53	Cardiorenal Syndrome in End-Stage Kidney Disease. Blood Purification, 2015, 40, 337-343.	0.9	12
54	Considerations and Challenges in Defining Optimal Iron Utilization in Hemodialysis. Journal of the American Society of Nephrology: JASN, 2015, 26, 1238-1247.	3.0	75
55	Iron toxicity and its possible association with treatment of Cancer: Lessons from hemoglobinopathies and rare, transfusion-dependent anemias. Free Radical Biology and Medicine, 2015, 79, 343-351.	s 1.3	43
56	The use of hypotransferrinemic mice in studies of iron biology. BioMetals, 2015, 28, 473-480.	1.8	9
57	Integrative Proteome and Transcriptome Analysis of Extramedullary Erythropoiesis and Its Reversal by Transferrin Treatment in a Mouse Model of Beta-Thalassemia. Journal of Proteome Research, 2015, 14 1089-1100.		6
58	A HAMP promoter bioassay system for identifying chemical compounds that modulate hepcidin expression. Experimental Hematology, 2015, 43, 404-413.e5.	0.2	4
59	Exome sequencing in HFE C282Y homozygous men with extreme phenotypes identifies a GNPAT vari associated with severe iron overload. Hepatology, 2015, 62, 429-439.	iant 3.6	75
60	Anemia: progress in molecular mechanisms and therapies. Nature Medicine, 2015, 21, 221-230.	15.2	209

#	Article	IF	CITATIONS
61	Iron chelation therapy in transfusion-dependent thalassemia patients: current strategies and future directions. Journal of Blood Medicine, 2015, 6, 197.	0.7	63
62	Genetics, Genetic Testing, and Management of Hemochromatosis: 15 Years Since Hepcidin. Gastroenterology, 2015, 149, 1240-1251.e4.	0.6	114
63	Anemia of Chronic Disorders: New Diagnostic Tools and New Treatment Strategies. Seminars in Hematology, 2015, 52, 313-320.	1.8	80
64	Oxidative Stress and Hepatic Iron Overload. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 345-356.	0.4	2
65	SLC39A14 Is Required for the Development of Hepatocellular Iron Overload in Murine Models of Hereditary Hemochromatosis. Cell Metabolism, 2015, 22, 138-150.	7.2	171
66	Iron homeostasis in host defence and inflammation. Nature Reviews Immunology, 2015, 15, 500-510.	10.6	593
67	Updated recommendations on the management of gastrointestinal disturbances during iron chelation therapy with Deferasirox in transfusion dependent patients with myelodysplastic syndrome – Emphasis on optimized dosing schedules and new formulations. Leukemia Research, 2015, 39, 1028-1033.	0.4	19
68	Increasing serum transferrin to reduce tissue iron overload due to ineffective erythropoiesis. Haematologica, 2015, 100, 565-566.	1.7	8
69	Differences in the erythropoiesis-hepcidin-iron store axis between hemoglobin H disease and Â-thalassemia intermedia. Haematologica, 2015, 100, e169-e171.	1.7	24
70	Analysis of IL-22 contribution to hepcidin induction and hypoferremia during the response to LPS <i>in vivo</i> . International Immunology, 2015, 27, 281-287.	1.8	26
71	An increase in hemoglobin, platelets and white blood cells levels by iron chelation as single treatment in multitransfused patients with myelodysplastic syndromes: clinical evidences and possible biological mechanisms. Annals of Hematology, 2015, 94, 771-777.	0.8	25
72	Emerging EPO and EPO receptor regulators and signal transducers. Blood, 2015, 125, 3536-3541.	0.6	129
73	Evidence that the expression of transferrin receptor 1 on erythroid marrow cells mediates hepcidin suppression in the liver. Experimental Hematology, 2015, 43, 469-478.e6.	0.2	25
74	Iron-Deficiency Anemia. New England Journal of Medicine, 2015, 372, 1832-1843.	13.9	1,074
75	Erythropoietin's inhibiting impact on hepcidin expression occurs indirectly. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R330-R335.	0.9	52
76	Peripheral expression of hepcidin gene in Egyptian β-thalassemia major. Gene, 2015, 564, 206-209.	1.0	10
77	Update on iron metabolism and molecular perspective of common genetic and acquired disorder, hemochromatosis. Critical Reviews in Oncology/Hematology, 2015, 95, 12-25.	2.0	32
78	An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1347-1359.	1.8	234

#	Article	IF	CITATIONS
79	Estimating tissue iron burden: current status and future prospects. British Journal of Haematology, 2015, 170, 15-28.	1.2	99
80	Â-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica, 2015, 100, 418-430.	1.7	91
82	Experimental and investigational therapies for chemotherapy-induced anemia. Expert Opinion on Investigational Drugs, 2015, 24, 1433-1445.	1.9	9
83	Plasma hepcidin in early-stage breast cancer patients: no relationship with interleukin-6, erythropoietin and erythroferrone. Expert Review of Proteomics, 2015, 12, 695-701.	1.3	23
84	Hepcidin and iron disorders: new biology and clinical approaches. International Journal of Laboratory Hematology, 2015, 37, 92-98.	0.7	58
85	Understanding the Recent Increase in Ferritin Levels in United States Dialysis Patients: Potential Impact of Changes in Intravenous Iron and Erythropoiesis-Stimulating Agent Dosing. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1814-1821.	2.2	46
86	Combined treatment of 3-hydroxypyridine-4-one derivatives and green tea extract toÂinduce hepcidin expression in iron-overloaded β-thalassemic mice. Asian Pacific Journal of Tropical Biomedicine, 2015, 5, 1010-1017.	0.5	12
87	Thalassaemia in children: from quality of care to quality of life. Archives of Disease in Childhood, 2015, 100, 1051-1057.	1.0	22
88	Diagnosis of iron-deficient states. Critical Reviews in Clinical Laboratory Sciences, 2015, 52, 256-272.	2.7	57
89	Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. Journal of Nutritional Biochemistry, 2015, 26, 1103-1115.	1.9	46
91	LC-MS/MS method for hepcidin-25 measurement in human and mouse serum: clinical and research implications in iron disorders. Clinical Chemistry and Laboratory Medicine, 2015, 53, 1557-67.	1.4	43
92	Iron metabolism and iron supplementation in cancer patients. Wiener Klinische Wochenschrift, 2015, 127, 907-919.	1.0	108
93	Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle. EBioMedicine, 2015, 2, 1705-1717.	2.7	62
94	A critical role for murine transferrin receptor 2 in erythropoiesis during iron restriction. British Journal of Haematology, 2015, 168, 891-901.	1.2	27
95	Hepcidin and the Global Burden of Iron Deficiency. Clinical Chemistry, 2015, 61, 577-578.	1.5	20
96	Iron and oxygen sensing: a tale of 2 interacting elements?. Metallomics, 2015, 7, 223-231.	1.0	29
97	Clinical iron deficiency disturbs normal human responses to hypoxia. Journal of Clinical Investigation, 2016, 126, 2139-2150.	3.9	82
98	Iron Metabolism in Aging. , 2016, , 523-536.		0

#	Article	IF	CITATIONS
99	Dual Role of ROS as Signal and Stress Agents: Iron Tips the Balance in favor of Toxic Effects. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	1.9	76
100	Iron: Biosynthesis and Significance of Heme. , 2016, , 452-460.		1
101	Iron Homeostasis in Health and Disease. International Journal of Molecular Sciences, 2016, 17, 130.	1.8	274
102	Low Dose Iron Treatments Induce a DNA Damage Response in Human Endothelial Cells within Minutes. PLoS ONE, 2016, 11, e0147990.	1.1	39
103	Associations among Erythroferrone and Biomarkers of Erythropoiesis and Iron Metabolism, and Treatment with Long-Term Erythropoiesis-Stimulating Agents in Patients on Hemodialysis. PLoS ONE, 2016, 11, e0151601.	1.1	52
104	Hepcidin Response to Iron Therapy in Patients with Non-Dialysis Dependent CKD: An Analysis of the FIND-CKD Trial. PLoS ONE, 2016, 11, e0157063.	1.1	26
105	Iron replacement therapy. Current Opinion in Gastroenterology, 2016, 32, 128-135.	1.0	13
106	Evidence of relative iron deficiency in platelet―and plasmaâ€pheresis donors correlates with donation frequency. Journal of Clinical Apheresis, 2016, 31, 551-558.	0.7	15
107	Hepcidin. Medicine (United States), 2016, 95, e3150.	0.4	76
108	Effects of oral supplementation of iron on hepcidin blood concentrations among nonâ€anaemic female blood donors: a randomized controlled trial. Vox Sanguinis, 2016, 110, 166-171.	0.7	6
109	Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. British Journal of Haematology, 2016, 172, 512-523.	1.2	124
110	Morbidities in nonâ€transfusionâ€dependent thalassemia. Annals of the New York Academy of Sciences, 2016, 1368, 82-94.	1.8	20
111	Iron dysregulation in beta-thalassemia. Asian Pacific Journal of Tropical Medicine, 2016, 9, 1035-1043.	0.4	30
112	Iron Deficiency Anemia. Hematology/Oncology Clinics of North America, 2016, 30, 309-325.	0.9	49
113	Differing impact of the deletion of hemochromatosisâ€associated molecules HFE and transferrin receptorâ€2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin. Hepatology, 2016, 63, 126-137.	3.6	57
114	Dietary supplementation with ipriflavone decreases hepatic iron stores in wild type mice. Blood Cells, Molecules, and Diseases, 2016, 60, 36-43.	0.6	8
115	Autologous Blood Transfusion in Sports: Emerging Biomarkers. Transfusion Medicine Reviews, 2016, 30, 109-115.	0.9	38
116	Iron Balance and the Role of Hepcidin in Chronic Kidney Disease. Seminars in Nephrology, 2016, 36, 87-93.	0.6	124

		CITATION REPORT		
#	Article		IF	CITATIONS
117	Iron homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 2	76-281.	1.3	43
118	EPO-dependent induction of erythroferrone drives hepcidin suppression and systematic absorption under phenylhydrazine-induced hemolytic anemia. Blood Cells, Molecules, ar 2016, 58, 45-51.		0.6	35
119	latrogenic Iron Overload in Dialysis Patients at the Beginning of the 21st Century. Drugs 741-757.	s, 2016, 76,	4.9	56
120	Icariin regulates systemic iron metabolism by increasing hepatic hepcidin expression thr and Smad1/5/8 signaling. International Journal of Molecular Medicine, 2016, 37, 1379-1	ough Stat3 388.	1.8	23
121	RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insigh invasion and immune evasion strategies. International Journal for Parasitology, 2016, 46		1.3	50
122	Regulation of Hepcidin by Erythropoiesis: The Story So Far. Annual Review of Nutrition, 2417-434.	2016, 36,	4.3	47
123	Investigational therapies for renal disease-induced anemia. Expert Opinion on Investigat 2016, 25, 901-916.	ional Drugs,	1.9	31
124	Increased hepcidin in transferrin-treated thalassemic mice correlates with increased live expression and decreased hepatocyte ERK activation. Haematologica, 2016, 101, 297-3		1.7	22
125	Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-med suppression in mice. Blood, 2016, 127, 2327-2336.	iated hepcidin	0.6	90
126	Hepcidin in the diagnosis of iron disorders. Blood, 2016, 127, 2809-2813.		0.6	309
127	Matriptase-2 links erythropoietin to iron. Blood, 2016, 127, 2270-2271.		0.6	2
128	Postoperative intravenous iron: a simple strategy to improve outcomes. Lancet Haemat 3, e401-e402.	ology,the, 2016,	2.2	18
129	Impact of conditioning and engraftment on iron status in hematopoietic stem cell trans Contribution of labile plasma iron. Hematology/ Oncology and Stem Cell Therapy, 2016		0.6	6
130	Anemia in the Surgical ICU. , 2016, , 295-312.			2
131	Red blood cell production and kinetics. , 2016, , 85-96.			11
132	Iron Overload: Diagnosis, Complications, and Management. , 2016, , 103-112.			1
133	Increased levels of ERFE-encoding FAM132B in patients with congenital dyserythropoiet Blood, 2016, 128, 1899-1902.	ic anemia type II.	0.6	26
134	Protein-based therapeutic for anemia caused by dyserythropoiesis. Expert Review of Pro 13, 983-992.	teomics, 2016,	1.3	10

#	Article	IF	CITATIONS
136	2017 Clinical trials update in new treatments of βâ€ŧhalassemia. American Journal of Hematology, 2016, 91, 1135-1145.	2.0	52
137	Can Iron Treatments Aggravate Epistaxis in Some Patients With Hereditary Hemorrhagic Telangiectasia?. Laryngoscope, 2016, 126, 2468-2474.	1.1	18
138	The mutual control of iron and erythropoiesis. International Journal of Laboratory Hematology, 2016, 38, 20-26.	0.7	72
139	Safety, pharmacokinetics and pharmacodynamics of the antiâ€hepcidin Spiegelmer lexaptepid pegol in healthy subjects. British Journal of Pharmacology, 2016, 173, 1580-1588.	2.7	61
140	Effects of GlyT1 inhibition on erythropoiesis and iron homeostasis in rats. Experimental Hematology, 2016, 44, 964-974.e4.	0.2	17
141	Cardiac Hepcidin Expression Associates with Injury Independent of Iron. American Journal of Nephrology, 2016, 44, 368-378.	1.4	18
142	Suppression of plasma hepcidin by venesection during steady-state hypoxia. Blood, 2016, 127, 1206-1207.	0.6	15
143	Minihepcidin peptides as disease modifiers in mice affected by Î ² -thalassemia and polycythemia vera. Blood, 2016, 128, 265-276.	0.6	123
144	JAK2 exon 12 mutant mice display isolated erythrocytosis and changes in iron metabolism favoring increased erythropoiesis. Blood, 2016, 128, 839-851.	0.6	35
145	Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. British Journal of Haematology, 2016, 174, 661-673.	1.2	41
146	Effects of darbepoetin alfa and epoetin beta pegol on iron kinetics in hemodialysis patients. Renal Replacement Therapy, 2016, 2, .	0.3	0
147	Hematopoietic deletion of transferrin receptor 2 in mice leads to a block in erythroid differentiation during ironâ€deficient anemia. American Journal of Hematology, 2016, 91, 812-818.	2.0	31
148	Hepcidin as a new biomarker for detecting autologous blood transfusion. American Journal of Hematology, 2016, 91, 467-472.	2.0	33
149	New strategies to target iron metabolism for the treatment of beta thalassemia. Annals of the New York Academy of Sciences, 2016, 1368, 162-168.	1.8	19
150	The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α. Molecular and Cellular Biology, 2016, 36, 2328-2343.	1.1	15
151	Recombinant human erythropoietin-induced erythropoiesis regulates hepcidin expression over iron status in the rat. Blood Cells, Molecules, and Diseases, 2016, 59, 63-70.	0.6	6
153	Optimizing the diagnosis and the treatment of iron overload diseases. Expert Review of Gastroenterology and Hepatology, 2016, 10, 359-370.	1.4	42
154	Can iron overload in patients with lower-risk myelodysplastic syndromes be reduced using erythropoiesis-stimulating agents?. Annals of Hematology, 2016, 95, 73-78.	0.8	1

