Disruption of Mediator rescues the stunted growth of a mutant

Nature 509, 376-380 DOI: 10.1038/nature13084

Citation Report

#	Article	IF	CITATIONS
1	Phenolic Compounds and Expression of 4CL Genes in Silver Birch Clones and Pt4CL1a Lines. PLoS ONE, 2014, 9, e114434.	2.5	14
2	Mutation of the Inducible <i>ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2</i> Alters Lignin Composition and Improves Saccharification Â. Plant Physiology, 2014, 166, 1956-1971.	4.8	63
3	Tailoring lignin biosynthesis for efficient and sustainable biofuel production. Plant Biotechnology Journal, 2014, 12, 1154-1162.	8.3	21
4	Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnology Journal, 2014, 12, 1174-1192.	8.3	96
5	The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 2014, 5, 358.	3.6	455
6	Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model Â. Plant Physiology, 2014, 166, 1659-1674.	4.8	80
7	Development of a Clickable Designer Monolignol for Interrogation of Lignification in Plant Cell Walls. Bioconjugate Chemistry, 2014, 25, 2189-2196.	3.6	33
8	Re-constructing our models of cellulose and primary cell wall assembly. Current Opinion in Plant Biology, 2014, 22, 122-131.	7.1	362
9	Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union. Biotechnology for Biofuels, 2014, 7, 113.	6.2	30
10	Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. Plant Biotechnology Journal, 2014, 12, 1207-1216.	8.3	46
11	Modifying plants for biofuel and biomaterial production. Plant Biotechnology Journal, 2014, 12, 1246-1258.	8.3	82
12	Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone. Science, 2014, 344, 90-93.	12.6	337
13	Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 2014, 344, 1246843.	12.6	2,994
14	A click chemistry strategy for visualization of plant cell wall lignification. Chemical Communications, 2014, 50, 12262-12265.	4.1	39
15	Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis. Biotechnology for Biofuels, 2015, 8, 224.	6.2	27
16	The Mediator complex subunits MED25/PFT1 and MED8 are required for transcriptional responses to changes in cell wall arabinose composition and glucose treatment in Arabidopsis thaliana. BMC Plant Biology, 2015, 15, 215.	3.6	21
17	Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. Frontiers in Plant Science, 2015, 6, 315.	3.6	14
18	Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. Frontiers in Plant Science, 2015, 6, 757.	3.6	85

#	Article	IF	CITATIONS
19	Engineering of plant cell walls for enhanced biofuel production. Current Opinion in Plant Biology, 2015, 25, 151-161.	7.1	174
20	Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating. Nature Communications, 2015, 6, 6688.	12.8	38
21	Metabolic engineering of 2-phenylethanol pathway producing fragrance chemical and reducing lignin in Arabidopsis. Plant Cell Reports, 2015, 34, 1331-1342.	5.6	7
22	Identification of MEDIATOR16 as the <i>Arabidopsis</i> COBRA suppressor MONGOOSE1. Proceedings of the United States of America, 2015, 112, 16048-16053.	7.1	37
23	Arabidopsis CBP1 Is a Novel Regulator of Transcription Initiation in Central Cell-Mediated Pollen Tube Guidance. Plant Cell, 2015, 27, 2880-2893.	6.6	54
24	Microbial Factories. , 2015, , .		14
25	Enhancing cellulose utilization for fuels and chemicals by genetic modification of plant cell wall architecture. Current Opinion in Biotechnology, 2015, 32, 104-112.	6.6	54
26	Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation. Journal of Physical Chemistry Letters, 2015, 6, 206-211.	4.6	60
27	Introduction of chemically labile substructures into <i>Arabidopsis</i> lignin through the use of LigD, the Cαâ€dehydrogenase from <i>Sphingobium</i> sp. strain <scp>SYK</scp> â€6. Plant Biotechnology Journal, 2015, 13, 821-832.	8.3	45
28	Using <i>Populus</i> as a lignocellulosic feedstock for bioethanol. Biotechnology Journal, 2015, 10, 510-524.	3.5	52
29	Alkaline Pretreatment of Switchgrass. ACS Sustainable Chemistry and Engineering, 2015, 3, 1479-1491.	6.7	94
30	Transcriptional networks governing plant metabolism. Current Plant Biology, 2015, 3-4, 56-64.	4.7	38
31	The synthesis and analysis of advanced lignin model polymers. Green Chemistry, 2015, 17, 4980-4990.	9.0	69
32	Loss of ferulate 5-hydroxylase leads to Mediator-dependent inhibition of soluble phenylpropanoid biosynthesis in Arabidopsis. Plant Physiology, 2015, 169, pp.00294.2015.	4.8	39
33	Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property: Fig. 1 Journal of Experimental Botany, 2015, 66, 4109-4118.	4.8	197
34	Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Applied Microbiology and Biotechnology, 2015, 99, 4201-4212.	3.6	106
35	The cell biology of lignification in higher plants. Annals of Botany, 2015, 115, 1053-1074.	2.9	505
36	The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis. Molecular Plant, 2015, 8, 1201-1212.	8.3	62

