Proteomics in heart failure: top-down or bottom-up?

Pflugers Archiv European Journal of Physiology 466, 1199-1209 DOI: 10.1007/s00424-014-1471-9

Citation Report

#	Article	IF	CITATIONS
1	Topâ€down mass spectrometry of cardiac myofilament proteins in health and disease. Proteomics - Clinical Applications, 2014, 8, 554-568.	0.8	27
2	Proteomics of pediatric heart failure: from traditional biomarkers to new discovery strategies. Cardiology in the Young, 2015, 25, 51-57.	0.4	5
3	Dissecting human skeletal muscle troponin proteoforms by top-down mass spectrometry. Journal of Muscle Research and Cell Motility, 2015, 36, 169-181.	0.9	7
4	Transformative Impact of Proteomics on Cardiovascular Health and Disease. Circulation, 2015, 132, 852-872.	1.6	140
5	Unraveling the exercise-related proteome signature in heart. Basic Research in Cardiology, 2015, 110, 454.	2.5	30
6	Top-Down Proteomics. , 2016, , 187-212.		1
7	How to Design a Cardiovascular Proteomics Experiment. , 2016, , 33-57.		2
8	Top-down Proteomics: Technology Advancements and Applications to Heart Diseases. Expert Review of Proteomics, 2016, 13, 717-730.	1.3	84
9	The clinical utility of mass spectrometry based protein assays. Clinica Chimica Acta, 2016, 459, 155-161.	0.5	11
10	Proteomic analysis in cardiovascular research. Surgery Today, 2016, 46, 285-296.	0.7	13
11	Clinical Phenotyping of Heart Failure with Biomarkers: Current and Future Perspectives. Current Heart Failure Reports, 2017, 14, 106-116.	1.3	16
12	Distinct sequences and post-translational modifications in cardiac atrial and ventricular myosin light chains revealed by top-down mass spectrometry. Journal of Molecular and Cellular Cardiology, 2017, 107, 13-21.	0.9	28
13	Integration of Proteomics and Metabolomics in Exploring Genetic and Rare Metabolic Diseases. Kidney Diseases (Basel, Switzerland), 2017, 3, 66-77.	1.2	26
14	Physiological proteomics of heart failure. Current Opinion in Physiology, 2018, 1, 185-197.	0.9	1
15	The benefits (and misfortunes) of SDS in top-down proteomics. Journal of Proteomics, 2018, 175, 75-86.	1.2	25
16	Two-dimensional separation using high-pH and low-pH reversed phase liquid chromatography for top-down proteomics. International Journal of Mass Spectrometry, 2018, 427, 43-51.	0.7	45
17	Omics of Blood Pressure and Hypertension. Circulation Research, 2018, 122, 1409-1419.	2.0	74
18	Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Research in Cardiology, 2018, 113, 39.	2.5	311

CITATION REPORT

#	Article	IF	CITATIONS
19	An Unbiased Proteomics Method to Assess the Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation Research, 2019, 125, 936-953.	2.0	59
21	Top-Down Proteomics Reveals Myofilament Proteoform Heterogeneity among Various Rat Skeletal Muscle Tissues. Journal of Proteome Research, 2020, 19, 446-454.	1.8	13
22	<i>De novo</i> sequencing of proteins by mass spectrometry. Expert Review of Proteomics, 2020, 17, 595-607.	1.3	19
23	Acute pathophysiological myocardial changes following intra-cardiac electrical shocks using a proteomic approach in a sheep model. Scientific Reports, 2020, 10, 20252.	1.6	5
24	Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24691-24700.	3.3	67
25	Highâ€Throughput Proteomics Enabled by a Photocleavable Surfactant. Angewandte Chemie - International Edition, 2020, 59, 8406-8410.	7.2	37
26	Highâ€Throughput Proteomics Enabled by a Photocleavable Surfactant. Angewandte Chemie, 2020, 132, 8484-8488.	1.6	14
27	Proteomics in Mycorrhizal and Plant Pathogenic Fungi. , 2021, , 164-181.		0
28	The Defibrillation Conundrum: New Insights into the Mechanisms of Shock-Related Myocardial Injury Sustained from a Life-Saving Therapy. International Journal of Molecular Sciences, 2021, 22, 5003.	1.8	8
29	How to effectively prepare a sample for bottom-up proteomic analysis of nanoparticle protein corona? A critical review. Talanta, 2021, 226, 122153.	2.9	10
30	Novel Strategies to Address the Challenges in Top-Down Proteomics. Journal of the American Society for Mass Spectrometry, 2021, 32, 1278-1294.	1.2	102
31	Risk factors and future directions for preventing and diagnosing exertional rhabdomyolysis. Neuromuscular Disorders, 2021, 31, 583-595.	0.3	5
32	Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends in Biotechnology, 2022, 40, 463-481.	4.9	23
33	Proteomics Approaches to Uncover the Drug Resistance Mechanisms of Microbial Biofilms. , 2017, , 129-162.		0
34	The human subject: an integrative animal model for 21(st) century heart failure research. American Journal of Translational Research (discontinued), 2015, 7, 1636-47.	0.0	11
35	Introduction to Bioanalytical Mass Spectrometry. , 2022, , 431-465.		0
36	Peripartum cardiomyopathy: a global effort to find the cause and cure for the rare and little understood disease. Biophysical Reviews, 2022, 14, 369-379.	1.5	4
37	Biotransformation of Trastuzumab and Pertuzumab in Breast Cancer Patients assessed by Affinity Enrichment and Ion Exchange Chromatography . Drug Metabolism and Disposition, 0, , DMD-AR-2022-001094.	1.7	2

#	Article	IF	CITATIONS
39	Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics. Journal of Proteome Research, 2023, 22, 931-941.	1.8	10
40	Comparison of SPEED, S-Trap, and In-Solution-Based Sample Preparation Methods for Mass Spectrometry in Kidney Tissue and Plasma. International Journal of Molecular Sciences, 2023, 24, 6290.	1.8	1
42	Nanoproteomics: An Approach for the Identification of Molecular Targets Associated with Hypoxia. , 2023, , 131-161.		0