	СПАПО	N REPORT	
#	Article	IF	CITATIONS
155	Hepcidin regulation in the anemia of inflammation. Current Opinion in Hematology, 2016, 23, 189-197.	1.2	153
156	Reduction of a marker of oxidative stress with enhancement of iron utilization by erythropoiesis activation following epoetin beta pegol administration in iron-loaded db/db mice. International Journal of Hematology, 2016, 103, 262-273.	0.7	7
157	Hepatic erythropoietin response in cirrhosis. A contemporary review. Scandinavian Journal of Clinical and Laboratory Investigation, 2016, 76, 183-189.	0.6	5
158	Oxidative stress ecology and the d-ROMs test: facts, misfacts and an appraisal of a decade's work. Behavioral Ecology and Sociobiology, 2016, 70, 809-820.	0.6	88
159	Modulation of hepcidin to treat iron deregulation: potential clinical applications. Expert Review of Hematology, 2016, 9, 169-186.	1.0	46
160	Diagnosis and management of congenital dyserythropoietic anemias. Expert Review of Hematology, 2016, 9, 283-296.	1.0	76
161	Hematopoietic niches, erythropoiesis and anemia of chronic infection. Experimental Hematology, 2016, 44, 85-91.	0.2	32
162	New insights into transfusion-related iron toxicity: Implications for the oncologist. Critical Reviews in Oncology/Hematology, 2016, 99, 261-271.	2.0	46
163	Iron metabolism and related genetic diseases: A cleared land, keeping mysteries. Journal of Hepatology, 2016, 64, 505-515.	1.8	98
164	Targeting EPO and EPO receptor pathways in anemia and dysregulated erythropoiesis. Expert Opinion on Therapeutic Targets, 2016, 20, 287-301.	1.5	30
165	Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis. Pflugers Archiv European Journal of Physiology, 2016, 468, 3-12.	1.3	54
166	Iron deficiency anaemia. Lancet, The, 2016, 387, 907-916.	6.3	960
167	Iron therapy in chronic kidney disease: Recent changes, benefits and risks. Blood Reviews, 2016, 30, 65-72.	2.8	28
168	Erythropoiesis-stimulating Agents in Critically Ill Trauma Patients. Annals of Surgery, 2017, 265, 54-62.	2.1	28
169	Characterization of hepatic and cardiac iron deposition during standard treatment of anaemia in haemodialysis. Nephrology, 2017, 22, 114-117.	0.7	19
170	Live high, train low – influence on resting and postâ€exercise hepcidin levels. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 704-713.	1.3	21
171	Regulation of the Iron Homeostatic Hormone Hepcidin. Advances in Nutrition, 2017, 8, 126-136.	2.9	289
172	Neomorphic effects of the <i>neonatal anemia</i> (<i>Nan-Eklf</i>) mutation contribute to deficits throughout development. Development (Cambridge), 2017, 144, 430-440.	1.2	19

#	ARTICLE Targeting iron metabolism in drug discovery and delivery. Nature Reviews Drug Discovery, 2017, 16,	IF	CITATIONS
173	400-423.	21.5	258
174	A Red Carpet for Iron Metabolism. Cell, 2017, 168, 344-361.	13.5	847
175	New insights into iron deficiency and iron deficiency anemia. Blood Reviews, 2017, 31, 225-233.	2.8	181
176	Estado actual del metabolismo del hierro: implicaciones clÃnicas y terapéuticas. Medicina ClÃnica, 2017, 148, 218-224.	0.3	7
177	Anemia and Red Blood Cell Transfusion. Critical Care Clinics, 2017, 33, 345-364.	1.0	35
178	Governing roles for Trib3 pseudokinase during stress erythropoiesis. Experimental Hematology, 2017, 49, 48-55.e5.	0.2	9
179	Erythropoietin administration increases splenic erythroferrone protein content and liver TMPRSS6 protein content in rats. Blood Cells, Molecules, and Diseases, 2017, 64, 1-7.	0.6	11
180	Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors: AÂPotential New Treatment for Anemia in Patients With CKD. American Journal of Kidney Diseases, 2017, 69, 815-826.	2.1	314
181	Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice. Blood, 2017, 129, 1514-1526.	0.6	52
182	Erythroferrone and matriptaseâ€2 independently regulate hepcidin expression. American Journal of Hematology, 2017, 92, E61-E63.	2.0	25
183	Carbon Nanotubes Disrupt Iron Homeostasis and Induce Anemia of Inflammation through Inflammatory Pathway as a Secondary Effect Distant to Their Portalâ€ofâ€Entry. Small, 2017, 13, 1603830.	5.2	23
184	Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from Günther disease model. Haematologica, 2017, 102, 260-270.	1.7	13
185	Serum Hepcidin Concentrations Decline during Pregnancy and May Identify Iron Deficiency: Analysis of a Longitudinal Pregnancy Cohort in The Gambia. Journal of Nutrition, 2017, 147, 1131-1137.	1.3	61
186	The Central Role of BMP Signaling in Regulating Iron Homeostasis. , 2017, , 345-356.		0
187	Hepcidin suppression in β-thalassemia is associated with the down-regulation of atonal homolog 8. International Journal of Hematology, 2017, 106, 196-205.	0.7	4
188	Reciprocal regulation between hepcidin and erythropoiesis and its therapeutic application in erythroid disorders. Experimental Hematology, 2017, 52, 24-31.	0.2	18
189	Therapeutic targeting of the HIF oxygen-sensing pathway: Lessons learned from clinical studies. Experimental Cell Research, 2017, 356, 160-165.	1.2	44
190	Smad1/5 is required for erythropoietin-mediated suppression of hepcidin in mice. Blood, 2017, 130, 73-83.	0.6	69

		EPORT	
#	Article	IF	Citations
191	Hepcidin: a real-time biomarker of iron need. Metallomics, 2017, 9, 606-618.	1.0	21
192	Iron overload across the spectrum of nonâ€transfusionâ€dependent thalassaemias: role of erythropoiesis, splenectomy and transfusions. British Journal of Haematology, 2017, 176, 288-299.	1.2	43
194	Iron homeostasis: An anthropocentric perspective. Journal of Biological Chemistry, 2017, 292, 12727-12734.	1.6	153
195	Hepcidin: Homeostasis and Diseases Related to Iron Metabolism. Acta Haematologica, 2017, 137, 220-236.	0.7	60
196	In a Mouse Model of Sepsis, Hepcidin Ablation Ameliorates Anemia More Effectively than Iron and Erythropoietin Treatment. Shock, 2017, 48, 490-497.	1.0	17
197	Regnase-1 Maintains Iron Homeostasis via the Degradation of Transferrin Receptor 1 and Prolyl-Hydroxylase-Domain-Containing Protein 3 mRNAs. Cell Reports, 2017, 19, 1614-1630.	2.9	54
198	Asymmetric Dimethylarginine Contributes to the Impaired Response to Erythropoietin in CKD-Anemia. Journal of the American Society of Nephrology: JASN, 2017, 28, 2670-2680.	3.0	22
199	Current status of iron metabolism: Clinical and therapeutic implications. Medicina ClÃnica (English) Tj ETQq1 1	0.784314 0.1	rgBT /Overloc
200	Toxicity of iron overload and iron overload reduction in the setting of hematopoietic stem cell transplantation for hematologic malignancies. Critical Reviews in Oncology/Hematology, 2017, 113, 156-170.	2.0	33
201	Reduced cancer mortality at high altitude: The role of glucose, lipids, iron and physical activity. Experimental Cell Research, 2017, 356, 209-216.	1.2	17
202	Diagnosing and preventing iron overload. Hemodialysis International, 2017, 21, S58-S67.	0.4	23
203	Role of hepcidinâ€ferroportin axis in the pathophysiology, diagnosis, and treatment of anemia of chronic inflammation. Hemodialysis International, 2017, 21, S37-S46.	0.4	33
204	Systemic iron homeostasis and erythropoiesis. IUBMB Life, 2017, 69, 399-413.	1.5	82
205	Imatinib and spironolactone suppress hepcidin expression. Haematologica, 2017, 102, 1173-1184.	1.7	23
206	Overview of iron metabolism in health and disease. Hemodialysis International, 2017, 21, S6-S20.	0.4	288
208	High pretransplant hepcidin levels are associated with poor overall survival and delayed platelet engraftment after allogeneic hematopoietic stem cell transplantation. Cancer Medicine, 2017, 6, 120-128.	1.3	12
209	Erythroferrone contributes to hepcidin repression in a mouse model of malarial anemia. Haematologica, 2017, 102, 60-68.	1.7	29
210	Anemia of Inflammation. Medical Clinics of North America, 2017, 101, 285-296.	1.1	143

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
211	Decision points in the treatment of transfusional iron overload in patients with myelodysplastic syndromes: why, when, and how to chelate. Expert Review of Hematology, 2017, 10, 53-64.	1.0	4
212	<scp>EPO</scp> and hepcidin plasma concentrations in blood donors and βâ€thalassemia intermedia are not related to commercially tested plasma <scp>ERFE</scp> concentrations. American Journal of Hematology, 2017, 92, E29-E31.	2.0	10
213	Iron and inflammation – the gut reaction. Metallomics, 2017, 9, 101-111.	1.0	29
214	Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica, 2017, 102, e427-e430.	1.7	93
215	Role of Activins in Hepcidin Regulation during Malaria. Infection and Immunity, 2017, 85, .	1.0	20
216	Hepcidin is regulated by promoter-associated histone acetylation and HDAC3. Nature Communications, 2017, 8, 403.	5.8	45
217	The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes. Blood, 2017, 130, 2111-2120.	0.6	49
218	Iron-based phosphate binders: a paradigm shift in the treatment of hyperphosphatemic anemic CKD patients?. Journal of Nephrology, 2017, 30, 755-765.	0.9	4
219	Therapeutic use of transferrin to modulate anemia and conditions of iron toxicity. Blood Reviews, 2017, 31, 400-405.	2.8	21
220	Ironing out the role of hepcidin in infection. Blood, 2017, 130, 233-234.	0.6	3
221	The interplay between iron and oxygen homeostasis with a particular focus on the heart. Journal of Applied Physiology, 2017, 123, 967-973.	1.2	19
222	Iron metabolism and the role of the iron-regulating hormone hepcidin in health and disease. Presse Medicale, 2017, 46, e272-e278.	0.8	69
223	The relationship between systemic iron homeostasis and erythropoiesis. Bioscience Reports, 2017, 37, .	1.1	20
224	The protective role of TET2 in erythroid iron homeostasis against oxidative stress and erythropoiesis. Cellular Signalling, 2017, 38, 106-115.	1.7	12
225	Iron metabolism: State of the art. Transfusion Clinique Et Biologique, 2017, 24, 115-119.	0.2	38
226	Hemochromatosis, iron-loading anemia, and SMAD. Blood, 2017, 130, 6-7.	0.6	8
227	Mutual Cross Talk Between Iron Homeostasis and Erythropoiesis. Vitamins and Hormones, 2017, 105, 143-160.	0.7	13
228	Inter-organ signalling by HRG-7 promotes systemic haem homeostasis. Nature Cell Biology, 2017, 19, 799-807.	4.6	21

#	Article	IF	CITATIONS
229	Multidisciplinary evaluation at baseline and during treatment improves the rate of compliance and efficacy of deferasirox in elderly myelodysplastic patients. International Journal of Clinical Oncology, 2017, 22, 380-386.	1.0	1
230	Hepcidin as a potential biomarker for blood doping. Drug Testing and Analysis, 2017, 9, 1093-1097.	1.6	18
231	Momelotinib in myelofibrosis: JAK1/2 inhibitor with a role in treating and understanding the anemia. Future Oncology, 2017, 13, 395-407.	1.1	10
232	Soluble hemojuvelin in transfused and untransfused thalassaemic subjects. European Journal of Haematology, 2017, 98, 67-74.	1.1	4
233	The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans. Journal of Biological Chemistry, 2017, 292, 1-14.	1.6	31
235	Iron Deficiency Anaemia and Iron Overload. , 2017, , 165-186.		10
236	Clinical Implications of New Insights into Hepcidin-Mediated Regulation of Iron Absorption and Metabolism. Annals of Nutrition and Metabolism, 2017, 71, 40-48.	1.0	27
237	The changing landscape of iron overload disorders at the beginning of the 21st century. Presse Medicale, 2017, 46, e269-e271.	0.8	6
238	25 BlutbildverÄ ¤ derungen (II). , 2017, , .		0
239	Hepcidin: SNP-Like Polymorphisms Present in Iron Metabolism and Clinical Complications of Iron Accumulation and Deficiency. , 2017, , .		1
240	How we interpret transferrin saturation. Hematologie, 2017, 23, 406-412.	0.0	3
241	Hepcidin and the Hormonal Control of Iron Homeostasis. , 2017, , 175-186.		1
243	Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors. International Journal of Molecular Sciences, 2017, 18, 410.	1.8	27
244	Iron Transporters and Iron Homeostasis. , 2017, , 215-226.		0
245	Genetic and Dietary Iron Overload Differentially Affect the Course of Salmonella Typhimurium Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 110.	1.8	30
246	Immunoassay for human serum erythroferrone. Blood, 2017, 130, 1243-1246.	0.6	104
247	Anti-TNF-Mediated Modulation of Prohepcidin Improves Iron Availability in Inflammatory Bowel Disease, in an IL-6-Mediated Fashion. Canadian Journal of Gastroenterology and Hepatology, 2017, 2017, 1-12.	0.8	25
248	Altered Erythropoiesis in Mouse Models of Type 3 Hemochromatosis. BioMed Research International, 2017, 2017, 1-12.	0.9	7