#	Article	IF	CITATIONS
37	Conversion of plant materials into hydroxymethylfurfural using ionic liquids. Environmental Chemistry Letters, 2015, 13, 173-190.	16.2	29
38	Acidolysis of α-O-4 Aryl-Ether Bonds in Lignin Model Compounds: A Modeling and Experimental Study. ACS Sustainable Chemistry and Engineering, 2015, 3, 1339-1347.	6.7	45
39	Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 1529-1546.	6.6	100
40	Four isoforms of Arabidopsis thaliana 4-coumarate: CoA ligase (4CL) have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiology, 2015, 169, pp.00838.2015.	4.8	163
41	Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure. Plant Cell, 2015, 27, 2195-2209.	6.6	136
42	Why genetic modification of lignin leads to low-recalcitrance biomass. Physical Chemistry Chemical Physics, 2015, 17, 358-364.	2.8	38
43	Genetic manipulation of lignocellulosic biomass for bioenergy. Current Opinion in Chemical Biology, 2015, 29, 32-39.	6.1	57
44	Plasticity of specialized metabolism as mediated by dynamic metabolons. Trends in Plant Science, 2015, 20, 20-32.	8.8	86
45	Adipic acid production from lignin. Energy and Environmental Science, 2015, 8, 617-628.	30.8	499
46	Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 2015, 112, 252-262.	3.3	283
47	Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnology and Bioengineering, 2015, 112, 447-456.	3.3	207
48	Secondary Cell Walls: Biosynthesis, Patterned Deposition and Transcriptional Regulation. Plant and Cell Physiology, 2015, 56, 195-214.	3.1	360
49	Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants. Biotechnology for Biofuels, 2016, 9, 139.	6.2	63
50	Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion. Biotechnology for Biofuels, 2016, 9, 225.	6.2	12
51	Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction. Frontiers in Plant Science, 2016, 7, 24.	3.6	20
52	The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway. Frontiers in Plant Science, 2016, 7, 774.	3.6	56
53	<scp>UDP</scp> â€glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 26-42.	5.7	108
54	Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angewandte Chemie, 2016, 128, 8296-8354.	2.0	159

#	ARTICLE	IF	CITATIONS
55	Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie - International Edition, 2016, 55, 8164-8215.	13.8	1,576
56	An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in <i>Medicago truncatula</i> . Plant Journal, 2016, 86, 363-375.	5.7	111
57	Plant Mediator complex and its critical functions in transcription regulation. Journal of Integrative Plant Biology, 2016, 58, 106-118.	8.5	63
58	Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods, 2016, 12, 45.	4.3	150
59	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.	7.3	186
60	<i><scp>AAE</scp>13</i> encodes a dualâ€localized malonyl oA synthetase that is crucial for mitochondrial fatty acid biosynthesis. Plant Journal, 2016, 85, 581-593.	5.7	31
61	Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnology for Biofuels, 2016, 9, 20.	6.2	116
62	Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 2016, 37, 254-266.	7.0	174
63	Ionic liquids catalyzed lignin liquefaction: mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-HSQC/NOSEY NMR. Green Chemistry, 2016, 18, 4098-4108.	9.0	75
64	Lignification: Flexibility, Biosynthesis and Regulation. Trends in Plant Science, 2016, 21, 713-721.	8.8	177
65	The impact of alterations in lignin deposition on cellulose organization of the plant cell wall. Biotechnology for Biofuels, 2016, 9, 126.	6.2	40
66	Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana. Molecular Plant, 2016, 9, 1609-1619.	8.3	55
67	Lignocellulosic bioma ss : Biosynthesis, degradation, and industrial utilization. Engineering in Life Sciences, 2016, 16, 1-16.	3.6	171
68	Deletion and hormone induction analyses of the 4-coumarate: CoA ligase gene promoter from Pennisetum purpureum in transgenic tobacco plants. Plant Cell, Tissue and Organ Culture, 2016, 126, 439-448.	2.3	4
69	Progress toward Lignin Valorization via Selective Catalytic Technologies and the Tailoring of Biosynthetic Pathways. ACS Sustainable Chemistry and Engineering, 2016, 4, 5123-5135.	6.7	79
70	Isolation of lignin by organosolv process from different varieties of rice husk: Understanding their physical and chemical properties. Bioresource Technology, 2016, 221, 310-317.	9.6	86
71	Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 2016, 116, 9305-9374.	47.7	1,110
72	Relative Binding Affinities of Monolignols to Horseradish Peroxidase. Journal of Physical Chemistry B, 2016, 120, 7635-7640.	2.6	6

#	Article	IF	CITATIONS
73	Conservation and Divergence of Mediator Structure and Function: Insights from Plants. Plant and Cell Physiology, 2017, 58, pcw176.	3.1	46
74	Modification of plant cell wall structure accompanied by enhancement of saccharification efficiency using a chemical, lasalocid sodium. Scientific Reports, 2016, 6, 34602.	3.3	15
75	An Integrated Genomic Strategy Delineates Candidate Mediator Genes Regulating Grain Size and Weight in Rice. Scientific Reports, 2016, 6, 23253.	3.3	22
76	Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances, 2016, 34, 997-1017.	11.7	175
77	Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry, 2016, 18, 4884-4895.	9.0	64
78	Mediator: A key regulator of plant development. Developmental Biology, 2016, 419, 7-18.	2.0	47
79	Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges. Australian Journal of Chemistry, 2016, 69, 1201.	0.9	29
80	Designer lignins: harnessing the plasticity of lignification. Current Opinion in Biotechnology, 2016, 37, 190-200.	6.6	333
81	From the nucleus to the apoplast: building the plant's cell wall. Journal of Experimental Botany, 2016, 67, 445-447.	4.8	3
82	Unlocking the potential of lignocellulosic biomass through plant science. New Phytologist, 2016, 209, 1366-1381.	7.3	177
83	False idolatry of the mythical growth versus immunity tradeoff in molecular systems plant pathology. Physiological and Molecular Plant Pathology, 2016, 95, 55-59.	2.5	63
84	Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. Plant Physiology, 2016, 170, 2187-2203.	4.8	77
85	Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 2016, 42, 40-53.	6.6	517
86	Os <scp>CESA</scp> 9 conservedâ€site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose <scp>DP</scp> and crystallinity in rice. Plant Biotechnology Journal, 2017, 15, 1093-1104.	8.3	143
87	Plant cell wall signalling and receptor-like kinases. Biochemical Journal, 2017, 474, 471-492.	3.7	142
88	Mining the global diversity for bioenergy traits of barley straw: genomewide association study under varying plant water status. GCB Bioenergy, 2017, 9, 1356-1369.	5.6	10
89	<scp>DNA</scp> methylation and gene expression regulation associated with vascularization in <i>Sorghum bicolor</i> . New Phytologist, 2017, 214, 1213-1229.	7.3	47
90	Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.	21.4	221