#	Article	IF	CITATIONS
249	Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS ONE, 2017, 12, e0186844.	1.1	8
250	Iron overload in hematological disorders. Presse Medicale, 2017, 46, e296-e305.	0.8	50
251	Iron overload in thalassemia: different organs at different rates. Hematology American Society of Hematology Education Program, 2017, 2017, 265-271.	0.9	167
252	Pathophysiology and treatment of patients with beta-thalassemia – an update. F1000Research, 2017, 6, 2156.	0.8	54
253	ProteÃnas relacionadas con el metabolismo del hierro corporal. Perspectivas En Nutrición Humana, 2017, 18, 95-116.	0.1	1
254	Does Hypoxia Cause Carcinogenic Iron Accumulation in Alcoholic Liver Disease (ALD)?. Cancers, 2017, 9, 145.	1.7	17
255	Current Review of Iron Overload and Related Complications in Hematopoietic Stem Cell Transplantation. Turkish Journal of Haematology, 2017, 34, 1-9.	0.2	38
256	Genetic Rodent Models of Systemic Iron Homeostasis. , 2017, , 187-201.		0
257	Molecular Testing in Hemochromatosis. , 2017, , 245-253.		1
258	Levels of the erythropoietin-responsive hormone erythroferrone in mice and humans with chronic kidney disease. Haematologica, 2018, 103, e141-e142.	1.7	38
259	Haemochromatosis. Nature Reviews Disease Primers, 2018, 4, 18016.	18.1	253
260	Erythroferrone: An Erythroid Regulator of Hepcidin and Iron Metabolism. HemaSphere, 2018, 2, e35.	1.2	60
261	Interaction of Transfusion and Iron Chelation in Thalassemias. Hematology/Oncology Clinics of North America, 2018, 32, 247-259.	0.9	12
262	Iron Deficiency in Pregnancy. , 0, , 15-28.		0
263	Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Experimental and Molecular Medicine, 2018, 50, e436-e436.	3.2	58
264	Positive Iron Balance in Chronic Kidney Disease: How Much is Too Much and How to Tell?. American Journal of Nephrology, 2018, 47, 72-83.	1.4	65
265	The α1â€adrenergic receptor is involved in hepcidin upregulation induced by adrenaline and norepinephrine via the STAT3 pathway. Journal of Cellular Biochemistry, 2018, 119, 5517-5527.	1.2	4
266	Ineffective Erythropoiesis: Anemia and Iron Overload. Hematology/Oncology Clinics of North America, 2018, 32, 213-221.	0.9	54

#	Article	IF	CITATIONS
267	Erythroferrone and iron status parameters levels in pediatric patients with iron deficiency anemia. European Journal of Haematology, 2018, 100, 356-360.	1.1	21
269	Disorders of Iron Overload. , 2018, , 275-307.		2
270	Hepcidin, an emerging and important player in brain iron homeostasis. Journal of Translational Medicine, 2018, 16, 25.	1.8	67
271	The Impact of Human Parvovirus B19 Infection on Heart Failure and Anemia with Reference to Iron Metabolism Markers in an Adult Woman. Internal Medicine, 2018, 57, 403-407.	0.3	0
272	Evaluation of renal oxygen homeostasis in a preclinical animal model to elucidate difference in blood quality after transfusion. Transfusion, 2018, 58, 1474-1485.	0.8	13
273	Letter to the Editor: "Myonectin Predicts the Development of Type 2 Diabetes― Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1649-1649.	1.8	2
274	Iron and innate antimicrobial immunity—Depriving the pathogen, defending the host. Journal of Trace Elements in Medicine and Biology, 2018, 48, 118-133.	1.5	82
275	Intravenous Iron Does Not Augment the Hemoglobin Mass Response to Simulated Hypoxia. Medicine and Science in Sports and Exercise, 2018, 50, 1669-1678.	0.2	32
276	Fetal presentation of congenital dyserythropoietic anemia type 1 with novel compound heterozygous CDAN1 mutations. Blood Cells, Molecules, and Diseases, 2018, 71, 63-66.	0.6	8
277	Hepcidin regulation in a mouse model of acute hypoxia. European Journal of Haematology, 2018, 100, 636-643.	1.1	17
278	Hepcidin agonists as therapeutic tools. Blood, 2018, 131, 1790-1794.	0.6	91
279	Hepcidin and Anemia in Surgical Critical Care: A Prospective Cohort Study*. Critical Care Medicine, 2018, 46, e567-e574.	0.4	9
280	Erythropoietin as a performance-enhancing drug: Its mechanistic basis, detection, and potential adverse effects. Molecular and Cellular Endocrinology, 2018, 464, 75-87.	1.6	54
281	Three Novel Spectrin Variants in Jaundiced Neonates. Clinical Pediatrics, 2018, 57, 19-26.	0.4	2
282	Two novel mutations (p.(Ser160Pro) and p.(Arg472Cys)) causing glucose-6-phosphate isomerase deficiency are associated with erythroid dysplasia and inappropriately suppressed hepcidin. Blood Cells, Molecules, and Diseases, 2018, 69, 23-29.	0.6	15
283	Low Hepcidin in Type 2 Diabetes Mellitus: Examining the Molecular Links and Their Clinical Implications. Canadian Journal of Diabetes, 2018, 42, 179-187.	0.4	13
285	Balance of cardiac and systemic hepcidin and its role in heart physiology and pathology. Laboratory Investigation, 2018, 98, 315-326.	1.7	26
286	Postexercise serum hepcidin response to repeated sprint exercise under normoxic and hypoxic conditions. Applied Physiology, Nutrition and Metabolism, 2018, 43, 221-226.	0.9	9

#	Article	IF	CITATIONS
287	Anemia of Chronic Disease. , 2018, , 43-80.		0
288	What can we learn from ineffective erythropoiesis in thalassemia?. Blood Reviews, 2018, 32, 130-143.	2.8	43
289	Modulation of hepcidin expression by normal control and beta0-thalassemia/Hb E erythroblasts. Hematology, 2018, 23, 423-428.	0.7	3
290	Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a β-thalassemia mouse model. Blood, 2018, 131, 236-246.	0.6	30
291	Modern iron replacement therapy: clinical and pathophysiological insights. International Journal of Hematology, 2018, 107, 16-30.	0.7	132
292	Scavenging Reactive Oxygen Species Production Normalizes Ferroportin Expression and Ameliorates Cellular and Systemic Iron Disbalances in Hemolytic Mouse Model. Antioxidants and Redox Signaling, 2018, 29, 484-499.	2.5	21
293	HDAC1 Governs Iron Homeostasis Independent of Histone Deacetylation in Iron-Overload Murine Models. Antioxidants and Redox Signaling, 2018, 28, 1224-1237.	2.5	17
294	Iron metabolism in erythroid cells and patients with congenital sideroblastic anemia. International Journal of Hematology, 2018, 107, 44-54.	0.7	20
295	Interplay of adipocyte and hepatocyte: Leptin upregulates hepcidin. Biochemical and Biophysical Research Communications, 2018, 495, 1548-1554.	1.0	24
296	Iron chelation therapy in lower IPSS risk myelodysplastic syndromes; which subtypes benefit?. Leukemia Research, 2018, 64, 24-29.	0.4	10
297	The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. International Journal of Hematology, 2018, 107, 31-43.	0.7	48
298	Peroxiredoxin-2: A Novel Regulator of Iron Homeostasis in Ineffective Erythropoiesis. Antioxidants and Redox Signaling, 2018, 28, 1-14.	2.5	33
299	Unusual case of iron overload with cancer-mimicking abdominal splenosis. BMJ Case Reports, 2018, 2018, bcr-2017-223410.	0.2	1
300	Hepcidin: immunoanalytic characteristics. Annales De Biologie Clinique, 2018, 76, 705-715.	0.2	0
301	A long sought after "receptor―for ERFE?. Blood, 2018, 132, 1463-1464.	0.6	5
302	Iron in the Tumor Microenvironment—Connecting the Dots. Frontiers in Oncology, 2018, 8, 549.	1.3	108
303	Inherited Disorders of Iron Overload. Frontiers in Nutrition, 2018, 5, 103.	1.6	63
304	Iron, erythropoietin, and inflammation regulate hepcidin in <i>Bmp2</i> â€deficient mice, but serum iron fails to induce hepcidin in <i>Bmp6</i> â€deficient mice. American Journal of Hematology, 2019, 94, 240-248	2.0	23

#	Article	IF	CITATIONS
305	Hepcidin Therapeutics. Pharmaceuticals, 2018, 11, 127.	1.7	65
306	Understanding Advanced Hematologic Testing. , 2018, , 41-63.		Ο
307	Established and Emerging Concepts to Treat Imbalances of Iron Homeostasis in Inflammatory Diseases. Pharmaceuticals, 2018, 11, 135.	1.7	29
308	Myonectin Is an Exercise-Induced Myokine That Protects the Heart From Ischemia-Reperfusion Injury. Circulation Research, 2018, 123, 1326-1338.	2.0	121
309	Iron as a Therapeutic Target in HFE-Related Hemochromatosis: Usual and Novel Aspects. Pharmaceuticals, 2018, 11, 131.	1.7	9
310	Sickle Cell and α+-Thalassemia Traits Influence the Association between Ferritin and Hepcidin in Rural Kenyan Children Aged 14–26 Months. Journal of Nutrition, 2018, 148, 1903-1910.	1.3	6
311	Assessment of iron deficiency. Haematologica, 2018, 103, 1939-1942.	1.7	10
312	Iron attenuates erythropoietin production by decreasing hypoxia-inducible transcription factor 21± concentrations in renal interstitial fibroblasts. Kidney International, 2018, 94, 900-911.	2.6	26
313	Pathogenesis and Treatment Options of Cancer Related Anemia: Perspective for a Targeted Mechanism-Based Approach. Frontiers in Physiology, 2018, 9, 1294.	1.3	103
314	Iron overload in myelodysplastic syndromes: Evidence based guidelines from the Canadian consortium on MDS. Leukemia Research, 2018, 74, 21-41.	0.4	21
315	M-protein–related disorders: MGCS. Blood, 2018, 132, 1464-1465.	0.6	6
316	The Functional Versatility of Transferrin Receptor 2 and Its Therapeutic Value. Pharmaceuticals, 2018, 11, 115.	1.7	18
317	An intensified training schedule in recreational male runners is associated with increases in erythropoiesis and inflammation and a net reduction in plasma hepcidin. American Journal of Clinical Nutrition, 2018, 108, 1324-1333.	2.2	22
318	Response to Letter to the Editor: "Myonectin Predicts the Development of Type 2 Diabetes― Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4040-4041.	1.8	2
319	Erythroferrone is not required for the glucoregulatory and hematologic effects of chronic erythropoietin treatment in mice. Physiological Reports, 2018, 6, e13890.	0.7	23
320	Mechanisms responsible for reduced erythropoiesis during androgen deprivation therapy in men with prostate cancer. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1185-E1193.	1.8	24
321	The Dual Role of Hepcidin in Brain Iron Load and Inflammation. Frontiers in Neuroscience, 2018, 12, 740.	1.4	51
322	Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress. Blood, 2018, 132, 2078-2087.	0.6	65

#	Article	IF	CITATIONS
323	Transferrin receptor 2 is a potential novel therapeutic target for Î ² -thalassemia: evidence from a murine model. Blood, 2018, 132, 2286-2297.	0.6	28
324	The Postinjury Inflammatory State and the Bone Marrow Response to Anemia. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 629-638.	2.5	32
325	Activin receptor ligand traps in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2018, 27, 351-357.	1.0	17
326	Hemochromatosis: pathophysiology, evaluation, and management of hepatic iron overload with a focus on MRI. Expert Review of Gastroenterology and Hepatology, 2018, 12, 767-778.	1.4	44
327	Advances in understanding iron metabolism and its crosstalk with erythropoiesis. British Journal of Haematology, 2018, 182, 481-494.	1.2	22
328	Understanding Anemia in the ICU to Develop Future Treatment Strategies. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 554-555.	2.5	6
329	Erythropoiesis. , 2018, , 207-215.		6
330	Mechanisms and Regulation of Intestinal Iron Transport. , 2018, , 1451-1483.		8
331	Rare anemias due to genetic iron metabolism defects. Mutation Research - Reviews in Mutation Research, 2018, 777, 52-63.	2.4	27
332	Liver HFE protein content is posttranscriptionally decreased in iron-deficient mice and rats. American Journal of Physiology - Renal Physiology, 2018, 315, G560-G568.	1.6	2
333	Biology of Erythropoiesis, Erythroid Differentiation, and Maturation. , 2018, , 297-320.e14.		3
334	Thalassemia Syndromes. , 2018, , 546-570.e10.		3
335	Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica, 2018, 103, 1593-1603.	1.7	49
336	Correction of Anemia in Chronic Kidney Disease With Angelica sinensis Polysaccharide via Restoring EPO Production and Improving Iron Availability. Frontiers in Pharmacology, 2018, 9, 803.	1.6	34
337	Excessive Iron Availability Caused by Disorders of Interleukin-10 and Interleukin-22 Contributes to High Altitude Polycythemia. Frontiers in Physiology, 2018, 9, 548.	1.3	10
338	Pathophysiology of Iron Homeostasis. , 2018, , 468-477.		5
339	Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. American Journal of Physiology - Renal Physiology, 2018, 315, F1042-F1057.	1.3	31
340	Dysregulated iron metabolism in polycythemia vera: etiology and consequences. Leukemia, 2018, 32, 2105-2116.	3.3	84

		CITATION R	EPORT	
#	Article		IF	CITATIONS
341	Effects of an Acute Exercise Bout on Serum Hepcidin Levels. Nutrients, 2018, 10, 209.		1.7	43
342	Hypoxia-Inducible Factor and Its Role in the Management of Anemia in Chronic Kidney I International Journal of Molecular Sciences, 2018, 19, 389.	Disease.	1.8	65
343	Rational Management of Iron-Deficiency Anaemia in Inflammatory Bowel Disease. Nutri	ents, 2018, 10, 82.	1.7	43
344	Disorders of Iron Homeostasis. , 2018, , 478-490.			9
345	Erythropoiesis: insights into pathophysiology and treatments in 2017. Molecular Medic	ine, 2018, 24, 11.	1.9	76
346	Iron metabolism in critically ill patients developing anemia of inflammation: a case cont Annals of Intensive Care, 2018, 8, 56.	rol study.	2.2	20
347	Renal Anemia and Iron Metabolism. Contributions To Nephrology, 2018, 195, 62-73.		1.1	4
348	Hypoxia-inducible factor stabilizers for treating anemia of chronic kidney disease. Curre Nephrology and Hypertension, 2018, 27, 331-338.	nt Opinion in	1.0	43
349	Erythroferrone inhibits the induction of hepcidin by BMP6. Blood, 2018, 132, 1473-147	'7.	0.6	202
350	Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Erythropoiesis. Scientific Reports, 2018, 8, 12793.	Disordered	1.6	14
351	Influence of Hepcidin in the Development of Anemia. , 2018, , .			1
352	Food deprivation increases hepatic hepcidin expression and can overcome the effect of male mice. FASEB Journal, 2018, 32, 6079-6088.	Hfe deletion in	0.2	6
353	Deep Dive on the Proteome of Human Cerebrospinal Fluid: A Valuable Data Resource for Discovery and Missing Protein Identification. Journal of Proteome Research, 2018, 17, 4		1.8	63
354	Liver Disease in Iron Overload. , 2018, , 151-165.			2
357	The hypoxia inducible factor/erythropoietin (EPO)/EPO receptor pathway is disturbed in chronic kidney disease related anemia. PLoS ONE, 2018, 13, e0196684.	a rat model of	1.1	29
358	Iron overload in patients with myelodysplastic syndromes: An updated overview. Cance 3979-3989.	r, 2018, 124,	2.0	24
359	Biomarkers of Nutrition for Development (BOND)—Iron Review. Journal of Nutrition, 2 1001S-1067S.	2018, 148,	1.3	206
360	Critical Issues in Diamond-Blackfan Anemia and Prospects for Novel Treatment. Hemato Clinics of North America, 2018, 32, 701-712.	ology/Oncology	0.9	15

#	Article	IF	CITATIONS
361	Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis. Haematologica, 2018, 103, 1616-1626.	1.7	30
362	Iron Chelation. Hematologic Malignancies, 2018, , 105-118.	0.2	1
363	An intimate crosstalk between iron homeostasis and oxygen metabolism regulated by the hypoxia-inducible factors (HIFs). Free Radical Biology and Medicine, 2019, 133, 118-129.	1.3	70
364	Misdistribution of iron and oxidative stress in chronic kidney disease. Free Radical Biology and Medicine, 2019, 133, 248-253.	1.3	37
365	Macrophage ferroportin is essential for stromal cell proliferation in wound healing. Haematologica, 2019, 104, 47-58.	1.7	42
366	Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radical Biology and Medicine, 2019, 133, 234-237.	1.3	48
367	Erythropoietic regulators of iron metabolism. Free Radical Biology and Medicine, 2019, 133, 69-74.	1.3	106
368	Perioperative anemia: Prevalence, consequences and pathophysiology. Transfusion and Apheresis Science, 2019, 58, 369-374.	0.5	35
369	The BMP‣MAD pathway mediates the impaired hepatic iron metabolism associated with the ERFEâ€A260S variant. American Journal of Hematology, 2019, 94, 1227-1235.	2.0	21
370	Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood, 2019, 134, 1373-1384.	0.6	36
371	Role of the kidneys in the redistribution of heme-derived iron during neonatal hemolysis in mice. Scientific Reports, 2019, 9, 11102.	1.6	9
372	A variant erythroferrone disrupts iron homeostasis in <i>SF3B1</i> -mutated myelodysplastic syndrome. Science Translational Medicine, 2019, 11, .	5.8	55
373	Risk of iron overload with chronic indiscriminate use of intravenous iron products in ESRD and IBD populations. Heliyon, 2019, 5, e02045.	1.4	20
374	The effect of multistrain probiotic supplementation in two doses on iron metabolism in obese postmenopausal women: a randomized trial. Food and Function, 2019, 10, 5228-5238.	2.1	27
375	Changes in the Serum Hepcidin-to-ferritin Ratio with Erythroferrone after Hepatitis C Virus Eradication Using Direct-acting Antiviral Agents. Internal Medicine, 2019, 58, 2915-2922.	0.3	8
376	New insights into the links between hypoxia and iron homeostasis. Current Opinion in Hematology, 2019, 26, 125-130.	1.2	51
377	Anemia of Inflammation with An Emphasis on Chronic Kidney Disease. Nutrients, 2019, 11, 2424.	1.7	30
378	Genetic background influences hepcidin response to iron imbalance in a mouse model of hemolytic anemia (Congenital erythropoietic porphyria). Biochemical and Biophysical Research Communications, 2019, 520, 297-303	1.0	7

#	Article	IF	CITATIONS
379	Hepcidin and Anemia: A Tight Relationship. Frontiers in Physiology, 2019, 10, 1294.	1.3	133
380	Iron homeostasis and oxidative stress: An intimate relationship. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118535.	1.9	402
381	Brain Iron Metabolism and CNS Diseases. Advances in Experimental Medicine and Biology, 2019, , .	0.8	11
382	Hypoxia-Inducible Factor Activators in Renal Anemia: Current Clinical Experience. Advances in Chronic Kidney Disease, 2019, 26, 253-266.	0.6	135
383	Imbalance of erythropoiesis and iron metabolism in patients with thalassemia. International Journal of Medical Sciences, 2019, 16, 302-310.	1.1	21
384	Regulators of hepcidin expression. Vitamins and Hormones, 2019, 110, 101-129.	0.7	49
385	Coordinatively Unsaturated Fe ³⁺ Based Activatable Probes for Enhanced MRI and Therapy of Tumors. Angewandte Chemie - International Edition, 2019, 58, 11088-11096.	7.2	143
386	Guest Editor: Raffaella Origa IRON TOXICITY AND HEMOPOIETIC CELL TRANSPLANTATION: TIME TO CHANGE THE PARADIGM Mediterranean Journal of Hematology and Infectious Diseases, 2019, 11, e2019030.	0.5	10
387	Fractalkine Induces Hepcidin Expression of BV-2 Microglia and Causes Iron Accumulation in SH-SY5Y Cells. Cellular and Molecular Neurobiology, 2019, 39, 985-1001.	1.7	28
388	Coordinatively Unsaturated Fe 3+ Based Activatable Probes for Enhanced MRI and Therapy of Tumors. Angewandte Chemie, 2019, 131, 11205-11213.	1.6	18
389	To induce or not to induce: the fight over hepcidin regulation. Haematologica, 2019, 104, 1093-1095.	1.7	9
390	Iron Supplementation Therapy, A Friend and Foe of Mycobacterial Infections?. Pharmaceuticals, 2019, 12, 75.	1.7	22
391	EPO-R+ myelodysplastic cells with ring sideroblasts produce high erythroferrone levels to reduce hepcidin expression in hepatic cells. Blood Cells, Molecules, and Diseases, 2019, 78, 1-8.	0.6	6
392	Enarodustat, Conversion and Maintenance Therapy for Anemia in Hemodialysis Patients: A Randomized, Placebo-Controlled Phase 2b Trial Followed by Long-Term Trial. Nephron, 2019, 143, 77-85.	0.9	36
393	Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nature Metabolism, 2019, 1, 519-531.	5.1	88
394	Serum Erythroferrone Levels Associate with Mortality and Cardiovascular Events in Hemodialysis and in CKD Patients: A Two Cohorts Study. Journal of Clinical Medicine, 2019, 8, 523.	1.0	14
395	The Importance of Iron Status for Young Children in Low- and Middle-Income Countries: A Narrative Review. Pharmaceuticals, 2019, 12, 59.	1.7	36
396	Myonectin deletion promotes adipose fat storage and reduces liver steatosis. FASEB Journal, 2019, 33, 8666-8687.	0.2	54

#	Article	IF	CITATIONS
397	Aceruloplasminemia: A Severe Neurodegenerative Disorder Deserving an Early Diagnosis. Frontiers in Neuroscience, 2019, 13, 325.	1.4	66
398	Iron considerations for the athlete: a narrative review. European Journal of Applied Physiology, 2019, 119, 1463-1478.	1.2	146
399	Iron Metabolism in Chronic Kidney Disease Patients. Contributions To Nephrology, 2019, 198, 103-111.	1.1	9
400	The Hepcidin-Anemia Axis: Pathogenesis of Anemia in Chronic Kidney Disease. Contributions To Nephrology, 2019, 198, 124-134.	1.1	20
401	Laboratory Assessment of Iron Status. , 2019, , 51-68.		0
402	Treatment of Iron Deficiency Anemia in Adults. , 2019, , 85-95.		1
403	Regulation of Fibroblast Growth Factor 23 by Iron, EPO, and HIF. Current Molecular Biology Reports, 2019, 5, 8-17.	0.8	26
404	Iron Metabolism and Oxidative Status in Patients with Hb H Disease. Hemoglobin, 2019, 43, 38-41.	0.4	2
405	Hepcidin as a therapeutic target for anemia and inflammation associated with chronic kidney disease. Expert Opinion on Therapeutic Targets, 2019, 23, 407-421.	1.5	21
406	Genetic loss of Tmprss6 alters terminal erythroid differentiation in a mouse model of β-thalassemia intermedia. Haematologica, 2019, 104, e442-e446.	1.7	6
407	Disorders of Iron Metabolism. Hematology/Oncology Clinics of North America, 2019, 33, 393-408.	0.9	34
408	Recapitulating Hematopoietic Development in aÂDish. Current Human Cell Research and Applications, 2019, , 45-71.	0.1	1
409	The Role of Intravenous Iron in the Treatment of Anemia Associated with Cancer and Chemotherapy. Acta Haematologica, 2019, 142, 13-20.	0.7	35
410	Mild Hereditary Spherocytosis without Accompanying Hereditary Haemochromatosis: An Unrecognised Cause of Iron Overload. Acta Haematologica, 2019, 141, 256-260.	0.7	2
411	Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice. PLoS ONE, 2019, 14, e0215028.	1.1	4
412	Molecular perspective of iron uptake, related diseases, and treatments. Blood Research, 2019, 54, 10-16.	0.5	14
413	Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , .	0.1	0
414	Respiratory infections drive hepcidin-mediated blockade of iron absorption leading to iron deficiency anemia in African children. Science Advances, 2019, 5, eaav9020.	4.7	30

#	Article	IF	Citations
415	Beta Thalassemia. Hematology/Oncology Clinics of North America, 2019, 33, 339-353.	0.9	34
416	Erythropoiesis and Iron Homeostasis in Non-Transfusion-Dependent Thalassemia Patients with Extramedullary Hematopoiesis. BioMed Research International, 2019, 2019, 1-9.	0.9	6
417	Hepcidin and the BMP-SMAD pathway: An unexpected liaison. Vitamins and Hormones, 2019, 110, 71-99.	0.7	79
418	Signaling pathways regulating hepcidin. Vitamins and Hormones, 2019, 110, 47-70.	0.7	14
419	Umbilical Cord Serum Ferritin Concentration is Inversely Associated with Umbilical Cord Hemoglobin in Neonates Born to Adolescents Carrying Singletons and Women Carrying Multiples. Journal of Nutrition, 2019, 149, 406-415.	1.3	17
420	Hepcidin in chronic kidney disease anemia. Vitamins and Hormones, 2019, 110, 243-264.	0.7	14
421	Rapid growth is a dominant predictor of hepcidin suppression and declining ferritin in Gambian infants. Haematologica, 2019, 104, 1542-1553.	1.7	34
422	Hepcidin-ferroportin axis in health and disease. Vitamins and Hormones, 2019, 110, 17-45.	0.7	80
423	Iron and oxygen sensing: discovering intricate links. Kidney International, 2019, 95, 482-484.	2.6	2
424	New thiazolidinones reduce iron overload in mouse models of hereditary hemochromatosis and β-thalassemia. Haematologica, 2019, 104, 1768-1781.	1.7	24
425	New diagnostic tools for delineating iron status. Hematology American Society of Hematology Education Program, 2019, 2019, 327-336.	0.9	15
426	5. INFECTIONS ASSOCIATED WITH IRON ADMINISTRATION. , 2019, , 123-156.		1
427	Erythroferrone Hormone a Novel Biomarker is associated with Anemia and Iron Overload in Beta Thalassemia Patients Journal of Physics: Conference Series, 2019, 1294, 062045.	0.3	3
428	Long-Term Risks of Intravenous Iron in End-Stage Renal Disease Patients. Advances in Chronic Kidney Disease, 2019, 26, 292-297.	0.6	11
429	The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Frontiers in Molecular Biosciences, 2019, 6, 116.	1.6	178
430	Hto, Tritiated Amino Acid Exposure and External Exposure Induce Differential Effects on Hematopoiesis and Iron Metabolism. Scientific Reports, 2019, 9, 19919.	1.6	4
431	11. COBALT-SCHIFF BASE COMPLEXES: PRECLINICAL RESEARCH AND POTENTIAL THERAPEUTIC USES. , 2019, 19, 267-302.		6
432	Therapeutic Advances in Regulating the Hepcidin/Ferroportin Axis. Pharmaceuticals, 2019, 12, 170.	1.7	39

		CITATION R	EPORT	
#	Article		IF	CITATIONS
433	Mechanisms, mishaps and manipulation of iron uptake. HemaSphere, 2019, 3, 104-108	3.	1.2	0
434	Can molecular markers of oxygen homeostasis and the measurement of tissue oxygen optimize red blood cell transfusions?. Current Opinion in Hematology, 2019, 26, 453-4	be leveraged to 60.	1.2	2
435	Single versus Split Dose of Iron Optimizes Hemoglobin Mass Gains at 2106 m Altitude. Science in Sports and Exercise, 2019, 51, 751-759.	Medicine and	0.2	25
436	Functional erythropoietinâ€hepcidin axis in recombinant human erythropoietin indeper haemodialysis patients. Nephrology, 2019, 24, 751-757.	ndent	0.7	4
437	Pathophysiology and classification of iron overload diseases; update 2018. Transfusion Biologique, 2019, 26, 80-88.	Clinique Et	0.2	50
438	Iron deficiency. Blood, 2019, 133, 30-39.		0.6	363
439	Liver iron sensing and body iron homeostasis. Blood, 2019, 133, 18-29.		0.6	196
440	Anemia of inflammation. Blood, 2019, 133, 40-50.		0.6	609
441	Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood	, 2019, 133, 51-58.	0.6	68
442	Red Blood Cell Biochemistry and Physiology. , 2019, , 15-20.			1
443	Gastrointestinal iron excretion and reversal of iron excess in a mouse model of inherite Haematologica, 2019, 104, 678-689.	d iron excess.	1.7	15
444	Transient decrease of serum iron after acute erythropoietin treatment contributes to h inhibition by ERFE in mice. Haematologica, 2019, 104, e87-e90.	epcidin	1.7	19
445	Systemic and local hepcidin as emerging and important peptides in renal homeostasis a BioFactors, 2019, 45, 118-134.	and pathology.	2.6	4
446	Iron Homeostasis in the Lungs—A Balance between Health and Disease. Pharmaceuti	cals, 2019, 12, 5.	1.7	54
447	A computational model to understand mouse iron physiology and disease. PLoS Comp Biology, 2019, 15, e1006680.	utational	1.5	8
448	Hepcidinâ€25/erythroferrone ratio predicts improvement of anaemia in haemodialysis with ferric citrate hydrate. Nephrology, 2019, 24, 819-826.	patients treated	0.7	7
449	Deregulated iron metabolism in bone marrow from adenine-induced mouse model of cl disease. International Journal of Hematology, 2019, 109, 59-69.	nronic kidney	0.7	4
450	Green tea activity and iron overload induced molecular fibrogenesis of rat liver. Saudi Jo Biological Sciences, 2019, 26, 531-540.	ournal of	1.8	21