#	Article		CITATIONS
91	Characterization of Mediator Complex and its Associated Proteins from Rice. Methods in Molecular Biology, 2017, 1629, 123-140.	0.9	4
92	Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy and Environmental Science, 2017, 10, 1551-1557.	30.8	503
93	Emerging functions of multi-protein complex Mediator with special emphasis on plants. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 475-502.	5.2	26
94	A Key Role for Apoplastic H ₂ O ₂ in Norway Spruce Phenolic Metabolism. Plant Physiology, 2017, 174, 1449-1475.	4.8	46
95	Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. Journal of Experimental Botany, 2017, 68, 3287-3301.	4.8	159
96	Systematic Parameterization of Lignin for the Charmm Force Field. Biophysical Journal, 2017, 112, 449a.	0.5	0
98	Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 2017, 35, 466-489.	11.7	198
99	Genome engineering for breaking barriers in lignocellulosic bioethanol production. Renewable and Sustainable Energy Reviews, 2017, 74, 1080-1107.	16.4	31
100	Characterization and Elimination of Undesirable Protein Residues in Plant Cell Wall Materials for Enhancing Lignin Analysis by Solution-State Nuclear Magnetic Resonance Spectroscopy. Biomacromolecules, 2017, 18, 4184-4195.	5.4	94
101	High-Fidelity Quantum Logic in Ca+. Springer Theses, 2017, , .	0.1	6
102	Regulation of secondary cell wall biosynthesis by a <scp>NAC</scp> transcription factor from <i>Miscanthus</i> . Plant Direct, 2017, 1, e00024.	1.9	19
103	Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8930-E8939.	7.1	135
104	Systems Identification and Characterization of Cell Wall Reassembly and Degradation Related Genes in Glycine max (L.) Merill, a Bioenergy Legume. Scientific Reports, 2017, 7, 10862.	3.3	30
105	Papillae formation on trichome cell walls requires the function of the mediator complex subunit Med25. Plant Molecular Biology, 2017, 95, 389-398.	3.9	4
106	Silencing <i>CAFFEOYL SHIKIMATE ESTERASE</i> Affects Lignification and Improves Saccharification in Poplar. Plant Physiology, 2017, 175, 1040-1057.	4.8	90
106 107	Silencing <i>CAFFEOYL SHIKIMATE ESTERASE</i> Affects Lignification and Improves Saccharification in Poplar. Plant Physiology, 2017, 175, 1040-1057. SG2-Type R2R3-MYB Transcription Factor MYB15 Controls Defense-Induced Lignification and Basal Immunity in Arabidopsis. Plant Cell, 2017, 29, 1907-1926.	4.8 6.6	90 218
106 107 108	Silencing <i>CAFFEOYL SHIKIMATE ESTERASE </i> Affects Lignification and Improves Saccharification in Poplar. Plant Physiology, 2017, 175, 1040-1057. SG2-Type R2R3-MYB Transcription Factor MYB15 Controls Defense-Induced Lignification and Basal Immunity in Arabidopsis. Plant Cell, 2017, 29, 1907-1926. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant's tolerance to aluminum stress. Plant Molecular Biology, 2017, 95, 157-168.	4.8 6.6 3.9	90 218 67

#	Article		CITATIONS
110	Mediator Complex Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of Phenylpropanoid Biosynthesis. Plant Cell, 2017, 29, 3269-3285.	6.6	46
111	Genetic engineering of Arabidopsis to overproduce disinapoyl esters, potential lignin modification molecules. Biotechnology for Biofuels, 2017, 10, 40.	6.2	16
112	Towards an Understanding of Enhanced Biomass Digestibility by In Planta Expression of a Family 5 Glycoside Hydrolase. Scientific Reports, 2017, 7, 4389.	3.3	9
113	Degradation of lignin βâ€aryl ether units in <i>Arabidopsis thaliana</i> expressing <i>LigD</i> , <i> LigF</i> and <i>LigG</i> from <i>Sphingomonas paucimobilis </i> <scp>SYK</scp> â€6. Plant Biotechnology Journal, 2017, 15, 581-593.	8.3	29
114	The class <scp>III</scp> peroxidase <scp>PRX</scp> 17 is a direct target of the <scp>MADS</scp> â€box transcription factor AGAMOUSâ€LIKE15 (<scp>AGL</scp> 15) and participates in lignified tissue formation. New Phytologist, 2017, 213, 250-263.	7.3	88
115	Mutant Transcriptome Sequencing Provides Insights into Pod Development in Peanut (Arachis) Tj ETQq1 1 0.784	1314 rgBT 3.6	/Oygrlock 10
116	Comparative transcriptome analysis of oil palm flowers reveals an EAR-motif-containing R2R3-MYB that modulates phenylpropene biosynthesis. BMC Plant Biology, 2017, 17, 219.	3.6	9
117	Exogenous gibberellic acid application induces the overexpression of key genes for pedicel lignification and an increase in berry drop in table grape. Plant Physiology and Biochemistry, 2018, 126, 32-38.	5.8	23
118	Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw. Scientific Reports, 2018, 8, 3636.	3.3	17
119	Host lignin composition affects haustorium induction in the parasitic plants <i>Phtheirospermum japonicum</i> and <i>Striga hermonthica</i> . New Phytologist, 2018, 218, 710-723.	7.3	64
120	Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nature Communications, 2018, 9, 1579.	12.8	162
121	The cell biology of secondary cell wall biosynthesis. Annals of Botany, 2018, 121, 1107-1125.	2.9	202
122	Change in lignin structure, but not in lignin content, in transgenic poplar overexpressing the rice master regulator of secondary cell wall biosynthesis. Physiologia Plantarum, 2018, 163, 170-182.	5.2	19
123	Temperature dependent cellulase adsorption on lignin from sugarcane bagasse. Bioresource Technology, 2018, 252, 143-149.	9.6	37
124	Lignin modification in planta for valorization. Phytochemistry Reviews, 2018, 17, 1305-1327.	6.5	67
125	Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 2018, 47, 852-908.	38.1	1,708
126	A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation. Plant Molecular Biology, 2018, 97, 73-101.	3.9	66
127	Is embolism resistance in plant xylem associated with quantity and characteristics of lignin?. Trees - Structure and Function, 2018, 32, 349-358.	1.9	58

#	Article	IF	CITATIONS
128	Historical Production and Use of Carbon Materials: The Activated Carbon. , 2018, , 47-70.		4
129	Overexpression of <i>SbMyb60</i> in <i>Sorghum bicolor</i> impacts both primary and secondary metabolism. New Phytologist, 2018, 217, 82-104.	7.3	42
130	Vessel-Specific Reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in Dwarfed <i>ccr1</i> Mutants Restores Vessel and Xylary Fiber Integrity and Increases Biomass. Plant Physiology, 2018, 176, 611-633.	4.8	76
132	Stacking of a low-lignin trait with an increased guaiacyl and 5-hydroxyguaiacyl unit trait leads to additive and synergistic effects on saccharification efficiency in Arabidopsis thaliana. Biotechnology for Biofuels, 2018, 11, 257.	6.2	14
133	Activation of Cellulosic Ethanol Lignin by Laccase and its Application as Plywood Adhesive. BioResources, 2018, 13, .	1.0	3
134	Regulation of Lignin Biosynthesis and Its Role in Growth-Defense Tradeoffs. Frontiers in Plant Science, 2018, 9, 1427.	3.6	231
135	Molecular Enhancement of Alfalfa: Improving Quality Traits for Superior Livestock Performance and Reduced Environmental Impact. Crop Science, 2018, 58, 55-71.	1.8	8
136	A 13C isotope labeling method for the measurement of lignin metabolic flux in Arabidopsis stems. Plant Methods, 2018, 14, 51.	4.3	22
137	Effect of alkaline lignin modification on cellulase–lignin interactions and enzymatic saccharification yield. Biotechnology for Biofuels, 2018, 11, 214.	6.2	78
138	A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis. Frontiers in Plant Science, 2018, 9, 384.	3.6	26
139	Exploring Cell Wall Composition and Modifications During the Development of the Gynoecium Medial Domain in Arabidopsis. Frontiers in Plant Science, 2018, 9, 454.	3.6	31
140	Functional Analysis of Cellulose Synthase CesA4 and CesA6 Genes in Switchgrass (Panicum virgatum) by Overexpression and RNAi-Mediated Gene Silencing. Frontiers in Plant Science, 2018, 9, 1114.	3.6	34
141	Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility. Agriculture (Switzerland), 2018, 8, 76.	3.1	17
142	Lignins: Biosynthesis and Biological Functions in Plants. International Journal of Molecular Sciences, 2018, 19, 335.	4.1	757
143	Determination of Lignin Monomer Contents in Rice Straw Using Visible and Near-infrared Reflectance Spectroscopy. BioResources, 2018, 13, .	1.0	5
144	Downregulation of pâ€ <i><scp>COUMAROYL ESTER</scp> 3â€<scp>HYDROXYLASE</scp></i> in rice leads to altered cell wall structures and improves biomass saccharification. Plant Journal, 2018, 95, 796-811.	5.7	65
145	Raw plant-based biorefinery: A new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF. Biotechnology Advances, 2019, 37, 107422.	11.7	35
146	A Molecular Blueprint of Lignin Repression. Trends in Plant Science, 2019, 24, 1052-1064.	8.8	25