#	Article	IF	CITATIONS
451	HIF stabilizers in the management of renal anemia: from bench to bedside to pediatrics. Pediatric Nephrology, 2019, 34, 365-378.	0.9	28
452	Iron; Intestinal Absorption. , 2020, , 301-311.		0
453	Effect of procyanidin on dietary iron absorption in hereditary hemochromatosis and in dysmetabolic iron overload syndrome: AÂcrossover double-blind randomized controlled trial. Clinical Nutrition, 2020, 39, 97-103.	2.3	10
454	The multifaceted role of iron in renal health and disease. Nature Reviews Nephrology, 2020, 16, 77-98.	4.1	167
455	GDF11 contributes to hepatic hepcidin (HAMP) inhibition through SMURF1â€mediated BMPâ€SMAD signalling suppression. British Journal of Haematology, 2020, 188, 321-331.	1.2	14
456	Erythrocyte production and destruction. , 2020, , 62-77.		2
457	Iron kinetics and laboratory assessment. , 2020, , 104-116.		3
458	Glutathione peroxidase 4 and vitamin E control reticulocyte maturation, stress erythropoiesis and iron homeostasis. Haematologica, 2020, 105, 937-950.	1.7	42
459	Iron in Health and Disease: An Update. Indian Journal of Pediatrics, 2020, 87, 58-65.	0.3	39
460	The Effect of Abnormal Iron Metabolism on Osteoporosis. Biological Trace Element Research, 2020, 195, 353-365.	1.9	60
461	Triathlon Medicine. , 2020, , .		7
462	Iron deficiency anaemia revisited. Journal of Internal Medicine, 2020, 287, 153-170.	2.7	233
463	Liver Hormones. , 2020, , 425-444.		0
464	Erythroferrone as a sensitive biomarker to detect stimulation of erythropoiesis. Drug Testing and Analysis, 2020, 12, 261-267.	1.6	19
465	Stabilizing HIF to Ameliorate Anemia. Cell, 2020, 180, 6.	13.5	39
466	Testosterone Administration During Energy Deficit Suppresses Hepcidin and Increases Iron Availability for Erythropoiesis. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1316-e1321.	1.8	17
467	Effects of anti–TNF-alpha therapy on hemoglobin levels and anemia in patients with inflammatory bowel disease. Digestive and Liver Disease, 2020, 52, 400-407.	0.4	9
468	The secreted BMP antagonist ERFE is required for the development of a functional circulatory system in Xenopus. Developmental Biology, 2020, 459, 138-148.	0.9	6

#	Article	IF	CITATIONS
469	Erythroferrone, the new iron regulator: evaluation of its levels in Egyptian patients with beta thalassemia. Annals of Hematology, 2020, 99, 31-39.	0.8	7
470	Local hepcidin increased intracellular iron overload via the degradation of ferroportin in the kidney. Biochemical and Biophysical Research Communications, 2020, 522, 322-327.	1.0	6
471	Too much iron: A masked foe for leukemias. Blood Reviews, 2020, 39, 100617.	2.8	21
472	How Severe Anaemia Might Influence the Risk of Invasive Bacterial Infections in African Children. International Journal of Molecular Sciences, 2020, 21, 6976.	1.8	14
473	Educational Updates in Hematology Book: 25th Congress of the European Hematology Association, Virtual Edition 2020. HemaSphere, 2020, 4, .	1.2	2
474	NCOA4 is Regulated by HIF and Mediates Mobilization of Murine Hepatic Iron Stores After Blood Loss. Blood, 2020, 136, 2691-2702.	0.6	20
475	The new role of poly (rC)-binding proteins as iron transport chaperones: Proteins that could couple with inter-organelle interactions to safely traffic iron. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129685.	1.1	34
477	A Novel ALAS2 Missense Mutation in Two Brothers With Iron Overload and Associated Alterations in Serum Hepcidin/Erythroferrone Levels. Frontiers in Physiology, 2020, 11, 581386.	1.3	2
478	<p>Inflammation Mediated Hepcidin-Ferroportin Pathway and Its Therapeutic Window in Breast Cancer</p> . Breast Cancer: Targets and Therapy, 2020, Volume 12, 165-180.	1.0	4
479	Introduction to a review series on inherited anemias. Blood, 2020, 136, 1215-1216.	0.6	2
480	Congenital dyserythropoietic anemias. Blood, 2020, 136, 1274-1283.	0.6	62
481	Effect of Ferric Citrate versus Ferrous Sulfate on Iron and Phosphate Parameters in Patients with Iron Deficiency and CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1251-1258.	2.2	17
482	Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduction and Targeted Therapy, 2020, 5, 138.	7.1	148
483	Interplay of erythropoietin, fibroblast growth factor 23, and erythroferrone in patients with hereditary hemolytic anemia. Blood Advances, 2020, 4, 1678-1682.	2.5	13
484	Regulation of iron homeostasis: Lessons from mouse models. Molecular Aspects of Medicine, 2020, 75, 100872.	2.7	16
485	NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis. Antioxidants and Redox Signaling, 2021, 35, 433-452.	2.5	43
486	Controversies on the Consequences of Iron Overload and Chelation in MDS. HemaSphere, 2020, 4, e357.	1.2	19
487	The importance of lean mass and iron deficiency when comparing hemoglobin mass in male and female athletic groups. Journal of Applied Physiology, 2020, 129, 855-863.	1.2	5

		LPUKI	
#	Article	IF	CITATIONS
488	Iron metabolism in high-altitude residents. Journal of Applied Physiology, 2020, 129, 920-925.	1.2	12
489	Uremic Toxins Affect Erythropoiesis during the Course of Chronic Kidney Disease: A Review. Cells, 2020, 9, 2039.	1.8	31
490	Changes in Hepcidin Serum Levels Correlate with Clinical Improvement in Idiopathic Restless Legs Syndrome Patients. Journal of Clinical Medicine, 2020, 9, 4115.	1.0	12
491	Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. International Journal of Molecular Sciences, 2020, 21, 8131.	1.8	27
492	Maternal hepcidin: the only player on the field?. Blood, 2020, 136, 2099-2100.	0.6	2
493	Erythroferrone lowers hepcidin by sequestering BMP2/6 heterodimer from binding to the BMP type I receptor ALK3. Blood, 2020, 135, 453-456.	0.6	63
494	Myonectin inhibits the differentiation of osteoblasts and osteoclasts in mouse cells. Heliyon, 2020, 6, e03967.	1.4	3
495	CTRP15 derived from cardiac myocytes attenuates TGFβ1-induced fibrotic response in cardiac fibroblasts. Cardiovascular Drugs and Therapy, 2020, 34, 591-604.	1.3	10
496	Crosstalk Between Iron and Bone Metabolism: Evidence from Patients and Mouse Models of β-Thalassemia. , 2020, , 114-124.		1
497	Polycythemia vera: the current status of preclinical models and therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 615-628.	1.5	5
498	Regulation of Iron Homeostasis and Related Diseases. Mediators of Inflammation, 2020, 2020, 1-11.	1.4	26
499	Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood, 2020, 136, 726-739.	0.6	297
500	A fully human anti-BMP6 antibody reduces the need for erythropoietin in rodent models of the anemia of chronic disease. Blood, 2020, 136, 1080-1090.	0.6	22
501	Hypoxia-inducible factor prolyl hydroxylase inhibitor in the treatment of anemia in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2020, 29, 414-422.	1.0	19
502	Skeletal muscle antagonizes antiviral CD8 ⁺ T cell exhaustion. Science Advances, 2020, 6, eaba3458.	4.7	40
503	Basics and principles of cellular and systemic iron homeostasis. Molecular Aspects of Medicine, 2020, 75, 100866.	2.7	110
504	Correcting β-thalassemia by combined therapies that restrict iron and modulate erythropoietin activity. Blood, 2020, 136, 1968-1979.	0.6	33
505	How I treat cancer-associated anemia. Blood, 2020, 136, 801-813.	0.6	51

#	Article	IF	CITATIONS
506	Stress Erythropoiesis is a Key Inflammatory Response. Cells, 2020, 9, 634.	1.8	50
507	Classic and emergent indicators for the assessment of human iron status. Critical Reviews in Food Science and Nutrition, 2020, 61, 1-14.	5.4	11
508	Bone morphogenic proteins in iron homeostasis. Bone, 2020, 138, 115495.	1.4	35
509	Practical implications of the 2019 Nobel Prize in Physiology or Medicine: from molecular adaptation to hypoxia to novel anti-anemic drugs in the clinic. Internal and Emergency Medicine, 2020, 15, 911-915.	1.0	3
511	Protein Modifications Critical for Myonectin/Erythroferrone Secretion and Oligomer Assembly. Biochemistry, 2020, 59, 2684-2697.	1.2	8
512	Application of Reticulocyte-Based Estimation of Red Blood Cell Lifespan in Anemia Management of End-Stage Renal Disease Patients. AAPS Journal, 2020, 22, 40.	2.2	1
513	Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 2020, 105, 260-272.	1.7	349
514	Phospho-PTM proteomic discovery of novel EPO- modulated kinases and phosphatases, including PTPN18 as a positive regulator of EPOR/JAK2 Signaling. Cellular Signalling, 2020, 69, 109554.	1.7	6
515	Analytical and biological assessment of circulating human erythroferrone. Clinical Biochemistry, 2020, 79, 41-47.	0.8	13
516	Increased Hepcidin Levels During a Period of High Training Load Do Not Alter Iron Status in Male Elite Junior Rowers. Frontiers in Physiology, 2020, 10, 1577.	1.3	13
518	ERFE regulation in sickle cell disease: complex but promising. British Journal of Haematology, 2020, 189, 1012-1013.	1.2	1
519	Ferroportin inhibition attenuates plasma iron, oxidant stress, and renal injury following red blood cell transfusion in guinea pigs. Transfusion, 2020, 60, 513-523.	0.8	5
520	Liver Iron Retention Estimated from Utilization of Oral and Intravenous Radioiron in Various Anemias and Hemochromatosis in Humans. International Journal of Molecular Sciences, 2020, 21, 1077.	1.8	2
521	Anaemia, iron homeostasis and pulmonary hypertension: a review. Internal and Emergency Medicine, 2020, 15, 573-585.	1.0	37
522	Extrahepatic deficiency of transferrin receptor 2 is associated with increased erythropoiesis independent of iron overload. Journal of Biological Chemistry, 2020, 295, 3906-3917.	1.6	10
523	The benefits of iron supplementation following blood donation vary with baseline iron status. American Journal of Hematology, 2020, 95, 784-791.	2.0	18
524	Phospho-proteomic discovery of novel signal transducers including thioredoxin-interacting protein as mediators of erythropoietin-dependent human erythropoiesis. Experimental Hematology, 2020, 84, 29-44.	0.2	12
525	Marathon Run-induced Changes in the Erythropoietin-Erythroferrone-Hepcidin Axis are Iron Dependent. International Journal of Environmental Research and Public Health, 2020, 17, 2781.	1.2	9

#	Article	IF	Citations
526	No effect of supplemented heat stress during an acute endurance exercise session in hypoxia on hepcidin regulation. European Journal of Applied Physiology, 2020, 120, 1331-1340.	1.2	8
527	High-Altitude Acclimatization Suppresses Hepcidin Expression During Severe Energy Deficit. High Altitude Medicine and Biology, 2020, 21, 232-236.	0.5	6
528	Antibodies against the erythroferrone N-terminal domain prevent hepcidin suppression and ameliorate murine thalassemia. Blood, 2020, 135, 547-557.	0.6	47
529	Drugging erythroferrone to treat anemias. Blood, 2020, 135, 516-518.	0.6	3
530	Inherited iron overload disorders. Translational Gastroenterology and Hepatology, 2020, 5, 25-25.	1.5	72
531	Induction of erythroferrone in healthy humans by micro-dose recombinant erythropoietin or high-altitude exposure. Haematologica, 2021, 106, 384-390.	1.7	26
532	NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice. Haematologica, 2021, 106, 795-805.	1.7	37
533	A role for hepcidin in the anemia caused by Trypanosoma brucei infection. Haematologica, 2021, 106, 806-818.	1.7	7
534	Transferrin saturation is independently associated with the severity of obstructive sleep apnea syndrome and hypoxia among obese subjects. Clinical Nutrition, 2021, 40, 608-614.	2.3	1
535	Perls Stain Grade in Bone Marrow Aspirate Correlates with Overall Survival in Low-Risk Myelodysplastic Patients. Acta Haematologica, 2021, 144, 332-336.	0.7	1
536	Intravenous iron therapy and the cardiovascular system: risks and benefits. CKJ: Clinical Kidney Journal, 2021, 14, 1067-1076.	1.4	12
537	The Role of Iron in Benign and Malignant Hematopoiesis. Antioxidants and Redox Signaling, 2021, 35, 415-432.	2.5	15
538	Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders. British Journal of Haematology, 2021, 193, 882-893.	1.2	37
539	Impact of bacterial infections on erythropoiesis. Expert Review of Anti-Infective Therapy, 2021, 19, 1-15.	2.0	18
540	Cellâ€typeâ€specific insights into iron regulatory processes. American Journal of Hematology, 2021, 96, 110-127.	2.0	28
541	Disordered serum erythroferrone and hepcidin levels as indicators of the spontaneous abortion occurrence during early pregnancy in humans. British Journal of Haematology, 2021, 192, 643-651.	1.2	9
542	Toxic iron species in lower-risk myelodysplastic syndrome patients: course of disease and effects on outcome. Leukemia, 2021, 35, 1745-1750.	3.3	15
543	Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. , 2021, 12, 529.		61