#	Article	IF	CITATIONS
147	Regulation of lignin composition by nitrogen rate and density and its relationship with stem mechanical strength of wheat. Field Crops Research, 2019, 241, 107572.		26
148	Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnology Advances, 2019, 37, 107418.	11.7	36
149	Lignin Engineering in Forest Trees. Frontiers in Plant Science, 2019, 10, 912.	3.6	92
150	An â€~ <scp>eFP</scp> eq Browser' for visualizing and exploring <scp>RNA</scp> sequencing data. Plant Journal, 2019, 100, 641-654.	5.7	41
151	Genomic resources for energy cane breeding in the post genomics era. Computational and Structural Biotechnology Journal, 2019, 17, 1404-1414.	4.1	38
152	Mediator function in plant metabolism revealed by large-scale biology. Journal of Experimental Botany, 2019, 70, 5995-6003.	4.8	10
153	Systematic parameterization of lignin for the CHARMM force field. Green Chemistry, 2019, 21, 109-122.	9.0	51
154	Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature Communications, 2019, 10, 347.	12.8	320
155	Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nature Plants, 2019, 5, 225-237.	9.3	50
156	The Structural Integrity of Lignin Is Crucial for Resistance against <i>Striga hermonthica</i> Parasitism in Rice. Plant Physiology, 2019, 179, 1796-1809.	4.8	60
157	Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Current Opinion in Biotechnology, 2019, 56, 202-208.	6.6	100
158	Influence of the <i>p</i> -hydroxyphenyl/guaiacyl ratio on the biphenyl and β-5 contents in compression wood lignins. Holzforschung, 2019, 73, 923-935.	1.9	12
159	GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers. Plant Science, 2019, 286, 7-16.	3.6	32
160	A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. Biotechnology for Biofuels, 2019, 12, 130.	6.2	39
161	Stereoselective Formation of Î ² -O-4 Structures Mimicking Softwood Lignin Biosynthesis: Effects of Solvent and the Structures of Quinone Methide Lignin Models. Journal of Agricultural and Food Chemistry, 2019, 67, 6950-6961.	5.2	8
162	Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL-COA 3-O-METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. Biotechnology for Biofuels, 2019, 12, 108.	6.2	18
163	Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to Biofuels and Bioproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 9062-9079.	6.7	89
164	A novel wet-mechanochemical pretreatment for the efficient enzymatic saccharification of lignocelluloses: Small dosage dilute alkali assisted ball milling. Energy Conversion and Management, 2019, 194, 46-54.	9.2	57

#	Article		CITATIONS
165	Lignin biosynthesis and its integration into metabolism. Current Opinion in Biotechnology, 2019, 56, 230-239.	6.6	440
166	Lignin structure and its engineering. Current Opinion in Biotechnology, 2019, 56, 240-249.	6.6	533
167	Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties. Current Opinion in Biotechnology, 2019, 56, 215-222.	6.6	49
168	Comparative evaluations of lignocellulose reactivity and usability in transgenic rice plants with altered lignin composition. Journal of Wood Science, 2019, 65, .	1.9	19
169	Impact of protein blocking on enzymatic saccharification of bagasse from sugarcane clones. Biotechnology and Bioengineering, 2019, 116, 1584-1593.	3.3	16
170	Comprehensive understanding of the non-productive adsorption of cellulolytic enzymes onto lignins isolated from furfural residues. Cellulose, 2019, 26, 3111-3125.	4.9	11
171	Mutation of Mediator subunit CDK 8 counteracts the stunted growth and salicylic acid hyperaccumulation phenotypes of an Arabidopsis MED 5 mutant. New Phytologist, 2019, 223, 233-245.	7.3	17
172	Ligninâ€based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO Journal, 2019, 38, e101948.	7.8	198
173	Ectopic Defense Gene Expression Is Associated with Growth Defects in <i>Medicago truncatula</i> Lignin Pathway Mutants. Plant Physiology, 2019, 181, 63-84.	4.8	27
174	Lignin biosynthesis: old roads revisited and new roads explored. Open Biology, 2019, 9, 190215.	3.6	136
175	Tailor-made trees: engineering lignin for ease of processing and tomorrow's bioeconomy. Current Opinion in Biotechnology, 2019, 56, 147-155.	6.6	44
176	Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology, 2019, 37, 518-531.	9.3	183
177	The quest for transcriptional hubs of lignin biosynthesis: beyond the NAC-MYB-gene regulatory network model. Current Opinion in Biotechnology, 2019, 56, 82-87.	6.6	124
178	Secondary cell wall biosynthesis. New Phytologist, 2019, 221, 1703-1723.	7.3	185
179	Fungiâ€Enabled Synthesis of Ultrahighâ€&urfaceâ€Area Porous Carbon. Advanced Materials, 2019, 31, e1805134.	21.0	75
181	<scp><i>Arabidopsis</i></scp> MYB4 plays dual roles in flavonoid biosynthesis. Plant Journal, 2020, 101, 637-652.	5.7	200
182	Glucosinolate and phenylpropanoid biosynthesis are linked by proteasomeâ€dependent degradation of <scp>PAL</scp> . New Phytologist, 2020, 225, 154-168.	7.3	67
183	Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. Annual Review of Marine Science, 2020, 12, 469-497.	11.6	50

		CITATION RE	PORT	
#	Article		IF	CITATIONS
184	Plant Phenylalanine/Tyrosine Ammonia-lyases. Trends in Plant Science, 2020, 25, 66-79.		8.8	154
185	PIRIN2 suppresses Sâ€ŧype lignin accumulation in a noncellâ€autonomous manner in Arabido elements. New Phytologist, 2020, 225, 1923-1935.	opsis xylem	7.3	12
186	Deep Eutectic Solvent Pretreatment of Transgenic Biomass With Increased C6C1 Lignin Mon Frontiers in Plant Science, 2019, 10, 1774.	omers.	3.6	8
187	Fibreâ€specific regulation of lignin biosynthesis improves biomass quality in <i>Populus</i> . Phytologist, 2020, 226, 1074-1087.	New	7.3	43
188	Dwarfism of highâ€monolignol Arabidopsis plants is rescued by ectopic LACCASE overexpres Direct, 2020, 4, e00265.	sion. Plant	1.9	17
189	Enzyme interactions on lignocellulosic biomass structure. , 2020, , 33-59.			1
191	Plant-specific Dof transcription factors VASCULAR-RELATED DOF1 and VASCULAR-RELATED I regulate vascular cell differentiation and lignin biosynthesis in Arabidopsis. Plant Molecular B 2020, 104, 263-281.)OF2 iology,	3.9	14
192	Enhancing the expression of ARK1 genes in poplar leads to multiple branches and transcripto changes. Royal Society Open Science, 2020, 7, 201201.	mic	2.4	4
193	Redesigning plant cell walls for the biomass-based bioeconomy. Journal of Biological Chemist 295, 15144-15157.	ry, 2020,	3.4	48
194	Syringic Acid Alleviates Cesium-Induced Growth Defect in Arabidopsis. International Journal o Molecular Sciences, 2020, 21, 9116.	f	4.1	8
195	Utilization of edible fungi residues towards synthesis of high-performance porous carbon for effective sorption of Cl-VOCs. Science of the Total Environment, 2020, 727, 138475.		8.0	33
196	An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. ChemSusChem, 2020, 13, 4238-4265.		6.8	50
197	Characterization of a sweet basil acyltransferase involved in eugenol biosynthesis. Journal of Experimental Botany, 2020, 71, 3638-3652.		4.8	21
198	Identification of genes from the general phenylpropanoid and monolignol-specific metabolisr sugarcane lignin-contrasting genotypes. Molecular Genetics and Genomics, 2020, 295, 717-	n in two 739.	2.1	8
199	Silencing Folylpolyglutamate Synthetase1 (FPCS1) in Switchgrass (Panicum virgatum L.) Imp Lignocellulosic Biofuel Production. Frontiers in Plant Science, 2020, 11, 843.	roves	3.6	6
200	Advances in Multiscale Modeling of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2020, 8, 3512-3531.		6.7	79
201	The <i>MicroRNA397bLACCASE2</i> Module Regulates Root Lignification under Wat Phosphate Deficiency. Plant Physiology, 2020, 182, 1387-1403.	er and	4.8	41
202	An importinâ€betaâ€like protein mediates ligninâ€modificationâ€induced dwarfism in Arabic Journal, 2020, 102, 1281-1293.	lopsis. Plant	5.7	23

#	Article		CITATIONS
203	Effect of Lignin Content on Cellulolytic Saccharification of Liquid Hot Water Pretreated Sugarcane Bagasse. Molecules, 2020, 25, 623.	3.8	39
204	Lignin. Springer Series on Polymer and Composite Materials, 2020, , .	0.7	26
205	Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Scientific Reports, 2020, 10, 6023.	3.3	29
206	Coupling of Flavonoid Initiation Sites with Monolignols Studied by Density Functional Theory. ACS Sustainable Chemistry and Engineering, 2021, 9, 1518-1528.	6.7	6
207	Metabolic source isotopic pair labeling and genome-wide association are complementary tools for the identification of metabolite–gene associations in plants. Plant Cell, 2021, 33, 492-510.	6.6	12
208	Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. New Phytologist, 2021, 230, 2186-2199.	7.3	23
209	Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin. Plant Molecular Biology, 2021, 106, 173-192.	3.9	8
210	Plant Biology: New Insight into How Roots â€~Mask Up'. Current Biology, 2021, 31, R263-R265.	3.9	0
211	Cooperative Regulation of Flavonoid and Lignin Biosynthesis in Plants. Critical Reviews in Plant Sciences, 2021, 40, 109-126.	5.7	42
212	Functional Analysis of OsMED16 and OsMED25 in Response to Biotic and Abiotic Stresses in Rice. Frontiers in Plant Science, 2021, 12, 652453.	3.6	4
213	Searching for Novel Transcriptional Regulators of Lignin Deposition Within the PIRIN Family in the Model C4 Grass Setaria Viridis. Tropical Plant Biology, 2021, 14, 93-105.	1.9	3
214	Subcellular coordination of plant cell wall synthesis. Developmental Cell, 2021, 56, 933-948.	7.0	44
215	Seedling developmental defects upon blocking CINNAMATEâ€4â€HYDROXYLASE are caused by perturbations in auxin transport. New Phytologist, 2021, 230, 2275-2291.	7.3	27
216	ChANN1 modulates the salinity tolerance by regulating ABA biosynthesis, ion homeostasis and phenylpropanoid pathway in cotton. Environmental and Experimental Botany, 2021, 185, 104427.	4.2	17
217	Growth–defense tradeâ€offs and yield loss in plants with engineered cell walls. New Phytologist, 2021, 231, 60-74.	7.3	41
218	The novel pathogenâ€responsive glycosyltransferase UGT73C7 mediates the redirection of phenylpropanoid metabolism and promotes <i>SNC1</i> â€dependent Arabidopsis immunity. Plant Journal, 2021, 107, 149-165.	5.7	26
220	Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Frontiers in Plant Science, 2021, 12, 704697.	3.6	49
221	Vessel―and rayâ€specific monolignol biosynthesis as an approach to engineer fiberâ€hypolignification and enhanced saccharification in poplar. Plant Journal, 2021, 108, 752-765.	5.7	11