#	Article	IF	CITATIONS
545	The serum ferritin levels and liver iron concentrations in patients with alpha - thalassemia : is there a good correlation?. Hematology, 2021, 26, 473-477.	0.7	2
546	Iron Metabolism and Related Disorders. , 2021, , 445-499.		0
547	Hepcidin antimicrobial peptide. , 2021, , 605-608.		0
548	Short-term periods of strenuous physical activity lower iron absorption. American Journal of Clinical Nutrition, 2021, 113, 261-262.	2.2	2
549	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61.	2.2	49
550	Iron. Advances in Food and Nutrition Research, 2021, 96, 219-250.	1.5	4
551	Association of Serum Hepcidin Levels with Aerobic and Resistance Exercise: A Systematic Review. Nutrients, 2021, 13, 393.	1.7	19
552	Cancer Related Anemia: An Integrated Multitarget Approach and Lifestyle Interventions. Nutrients, 2021, 13, 482.	1.7	17
553	The Interplay between Drivers of Erythropoiesis and Iron Homeostasis in Rare Hereditary Anemias: Tipping the Balance. International Journal of Molecular Sciences, 2021, 22, 2204.	1.8	5
554	Supra-Carbon Dots Formed by Fe ³⁺ -Driven Assembly for Enhanced Tumor-Specific Photo-Mediated and Chemodynamic Synergistic Therapy. ACS Applied Bio Materials, 2021, 4, 2759-2768.	2.3	19
555	Influence of iron manipulation on hypoxic pulmonary vasoconstriction and pulmonary reactivity during ascent and acclimatization to 5050Âm. Journal of Physiology, 2021, 599, 1685-1708.	1.3	17
556	Ironing out an approach to alleviate the hypoferremia of acute inflammation. Haematologica, 2021, 106, 326-328.	1.7	2
557	Factors associated with hepcidinâ€25 levels in maintenance hemodialysis patients. Therapeutic Apheresis and Dialysis, 2021, 25, 565-574.	0.4	0
558	A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Communications Biology, 2021, 4, 156.	2.0	72
559	A role of PIEZO1 in iron metabolism in mice and humans. Cell, 2021, 184, 969-982.e13.	13.5	108
560	The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Frontiers in Immunology, 2020, 11, 627662.	2.2	37
561	Iron Transporter Protein Expressions in Children with Celiac Disease. Nutrients, 2021, 13, 776.	1.7	6
562	Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia. Nature Communications, 2021, 12, 1645.	5.8	9

#	Article	IF	CITATIONS
563	A vasanyagcsere szabályozása, hepcidinexpresszió fiziológiás és pathológiás körülmények közö Transfusio, 2021, 54, 38-46.	^{tt} 0.0	0
564	The HIF-PHI BAY 85-3934 (Molidustat) Improves Anemia and Is Associated With Reduced Levels of Circulating FGF23 in a CKD Mouse Model. Journal of Bone and Mineral Research, 2020, 36, 1117-1130.	3.1	16
565	Marginally reduced maternal hepatic and splenic ferroportin under severe nutritional iron deficiency in pregnancy maintains systemic iron supply. American Journal of Hematology, 2021, 96, 659-670.	2.0	14
566	Circulating Myonectin and Irisin Levels in Gestational Diabetes Mellitus – A Case-control Study. Zeitschrift Fur Geburtshilfe Und Neonatologie, 2021, 225, 320-326.	0.2	6
567	C1q Complement/Tumor Necrosis Factor-Associated Proteins in Cardiovascular Disease and COVID-19. Proteomes, 2021, 9, 12.	1.7	7
568	Matriptase-2 and Hemojuvelin in Hepcidin Regulation: In Vivo Immunoblot Studies in Mask Mice. International Journal of Molecular Sciences, 2021, 22, 2650.	1.8	6
569	Anemia in Chronic Kidney Disease: From Pathophysiology and Current Treatments, to Future Agents. Frontiers in Medicine, 2021, 8, 642296.	1.2	91
571	Saccharated ferric oxide attenuates haematopoietic response induced by epoetin beta pegol in patients undergoing haemodialysis. BMC Nephrology, 2021, 22, 124.	0.8	2
572	Revisiting hemochromatosis: genetic vs. phenotypic manifestations. Annals of Translational Medicine, 2021, 9, 731-731.	0.7	27
573	Iron Status in Newly Diagnosed β-Thalassemia Major: High Rate of Iron Status due to Erythropoiesis Drive. BioMed Research International, 2021, 2021, 1-7.	0.9	1
574	The hypoferremic response to acute inflammation is maintained in thalassemia mice even under parenteral iron loading. PeerJ, 2021, 9, e11367.	0.9	0
575	On Iron Metabolism and Its Regulation. International Journal of Molecular Sciences, 2021, 22, 4591.	1.8	141
576	Assessment of positive iron balance in endâ€stage renal disease: Could hepcidinâ€⊋5 be useful?. International Journal of Laboratory Hematology, 2021, 43, 1159-1167.	0.7	0
577	Low anticoagulant heparin-iron complex targeting inhibition of hepcidin ameliorates anemia of chronic disease in rodents. European Journal of Pharmacology, 2021, 897, 173958.	1.7	5
578	Hypoxia-inducible factor–prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney International Supplements, 2021, 11, 8-25.	4.6	75
579	Leukemia inhibitory factor regulates Schwann cell proliferation and migration and affects peripheral nerve regeneration. Cell Death and Disease, 2021, 12, 417.	2.7	19
580	Iron homeostasis during anemia of inflammation: a prospective study of patients with tuberculosis. Blood, 2021, 138, 1293-1303.	0.6	20
581	Associations among erythropoietic, iron-related, and FGF23 parameters in pediatric kidney transplant recipients. Pediatric Nephrology, 2021, 36, 3241-3249.	0.9	3

#	Article	IF	CITATIONS
582	Are Pregnant Women Who Are Living with Overweight or Obesity at Greater Risk of Developing Iron Deficiency/Anaemia?. Nutrients, 2021, 13, 1572.	1.7	21
583	Serum Erythroferrone During Pregnancy Is Related to Erythropoietin but Does Not Predict the Risk of Anemia. Journal of Nutrition, 2021, 151, 1824-1833.	1.3	12
584	Is the erythropoietin-erythroferrone-hepcidin axis intact in human neonates?. Blood Cells, Molecules, and Diseases, 2021, 88, 102536.	0.6	15
585	EnvIRONmental Aspects in Myelodysplastic Syndrome. International Journal of Molecular Sciences, 2021, 22, 5202.	1.8	Ο
586	Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biology, 2021, 41, 101896.	3.9	75
587	Pleckstrin-2 is essential for erythropoiesis in \hat{l}^2 -thalassemic mice, reducing apoptosis and enhancing enucleation. Communications Biology, 2021, 4, 517.	2.0	8
588	Oral Administration of Ginger-Derived Lipid Nanoparticles and Dmt1 siRNA Potentiates the Effect of Dietary Iron Restriction and Mitigates Pre-Existing Iron Overload in Hamp KO Mice. Nutrients, 2021, 13, 1686.	1.7	10
589	Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions. Developmental Dynamics, 2022, 251, 26-46.	0.8	21
590	Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. ELife, 2021, 10, .	2.8	11
591	The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. ELife, 2021, 10, .	2.8	18
592	Effects of altitude and recombinant human erythropoietin on iron metabolism: a randomized controlled trial. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R152-R161.	0.9	9
593	Intestinal iron absorption is appropriately modulated to match physiological demand for iron in wild-type and iron-loaded Hamp (hepcidin) knockout rats during acute colitis. PLoS ONE, 2021, 16, e0252998.	1.1	1
594	Novel Therapeutic Advances in \hat{l}^2 -Thalassemia. Biology, 2021, 10, 546.	1.3	19
595	Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. Journal of Clinical Investigation, 2021, 131, .	3.9	54
596	Umbilical Cord Erythroferrone Is Inversely Associated with Hepcidin, but Does Not Capture the Most Variability in Iron Status of Neonates Born to Teens Carrying Singletons and Women Carrying Multiples. Journal of Nutrition, 2021, 151, 2590-2600.	1.3	12
597	Ironing Out the Details of Maternal-Fetal Iron Trafficking: New Tools in the Toolbox. Journal of Nutrition, 2021, 151, 2509-2510.	1.3	1
598	Effect of Erythropoietin on the Expression of Murine Transferrin Receptor 2. International Journal of Molecular Sciences, 2021, 22, 8209.	1.8	4
599	A Phase 3 Study of Enarodustat in Anemic Patients with CKD not Requiring Dialysis: The SYMPHONY ND Study. Kidney International Reports, 2021, 6, 1840-1849.	0.4	22

	Article			
			IF	CITATIONS
600 9	Shaping the bone through iron and iron-related proteins. Seminars in Hematology, 202	1, 58, 188-200.	1.8	12
	Advances in understanding the crosstalk between mother and fetus on iron utilization. Hematology, 2021, 58, 153-160.	. Seminars in	1.8	5
	Hepcidin and Iron Metabolism in Experimental Liver Injury. American Journal of Patholo 1165-1179.	gy, 2021, 191,	1.9	10
603 (Amelioration of chronic kidney disease-associated anemia by vadadustat in mice is not erythroferrone. Kidney International, 2021, 100, 79-89.	dependent on	2.6	23
604 (A Phase 3 Study of Enarodustat (JTZ-951) in Japanese Hemodialysis Patients for Treatm Chronic Kidney Disease: SYMPHONY HD Study. Kidney Diseases (Basel, Switzerland), 2	nent of Anemia in 021, 7, 494-502.	1.2	21
605 l	Iron and erythropoiesis: A mutual alliance. Seminars in Hematology, 2021, 58, 145-152	2.	1.8	5
	Novel roles of HIF-PHIs in chronic kidney disease: the link between iron metabolism, kic and FGF23. Kidney International, 2021, 100, 14-16.	lney function,	2.6	5
607 J	Ineffective Erythropoiesis in β-Thalassaemia: Key Steps and Therapeutic Options by Dri Journal of Molecular Sciences, 2021, 22, 7229.	ugs. International	1.8	21
608 [Differentiating iron-loading anemias using a newly developed and analytically validated human serum erythroferrone. PLoS ONE, 2021, 16, e0254851.	ELISA for	1.1	5
610 2	20 years of Hepcidin: How far we have come. Seminars in Hematology, 2021, 58, 132-	144.	1.8	16
611 Î	Oral ferroportin inhibitor vamifeport for improving iron homeostasis and erythropoiesis 1²-thalassemia: current evidence and future clinical development. Expert Review of Hen 633-644.	s in natology, 2021, 14,	1.0	13
	Mendelian inheritance of anemia due to disturbed iron homeostasis. Seminars in Hema 175-181.	itology, 2021, 58,	1.8	3
	The critical roles of iron during the journey from fetus to adolescent: Developmental as homeostasis. Blood Reviews, 2021, 50, 100866.	spects of iron	2.8	20
614 2	2021 update on clinical trials in βâ€thalassemia. American Journal of Hematology, 202	1, 96, 1518-1531.	2.0	38
	Breakthrough science: hypoxia-inducible factors, oxygen sensing, and disorders of hem Blood, 2022, 139, 2441-2449.	atopoiesis.	0.6	8
	Long-acting erythropoiesis-stimulating agent (ESA) induces physiological erythropoiesi improvement of iron availability. International Urology and Nephrology, 2021, , 1.	s via	0.6	0
	Erythroferrone and hepcidin as mediators between erythropoiesis and iron metabolism allogeneic hematopoietic stem cell transplant. American Journal of Hematology, 2021,		2.0	4
618 7	The Multiple Facets of Iron Recycling. Genes, 2021, 12, 1364.		1.0	22

#	Article	IF	CITATIONS
620	Single-cell profiling of human bone marrow progenitors reveals mechanisms of failing erythropoiesis in Diamond-Blackfan anemia. Science Translational Medicine, 2021, 13, eabf0113.	5.8	32
621	Using the Zebrafish as a Genetic Model to Study Erythropoiesis. International Journal of Molecular Sciences, 2021, 22, 10475.	1.8	6
622	Erythroferrone Expression in Anemic Rheumatoid Arthritis Patients: Is It Disordered Iron Trafficking or Disease Activity?. Journal of Inflammation Research, 2021, Volume 14, 4445-4455.	1.6	2
623	Gene expression profiles in the brain of phenylketonuria mouse model reversed by the low phenylalanine diet therapy. Metabolic Brain Disease, 2021, 36, 2405-2414.	1.4	5
624	Megaloblastic anemia-related iron overload and erythroid regulators: a case report. Journal of Medical Case Reports, 2021, 15, 463.	0.4	2
625	Signaling Integration of Hydrogen Sulfide and Iron on Cellular Functions. Antioxidants and Redox Signaling, 2022, 36, 275-293.	2.5	11
626	Essential role of systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2109186118.	3.3	9
627	Tackling the unknowns in understanding and management of hospital acquired anemia. Blood Reviews, 2021, 49, 100830.	2.8	8
628	Evidence of dysregulated iron homeostasis in newly diagnosed diabetics, but not in pre-diabetics. Journal of Diabetes and Its Complications, 2021, 35, 107977.	1.2	7
629	Iron and liver cancer: an inseparable connection. FEBS Journal, 2022, 289, 7810-7829.	2.2	27
631	Lipidomics reveals perturbations in the liver lipid profile of iron overloaded mice. Metallomics, 2021, 13, .	1.0	10
632	Effect of hepcidin antagonists on anemia during inflammatory disorders. , 2021, 226, 107877.		11
633	The regulation of FGF23 production in bone and outside of bone. , 2021, , 31-51.		0
634	FGF23 and inflammation, anemia, and iron. , 2021, , 157-174.		0
635	High erythroferrone expression in CD71 + erythroid progenitors predicts superior survival in myelodysplastic syndromes. British Journal of Haematology, 2021, 192, 879-891.	1.2	4
636	llex paraguariensis (A. StHil.) leaf infusion decreases iron absorption in patients with hereditary hemochromatosis: a randomized controlled crossover study. Food and Function, 2021, 12, 7321-7328.	2.1	1
637	Male-specific Association between Iron and Lipid Metabolism Changes and Erythroferrone after Hepatitis C Virus Eradication. Internal Medicine, 2021, , .	0.3	2
638	Adaptive immunity and vaccination $\hat{a} \in $ iron in the spotlight. Immunotherapy Advances, 2021, 1, .	1.2	6