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
222	Tailoring renewable materials via plant biotechnology. Biotechnology for Biofuels, 2021,	14, 167.	6.2	25
223	Bitkilerde Hücre Duvarı Mekanizmasında Strese Bağlı Meydana Gelen Savunma Üniversitesi Fen Bilimleri Dergisi, 0, , .	a Cevapları. Sinop	0.4	0
224	Double Mutant Analysis with the Large Flower Mutant, ohbana1, to Explore the Regulate Controlling the Flower and Seed Sizes in Arabidopsis thaliana. Plants, 2021, 10, 1881.	ory Network	3.5	2
225	Behind the Scenes: The Impact of Bioactive Phenylpropanoids on the Growth Phenotype Lignin Mutants. Frontiers in Plant Science, 2021, 12, 734070.	s of Arabidopsis	3.6	15
226	Assessment of the Role of PAL in Lignin Accumulation in Wheat (TrÃŧicum aestÃvum L.) Stage of Ontogenesis. International Journal of Molecular Sciences, 2021, 22, 9848.	at the Early	4.1	9
227	Growth, Stoichiometry, and Palatability of Suaeda salsa From Different Habitats Are Dem Differentially Expressed Proteins and Their Enriched Pathways. Frontiers in Plant Science, 733882.	ionstrated by , 2021, 12,	3.6	6
228	Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plan 245-288.	ts., 2021,,		0
229	Genome-wide analysis of general phenylpropanoid and monolignol-specific metabolism g sugarcane. Functional and Integrative Genomics, 2021, 21, 73-99.	genes in	3.5	10
231	Tailoring Plant Cell Wall Composition and Architecture for Conversion to Liquid Hydroca Biofuels. , 2015, , 63-82.	rbon		2
232	Convergent molecular evolution among ash species resistant to the emerald ash borer. N Ecology and Evolution, 2020, 4, 1116-1128.	Vature	7.8	26
234	Lignin Metabolic Engineering in Grass Biomass Plants for Primary Lignin Valorization. Kar Gikyoshi/Japan Tappi Journal, 2020, 74, 1067-1070.	ni Pa	0.1	1
235	An evolutionarily young defense metabolite influences the root growth of plants via the signaling pathway. ELife, 2017, 6, .	ancient TOR	6.0	84
236	The decoration of specialized metabolites influences stylar development. ELife, 2018, 7,		6.0	31
237	In Planta Cell Wall Engineering: From Mutants to Artificial Cell Walls. Plant and Cell Phys 2021, 62, 1813-1827.	iology,	3.1	7
238	Recent advances in understanding the effects of lignin structural characteristics on enzy hydrolysis. Biotechnology for Biofuels, 2021, 14, 205.	matic	6.2	94
239	Regulation of Lignin Biosynthesis Through RNAi in Aid of Biofuel Production. , 2015, , 18	5-201.		0
244	Analysis of Lignin Using Qualitative and Quantitative Methods. Springer Series on Polym Composite Materials, 2020, , 115-138.	er and	0.7	1
245	Energy plants (crops): potential natural and future designer plants. , 2022, , 73-114.			1

ARTICLE IF CITATIONS # Age-dependent and radial sectional differences in the dynamic viscoelastic properties of bamboo 246 1.9 6 culms and their possible relationship with the lignin structures. Journal of Wood Science, 2020, 66, . Biological Activities and Emerging Roles of Lignin and Lignin-Based Productsâ"€A Review. Biomacromolecules, 2021, 22, 4905-4918. 247 5.4 Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. 248 7.5 20 International Journal of Biological Macromolecules, 2022, 195, 274-286. Lack of xyloglucan in the cell walls of the Arabidopsis <i>xxt1/xxt2</i> mutant results in specific 249 increases in homogalacturonan and glucomannan. Plant Journal, 2022, 110, 212-227. Exposure of Eucalyptus to varied temperature and CO2 has a profound effect on the physiology and expression of genes related to cell wall formation and remodeling. Tree Genetics and Genomes, 2022, 250 1.6 5 18, 1. Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. Plant Journal, 2022, 110, 358-376. 5.7 Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards 252 6.4 66 low-carbon footprint. Fuel, 2022, 313, 122678. Cell Wall Signaling in Plant Development and Defense. Annual Review of Plant Biology, 2022, 73, 18.7 323-353. Manipulation of Lignin Monomer Composition Combined with the Introduction of Monolignol 254 Conjugate Biosynthesis Leads to Synergistic Changes in Lignin Structure. Plant and Cell Physiology, 3.1 12 2022, 63, 744-754. Overexpression of PnMYB2 from Panax notoginseng induces cellulose and lignin biosynthesis during 3.2 cell wall formation. Planta, 2022, 255, 107. Reimagining Lignin for the Biorefinery. Plant and Cell Physiology, 2022, , . 256 3.1 0 H-lignin can be deposited independently of CINNAMYL ALCOHOL DEHYDROGENASE C and D in 4.8 Arabidopsis. Plant Physiology, 2022, 189, 2015-2028. Dual Mechanisms of Coniferyl Alcohol in Phenylpropanoid Pathway Regulation. Frontiers in Plant 267 3.6 8 Science, 2022, 13, . Yet another twist in lignin biosynthesis: Is there a specific alcohol dehydrogenase for H-lignin production?. Plant Physiology, 2022, 189, 1884-1886. 268 4.8 The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. 269 4.1 14 International Journal of Molecular Sciences, 2022, 23, 6170. Proteomic and metabolic disturbances in lignin-modified <i>Brachypodium distachyon</i>. Plant Cell, 270 14 2022, 34, 3339-3363. Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Frontiers in Bioengineering and Biotechnology, 271 4.1 8 0, 10, . Making small molecules in plants: A chassis for synthetic biologyâ€based production of plant natural products. Journal of Integrative Plant Biology, 2023, 65, 417-443.