\sim	T . T	1011	DEDC	NDT.
		10N	REPC	ד אונ
\sim	/		ICEI C	

#	Article	IF	CITATIONS
640	Erythroferrone structure, function, and physiology: Iron homeostasis and beyond. Journal of Cellular Physiology, 2021, 236, 4888-4901.	2.0	53
641	Brain Iron Metabolism and Regulation. Advances in Experimental Medicine and Biology, 2019, 1173, 33-44.	0.8	25
642	The changing landscape of iron deficiency. Molecular Aspects of Medicine, 2020, 75, 100861.	2.7	32
643	Prepregnancy Obesity Is Not Associated with Iron Utilization during the Third Trimester. Journal of Nutrition, 2020, 150, 1397-1404.	1.3	16
645	Iron Through the Prism of Haematology. British Journal of Haematology, 2020, 191, 587-592.	1.2	3
646	Next-Generation Biomarkers for Iron Status. Nestle Nutrition Institute Workshop Series, 2016, 84, 59-69.	1.5	13
647	Bitopertin, a selective oral GLYT1 inhibitor, improves anemia in a mouse model of β-thalassemia. JCI Insight, 2019, 4, .	2.3	19
648	Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. Journal of Clinical Investigation, 2018, 129, 336-348.	3.9	138
649	At the crossroads of oxygen and iron sensing: hepcidin control of HIF-2α. Journal of Clinical Investigation, 2018, 129, 72-74.	3.9	9
650	Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of β-thalassemia. Journal of Clinical Investigation, 2019, 130, 491-506.	3.9	59
651	X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation. Journal of Clinical Investigation, 2015, 125, 1665-1669.	3.9	43
652	PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. Journal of Clinical Investigation, 2017, 127, 1786-1797.	3.9	113
653	Erythroferrone: A Missing Link in Iron Regulation. , 2015, 12, .		4
654	Dapagliflozin Suppresses Hepcidin And Increases Erythropoiesis. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1056-e1063.	1.8	113
655	Erythropoietin regulation of red blood cell production: from bench to bedside and back. F1000Research, 2020, 9, 1153.	0.8	37
656	Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms. PLoS Computational Biology, 2017, 13, e1005322.	1.5	37
657	Effect of Erythropoietin, Iron Deficiency and Iron Overload on Liver Matriptase-2 (TMPRSS6) Protein Content in Mice and Rats. PLoS ONE, 2016, 11, e0148540.	1.1	19
658	High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats. PLoS ONE, 2016, 11, e0161033.	1.1	31

ARTICLE IF CITATIONS # Characterization of Putative Erythroid Regulators of Hepcidin in Mouse Models of Anemia. PLoS ONE, 659 1.1 17 2017, 12, e0171054. Hepcidin deficiency and iron deficiency do not alter tuberculosis susceptibility in a murine M.tb 1.1 infection model. PLoS ONE, 2018, 13, e0191038. 661 Hepcidin and Host Defense against Infectious Diseases. PLoS Pathogens, 2015, 11, e1004998. 2.1 163 THE ROLE OF HEPCIDIN 25 IN THE DEVELOPMENT OF ANEMIC SYNDROME ASSOCIATED WITH MALIGNANT 0.3 DISEASES. , 2020, 19, 29-34. Erythroferron: Modern Concepts of Its Role in Iron Metabolism Regulation. Klinicheskaya 663 0.1 1 Onkogematologiya/Clinical Oncohematology, 2017, 10, 25-28. Minihepcidins improve ineffective erythropoiesis and splenomegaly in a new mouse model of adult \hat{l}^2 -thalassemia major. Haematologica, 2020, 105, 1835-1844. 664 1.7 37 665 New potential players in hepcidin regulation. Haematologica, 2019, 104, 1691-1693. 1.7 4 Relationship between Down-Regulation of Copper-Related Genes and Decreased Ferroportin Protein 1.7 666 Level in the Duodenum of Iron-Deficient Piglets. Nutrients, 2021, 13, 104. Is erythroferrone finally the long sought-after systemic erythroid regulator of iron?. World Journal 667 8 1.7 of Biological Chemistry, 2015, 6, 78. Characterization of iron metabolism and erythropoiesis in erythrocyte membrane defects and thalassemia traits. Biomedical Papers of the Medical Faculty of the University Palacký, 0.2 Olomouc, Czechoslovakia, 2016, 160, 231-237. Iron homeostasis in a mouse model of thalassemia intermedia is altered between adolescence and 669 0.9 8 adulthood. PeerJ, 2020, 8, e8802. The Role of Erythroferrone Hormone as Erythroid Regulator of Hepcidin and Iron Metabolism during Thalassemia and in Iron Deficiency Anemia- A Short Review. Journal of Pharmaceutical Research 1.0 International, 0, , 55-59. TB or not TB? Soft pity opens the iron gates. Blood, 2021, 138, 1285-1287. 671 0.6 0 Erythroid overproduction of erythroferrone causes iron overload and developmental abnormalities in mice. Blood, 2022, 139, 439-451. Direct modulation of hepatocyte hepcidin signaling by iron. World Journal of Hepatology, 2021, 13, 673 0.8 11 1378-1393. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasisâ€"Mechanistic Insights into 674 36 Anemia of Inflammation and Its Treatment. Nutrients, 2021, 13, 3732. An evaluation of roxadustat for the treatment of anemia associated with chronic kidney disease. 675 0.9 7 Expert Opinion on Pharmacotherapy, 2022, 23, 19-28. Erythropoese stimulierende Pharmaka (ESP)., 2016, , 35-70.

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
679	CHAPTER 4. Treatment of Systemic Iron Overload. 2-Oxoglutarate-Dependent Oxygenases, 2016, , 106-152.	0.8	0
680	Effects of the administration of ferric citrate hydrate on inflammatory and oxidative stress markers as well as improvements in anemia treatment. Nihon Toseki Igakkai Zasshi, 2016, 49, 503-510.	0.2	0
682	Androgen Therapy for Hypogonadism in Men with Chronic Illnesses. , 2017, , 399-422.		2
683	Anaemia of Chronic Kidney Disease: What We Know Now. Journal of Renal and Hepatic Disorders, 2017, 1, 11-19.	0.1	2
684	Combination therapy with a short-acting erythropoiesis-stimulating agent and epoetin beta pegol eliminated the need for blood transfusions in a hemodialysis patient with myelodysplastic syndrome. Nihon Toseki Igakkai Zasshi, 2018, 51, 235-242.	0.2	0
685	ĐĐ¾Đ²Ñ‹Đµ Đ¿Đ¾ĐĩŇĐ¾ĐĨŇ‹ Đº Đ»ĐµÑ‡ĐµĐ½Đ,ŇŽ ĐºĐ½ĐµĐ¼Đ,Đ, ŇŇ€Đ¾Đ½Đ,Ñ‡ĐµÑĐºD,Ň Đ·Đ°Đ	±∰∄∕4Đ»Đ	µÐ²Ð°Ð¹∕₂Ð
686	15. Iron Metabolism and Anemia. The Journal of the Japanese Society of Internal Medicine, 2018, 107, 1921-1926.	0.0	0
687	About relationship between chronic obstructive pulmonary disease and anemia. Pulmonologiya, 2019, 28, 730-735.	0.2	3
688	Pathogenetic aspects of hepcidin metabolism and ferrocinetics dysregulation in carbohydrate metabolism disorders. Diabetes Mellitus, 2018, 21, 506-512.	0.5	5
689	Surcharges en fer génétiquesÂ: atypies de l'acéruloplasminémie héréditaire. Bulletin De L'Acade Nationale De Medecine, 2019, 203, 432-439.	nie 0.0	0
690	Endurance Anemia, Relevance to Triathlon. , 2020, , 173-183.		0
692	Iron overload in inherited anaemias: why one size can't fit all. British Journal of Haematology, 2021, 196, 266.	1.2	0
693	Effect of Recombinant Human Erythroferrone Protein on Hepcidin Gene (Hamp1) Expression in HepG2 and HuH7 Cells. Materials, 2021, 14, 6480.	1.3	2
694	Genetic diagnosis history and osteoarticular phenotype of a non-transfusion secondary hemochromatosis. World Journal of Clinical Cases, 2020, 8, 5962-5975.	0.3	1
695	Genetic diagnosis history and osteoarticular phenotype of a non-transfusion secondary hemochromatosis. World Journal of Clinical Cases, 2020, 8, 5959-5972.	0.3	0
696	Erythropoiesis and Iron Parameters in Transfusion-dependent and Nontransfusion-dependent Thalassemias. Journal of Pediatric Hematology/Oncology, 2021, 43, 186-192.	0.3	5
697	Iron metabolism and its disorders. , 2020, , 5371-5402.		0
698	Hogyan szabályozza az erythropoesis igénye a vasháztartást?. Transfusio, 2020, 53, 48-49.	0.0	0

#	Article	IF	Citations
699	Iron Deficiency Anemia. Clinical Pediatric Hematology-Oncology, 2020, 27, 101-112.	0.0	3
700	l biomarcatori di carenza marziale: nuove acquisizioni fisiopatologiche e necessità interpretative. Rivista Italiana Della Medicina Di Laboratorio, 2020, 16, .	0.2	0
701	The Regulation of Iron Absorption and Homeostasis. Clinical Biochemist Reviews, 2016, 37, 51-62.	3.3	119
704	Endurance of erythrocyte series in chemotherapy. Experimental and Therapeutic Medicine, 2020, 20, 214.	0.8	1
706	A Comprehensive Analysis of the Erythropoietin-erythroferrone-hepcidin Pathway in Hereditary Hemolytic Anemias. HemaSphere, 2021, 5, e627.	1.2	1
707	Changes in Hepcidin Levels in an Animal Model of Anemia of Chronic Inflammation: Mechanistic Insights Related to Iron Supplementation and Hepcidin Regulation. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	4
708	Physical Training Increases Erythroferrone Levels in Men. Biology, 2021, 10, 1215.	1.3	4
709	Endurance of erythrocyte series in chemotherapy. Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	2
710	NOVEL IRON BIOMARKERS IN CHRONIC KIDNEY DISEASE. Wiadomości Lekarskie, 2021, 74, 3230-3233.	0.1	1
711	A Comprehensive Analysis of the Erythropoietin-erythroferrone-hepcidin Pathway in Hereditary Hemolytic Anemias. HemaSphere, 2021, 5, e627.	1.2	9
712	Research Progress of Renal Anemia and Iron Metabolism. Advances in Clinical Medicine, 2022, 12, 483-489.	0.0	0
713	Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle. Journal of Muscle Research and Cell Motility, 2022, 43, 9-20.	0.9	2
714	Activation of STAT and SMAD Signaling Induces Hepcidin Re-Expression as a Therapeutic Target for β-Thalassemia Patients. Biomedicines, 2022, 10, 189.	1.4	4
716	Erythroferrone in iron regulation and beyond. Blood, 2022, 139, 319-321.	0.6	2
718	The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell, 2022, 29, 232-247.e7.	5.2	41
719	Fetal iron uptake from recent maternal diet and the maternal RBC iron pool. American Journal of Clinical Nutrition, 2022, 115, 1069-1079.	2.2	5
720	Iron-mediated tissue damage in acquired ineffective erythropoiesis disease: It's more a matter of burden or more of exposure to toxic iron form?. Leukemia Research, 2022, 114, 106792.	0.4	3
721	Novel Insights and Future Perspective in Iron Metabolism and Anemia. Metabolites, 2022, 12, 138.	1.3	1

		CITATION REPORT	
# 723	ARTICLE Methodological Considerations for Investigating Iron Status and Regulation in Exercise and Spo Science Studies. International Journal of Sport Nutrition and Exercise Metabolism, 2022, 32, 359		CITATIONS 5
724	Review of Novel Potential Insulin Resistance Biomarkers in PCOS Patients—The Debate Is Still (International Journal of Environmental Research and Public Health, 2022, 19, 2099.		11
725	Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potentic therapeutic targets. Cellular and Molecular Life Sciences, 2022, 79, 201.	al 2.4	33
726	Specific changes of erythroid regulators and hepcidin in patients infected by SARS-COV-2. Journ Investigative Medicine, 2022, , jim-2021-002270.	al of 0.7	5
727	Hepcidin: looking back at two decades of progress. , 2022, 1, 191-193.		1
728	Iron- and erythropoietin-resistant anemia in a spontaneous breast cancer mouse model. Haematologica, 2022, 107, 2454-2465.	1.7	3
729	Haematological actions of androgens. Best Practice and Research in Clinical Endocrinology and Metabolism, 2022, 36, 101653.	2.2	13
730	Characterization of Erythroferrone in a Teleost Fish (Dicentrarchus labrax) With Two Functional Hepcidin Types: More Than an Erythroid Regulator. Frontiers in Immunology, 2022, 13, 867630.	2.2	4
731	Molecular and cellular mechanisms that regulate human erythropoiesis. Blood, 2022, 139, 2450	-2459. 0.6	22
732	Ineffective erythropoiesis and its treatment. Blood, 2022, 139, 2460-2470.	0.6	23
733	Maternal, fetal and placental regulation of placental iron trafficking. Placenta, 2022, 125, 47-53	0.7	14
734	New Insights Into Pathophysiology of β-Thalassemia. Frontiers in Medicine, 2022, 9, 880752.	1.2	12
735	Dynamics of Erythroferrone Response to Erythropoietin in Rats. Frontiers in Pharmacology, 2022 876573.	2, 13, 1.6	0
741	Liver iron is a major regulator of hepcidin gene expression via <scp>BMP/SMAD</scp> pathway model of chronic renal failure under treatment with high r <scp>H</scp> u <scp>EPO</scp> dose BioFactors, 2016, 42, 296-306.	in a rat s. 2.6	8
742	The role of iron in obesity and diabetes. Journal of Medical Investigation, 2022, 69, 1-7.	0.2	6
747	Iron Mining for Erythropoiesis. International Journal of Molecular Sciences, 2022, 23, 5341.	1.8	6
748	Proton pump inhibition for secondary hemochromatosis in hereditary anemia: a phase <scp>III< placeboâ€controlled randomized crossâ€over clinical trial. American Journal of Hematology, 202 924-932.</scp>		5
749	Hepcidin and Erythroferrone Complement the Athlete Biological Passport in the Detection of Autologous Blood Transfusion. Medicine and Science in Sports and Exercise, 2022, 54, 1604-16	16. 0.2	13

#	Article	IF	CITATIONS
750	Exploring the rationale for red cell transfusion in myelodysplastic syndrome patients: emerging data and future insights. Expert Review of Hematology, 2022, 15, 411-421.	1.0	0
751	Study of Hepcidin Level in Samples of Iraqi Patients With Iron Overload and Iron Deficiency Disorders. Al Mustansiriyah Journal of Pharmaceutical Sciences, 2018, 16, 10-16.	0.3	1
752	The effects of hypoxia-inducible factors-1α and -2α and erythroferrone on hepcidin in patients with chronic kidney disease stages 3–5 and renal anemia. European Journal of Inflammation, 2022, 20, 1721727X2211034.	0.2	0
753	The mutual crosstalk between iron and erythropoiesis. International Journal of Hematology, 2022, 116, 182-191.	0.7	11
754	The addition of oral iron improves chemotherapyâ€induced anemia in patients receiving erythropoiesisâ€stimulating agents. International Journal of Cancer, 0, , .	2.3	1
755	Plasma Complement C1q/tumor necrosis factor-related protein 15 concentration is associated with polycystic ovary syndrome. PLoS ONE, 2022, 17, e0263658.	1.1	1
756	Evaluation of perturbed iron-homeostasis in a prospective cohort of patients with COVID-19. Wellcome Open Research, 0, 7, 173.	0.9	4
757	Erythropoietic effects of vadadustat in patients with anemia associated with chronic kidney disease. American Journal of Hematology, 0, , .	2.0	6
758	Administration of \hat{I}_{\pm} -Klotho Does Not Rescue Renal Anemia in Mice. Frontiers in Pediatrics, 0, 10, .	0.9	2
759	A Prolonged Bout of Running Increases Hepcidin and Decreases Dietary Iron Absorption in Trained Female and Male Runners. Journal of Nutrition, 2022, 152, 2039-2047.	1.3	7
760	èµ ề ¡€çfé€è;€å›å製å‰ ë ¤1⁄2Žé…ç´èª~å°Žå›åæ°´é…,åŒ−é…µç´é~»å®3è−¬ã®ä1⁄2¿ã,,å^†ã• Nihon Toseki Igakkai Z	Zas ohž , 202	2, 0 5, 365-3
761	Intermittent Caloric Restriction Promotes Erythroid Development and Ameliorates Phenylhydrazine-Induced Anemia in Mice. Frontiers in Nutrition, 0, 9, .	1.6	2
762	Regulation of Erythropoiesis by the Hypoxia-Inducible Factor Pathway: Effects of Genetic and Pharmacological Perturbations. Annual Review of Medicine, 2023, 74, 307-319.	5.0	14
763	The path from stem cells to red blood cells. International Journal of Hematology, 0, , .	0.7	0
764	Developmental changes in iron metabolism and erythropoiesis in mice with human gainâ€ofâ€function erythropoietin receptor. American Journal of Hematology, 0, , .	2.0	4
765	Activation of the Hepcidin-Ferroportin1 pathway in the brain and astrocytic–neuronal crosstalk to counteract iron dyshomeostasis during aging. Scientific Reports, 2022, 12, .	1.6	4
766	Novel insights into alcoholic liver disease: Iron overload, iron sensing and hemolysis. Journal of Translational Internal Medicine, 2022, 10, 92-124.	1.0	10
767	Mild-to-moderate Food Deprivation Increases Hepcidin and Results in Hypoferremia and Tissue Iron Sequestration in Mice. Journal of Nutrition, 0, , .	1.3	3

		CITATION REPORT		
#	Article		IF	CITATIONS
768	Hepcidin and Iron in Health and Disease. Annual Review of Medicine, 2023, 74, 261-27	7.	5.0	65
769	Ferroptosis As Ultimate Target of Cancer Therapy. Antioxidants and Redox Signaling, 2	023, 39, 206-223.	2.5	9
770	Is HIF-PHI the Answer to Tackle ESA Hyporesponsiveness in the Elderly?. Kidney and Dia 446-453.	ılysis, 2022, 2,	0.5	1
771	<i>Transferrin receptor 2 (Tfr2)</i> genetic deletion makes transfusionâ€independent transfusionâ€dependent βâ€thalassemia. American Journal of Hematology, 2022, 97,		2.0	7
772	Erythroferrone contributes to iron mobilization for embryo erythropoiesis in ironâ€defi pregnancies. American Journal of Hematology, 2022, 97, 1348-1358.	cient mouse	2.0	6
773	Codon-optimized FAM132b gene therapy prevents dietary obesity by blockading adrer insulin action. International Journal of Obesity, 0, , .	ergic response and	1.6	1
774	The role of iron in chronic inflammatory diseases: from mechanisms to treatment optic of inflammation. Blood, 2022, 140, 2011-2023.	ins in anemia	0.6	26
775	Endocytosis of the thrombopoietin receptor Mpl regulates megakaryocyte and erythro in mice. Frontiers in Oncology, 0, 12, .	id maturation	1.3	2
776	Does Hepcidin Tuning Have a Role among Emerging Treatments for Thalassemia?. Journ Medicine, 2022, 11, 5119.	nal of Clinical	1.0	4
777	Iron metabolism in non-alcoholic fatty liver disease: A promising therapeutic target. Liv 2022, 6, 203-213.	er Research,	0.5	6
778	Erythropoietin-driven dynamic proteome adaptations during erythropoiesis prevent iro the developing embryo. Cell Reports, 2022, 40, 111360.	n overload in	2.9	3
779	Nano-formulations in treatment of iron deficiency anaemia: An overview. Clinical Nutrit 2022, 52, 12-19.	tion ESPEN,	0.5	3
781	Neonatal hemochromatosis with $\hat{l}\mu\hat{l}^3\hat{l}\hat{l}^2$ -thalassemia: a case report and analysis of seru BMC Pediatrics, 2022, 22, .	m iron regulators.	0.7	1
782	How I treat anemia with red blood cell transfusion and iron. Blood, 2023, 142, 777-785	5.	0.6	2
783	Lactoferrin: from the structure to the functional orchestration of iron homeostasis. Bio 2023, 36, 391-416.	Metals,	1.8	7
784	Iron metabolism: pathways and proteins in homeostasis. Reviews in Inorganic Chemist	ry, 2022, .	1.8	0
785	Regulation of iron homeostasis by hepatocyte TfR1 requires HFE and contributes to he suppression in β-thalassemia. Blood, 2023, 141, 422-432.	pcidin	0.6	6
786	Regulators impeding erythropoiesis following iron supplementation in a clinically relevant of iron deficiency anemia with inflammation. Life Sciences, 2022, 310, 121124.	ant rat model	2.0	1

#	Article	IF	CITATIONS
787	Iron Status and Homeostasis Across 2 Competitive Seasons in NCAA Division I Collegiate Cross-Country Runners Residing at Low Altitude. International Journal of Sports Physiology and Performance, 2022, , 1-9.	1.1	0
788	New Insights in $\hat{1}^2$ -Thalassaemia. European Medical Journal Hematology, 0, , 56-62.	0.0	0
789	Iron Deficiency, Anemia, and the Immune System. , 2022, , 235-248.		1
790	Iron Biology: Metabolism and Homeostasis. , 2022, , 19-33.		1
791	Early Clinical Efficacy Study of Roxadustat in the Treatment of Patients with Renal Anemia. Advances in Clinical Medicine, 2022, 12, 11362-11367.	0.0	0
792	Erythropoiesis in lower-risk myelodysplastic syndromes and beta-thalassemia. Blood Reviews, 2023, 59, 101039.	2.8	1
793	The effect of erythroferrone suppression by transfusion on the erythropoietin–erythroferrone–hepcidin axis in transfusionâ€dependent thalassaemia: A pre–post cohort study. British Journal of Haematology, 2023, 201, 547-551.	1.2	2
794	Effects of green tea extract treatment on erythropoiesis and iron parameters in iron-overloaded β-thalassemic mice. Frontiers in Physiology, 0, 13, .	1.3	4
795	Genome-wide identification of antisense lncRNAs and their association with susceptibility to Flavobacterium psychrophilum in rainbow trout. Frontiers in Immunology, 0, 13, .	2.2	1
796	Anemia of chronic diseases: current state of the problem and perspectives. Terapevticheskii Arkhiv, 2023, 94, 1349-1354.	0.2	1
797	Innovative and Needs-led research on \hat{l}^2 -thalassemia treatment methods. , 0, 1, .		0
798	Metabolic regulation of stress erythropoiesis, outstanding questions, and possible paradigms. Frontiers in Physiology, 0, 13, .	1.3	5
799	In Silico Pan-Cancer Analysis Reveals Prognostic Role of the Erythroferrone (ERFE) Gene in Human Malignancies. International Journal of Molecular Sciences, 2023, 24, 1725.	1.8	0
800	Iron metabolism abnormalities in autoimmune hemolytic anemia and <i>Jianpishengxue keli</i> can ameliorate hemolysis and improve iron metabolism in AIHA mouse models. Annals of Medicine, 2023, 55, 231-240.	1.5	1
801	Hepcidin mimetics in polycythemia vera: resolving the irony of iron deficiency and erythrocytosis. Current Opinion in Hematology, 2023, 30, 45-52.	1.2	5
802	Beneficial effect of roxadustat on early posttransplant anemia and iron utilization in kidney transplant recipients: a retrospective comparative cohort study. Annals of Translational Medicine, 2022, 10, 1360-1360.	0.7	1
803	Iron as a therapeutic target in chronic liver disease. World Journal of Gastroenterology, 0, 29, 616-655.	1.4	4
804	TMPRSS6 as a Therapeutic Target for Disorders of Erythropoiesis and Iron Homeostasis. Advances in Therapy, 2023, 40, 1317-1333.	1.3	6

#	ARTICLE	IF	Citations
805	Effect of Deferoxamine on Post-Transfusion Iron, Inflammation, and In Vitro Microbial Growth in a Canine Hemorrhagic Shock Model: A Randomized Controlled Blinded Pilot Study. Veterinary Sciences, 2023, 10, 121.	0.6	0
806	Pathogenic Mechanisms in Thalassemia II. Hematology/Oncology Clinics of North America, 2023, 37, 353-363.	0.9	2
807	Normal range and predictors of serum erythroferrone in infants. Pediatric Research, 0, , .	1.1	1
808	Assessing erythroferrone and iron homeostasis in preeclamptic and normotensive pregnancies: A retrospective study. Placenta, 2023, 133, 10-18.	0.7	2
809	The effect of high-dose vitamin D supplementation on hepcidin-25 and erythropoiesis in patients with chronic kidney disease. BMC Nephrology, 2023, 24, .	0.8	2
810	Severe anaemia, iron deficiency, and susceptibility to invasive bacterial infections. Wellcome Open Research, 0, 8, 48.	0.9	2
811	Renal control of life-threatening malarial anemia. Cell Reports, 2023, 42, 112057.	2.9	4
812	Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors and Iron Metabolism. International Journal of Molecular Sciences, 2023, 24, 3037.	1.8	9
814	Ferroptosis and Senescence: A Systematic Review. International Journal of Molecular Sciences, 2023, 24, 3658.	1.8	8
815	Managing the Dual Nature of Iron to Preserve Health. International Journal of Molecular Sciences, 2023, 24, 3995.	1.8	4
816	Stimulation of Hepatic Ferritinophagy Mitigates Irp2 Depletion-Induced Anemia. Antioxidants, 2023, 12, 566.	2.2	2
817	Fighting age-related orthopedic diseases: focusing on ferroptosis. Bone Research, 2023, 11, .	5.4	28
818	Singleâ€cell profiling of ineffective erythropoiesis in a mouse model of βâ€ŧhalassaemia intermedia. British Journal of Haematology, 2023, 201, 982-994.	1.2	0
819	Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nature Reviews Nephrology, 2023, 19, 315-336.	4.1	39
821	A single approach to targeting transferrin receptor 2 corrects iron and erythropoietic defects in murine models of anemia of inflammation and chronic kidney disease. Kidney International, 2023, 104, 61-73.	2.6	4
822	Erythroferrone exacerbates iron overload and ineffective extramedullary erythropoiesis in a mouse model of Î ² -thalassemia. Blood Advances, 2023, 7, 3339-3349.	2.5	2
823	Hepcidin and its multiple partners: Complex regulation of iron metabolism in health and disease. Vitamins and Hormones, 2023, , .	0.7	0
825	Disorders of Iron Overload. , 2024, , 295-329.		0

#	Article	IF	CITATIONS
826	Iron, glucose and fat metabolism and obesity: an intertwined relationship. International Journal of Obesity, 2023, 47, 554-563.	1.6	16
827	Serum Levels of Myonectin Are Lower in Adults with Metabolic Syndrome and Are Negatively Correlated with Android Fat Mass. International Journal of Molecular Sciences, 2023, 24, 6874.	1.8	2
828	Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. International Journal of Molecular Sciences, 2023, 24, 6891.	1.8	5
829	Inorganic ion-sensitive imaging probes for biomedical applications. Chemical Communications, 2023, 59, 5807-5822.	2.2	2
855	Mechanisms controlling cellular and systemic iron homeostasis. Nature Reviews Molecular Cell Biology, 2024, 25, 133-155.	16.1	28
867	Molecular testing in hemochromatosis. , 2024, , 267-281.		0
868	Pharmacokinetics of IONPs. Nanomedicine and Nanotoxicology, 2023, , 67-113.	0.1	0
869	Hepatic Iron Overload in Heavy Drinkers: Molecular Mechanisms and Relation to Hemolysis and Enhanced Red Blood Cell Turnover. , 2023, , 1075-1106.		0
870	Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	2
873	Anemia and Disorders of Hemostasis in Chronic Kidney Disease. , 2023, , 215-237.		0
875	Iron Deficiency Anemia. , 2023, , .		0
886	Iron deficiency and supplementation in heart failure. Nature Reviews Cardiology, 0, , .	6.1	1