#	Article	IF	CITATIONS
273	Transcript and metabolite network perturbations in lignin biosynthetic mutants of Arabidopsis. Plant Physiology, 2022, 190, 2828-2846.	4.8	9
274	Eutrophication decreases Halophila beccarii plant organic carbon contribution to sequestration potential. Frontiers in Marine Science, 0, 9, .	2.5	2
275	Multi-omic characterization of bifunctional peroxidase 4-coumarate 3-hydroxylase knockdown in Brachypodium distachyon provides insights into lignin modification-associated pleiotropic effects. Frontiers in Plant Science, 0, 13, .	3.6	0
276	High temperature increased lignin contents of poplar (Populus spp) stem via inducing the synthesis caffeate and coniferaldehyde. Frontiers in Genetics, 0, 13, .	2.3	6
277	A feast of consequences: Transcriptional and metabolic responses to lignin pathway perturbations. Plant Physiology, 0, , .	4.8	0
278	Hrip1 mediates rice cell wall fortification and phytoalexins elicitation to confer immunity against Magnaporthe oryzae. Frontiers in Plant Science, 0, 13, .	3.6	6
279	The Key Regulators and Metabolic Intermediates of Lignin Response to Low Temperatures Revealed by Transcript and Targeted Metabolic Profiling Analysis in Poplar. Agronomy, 2022, 12, 2506.	3.0	0
280	Feedstock design for quality biomaterials. Trends in Biotechnology, 2022, 40, 1535-1549.	9.3	2
282	Lignin engineering in forest trees: From gene discovery to field trials. Plant Communications, 2022, 3, 100465.	7.7	18
283	Climate-responsive DNA methylation is involved in the biosynthesis of lignin in birch. Frontiers in Plant Science, 0, 13, .	3.6	1
284	Molecular module of <scp>CmMYB15â€like m4CL2</scp> regulating lignin biosynthesis of chrysanthemum (<i>Chrysanthemum morifolium</i>) in response to aphid (<i>Macrosiphoniella) Tj ETQq0 0 0 rg</i>	gB T∂/s Ωverlo	oc a 210 Tf 50
285	Evaluation of Biological Pretreatment of Wormwood Rod Reies with White Rot Fungi for Preparation of Porous Carbon. Journal of Fungi (Basel, Switzerland), 2023, 9, 43.	3.5	0
286	Coupling VIGS with Short- and Long-Term Stress Exposure to Understand the Fiskeby III Iron Deficiency Stress Response. International Journal of Molecular Sciences, 2023, 24, 647.	4.1	2
287	Research on adsorption mechanisms of levofloxacin over fungus chaff biochar modified by combination of alkali activation and copper-cobalt metallic oxides. Biomass Conversion and Biorefinery, 0, , .	4.6	1
289	The rapid-tome, a 3D-printed microtome, and an updated hand-sectioning method for high-quality plant sectioning. Plant Methods, 2023, 19, .	4.3	0
290	Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. International Journal of Molecular Sciences, 2023, 24, 5990.	4.1	16
291	The 2020 derecho revealed limited overlap between maize genes associated with root lodging and root system architecture. Plant Physiology, 2023, 192, 2394-2403.	4.8	2
292	Modulation of lignin biosynthesis for drought tolerance in plants. Frontiers in Plant Science, 0, 14, .	3.6	12

#	Article	IF	CITATIONS
293	Suppression of the Arabidopsis <i>cinnamoyl-CoA reductase 1-6</i> intronic T-DNA mutation by epigenetic modification. Plant Physiology, 0, , .	4.8	0
294	Genetically engineered lignocellulosic feedstocks for enhanced biofuel yields. , 2023, , 47-80.		0
295	Functional Versatility of Multi-Protein Mediator Complex in Plant Growth and Development. Critical Reviews in Plant Sciences, 2023, 42, 138-176.	5.7	0
296	Microscopical Analysis of Autofluorescence as a Complementary and Useful Method to Assess Differences in Anatomy and Structural Distribution Underlying Evolutive Variation in Loss of Seed Dispersal in Common Bean. Plants, 2023, 12, 2212.	3.5	0
297	CRISPR/Cas9-mediated mutagenesis of the mediator complex subunits MED5a and MED5b genes impaired secondary metabolite accumulation in hop (Humulus lupulus). Plant Physiology and Biochemistry, 2023, 201, 107851.	5.8	2
299	Unveiling the role of long-range and short-range forces in the non-productive adsorption between lignin and cellulases at different temperatures. Journal of Colloid and Interface Science, 2023, 647, 318-330.	9.4	5
300	Uncovering mechanisms governing stem growth in peanut (Arachis hypogaea L.) with varying plant heights through integrated transcriptome and metabolomics analyses. Journal of Plant Physiology, 2023, 287, 154052.	3.5	1
301	Manipulating microRNA miR408 enhances both biomass yield and saccharification efficiency in poplar. Nature Communications, 2023, 14, .	12.8	8
302	Pinoresinol rescues developmental phenotypes of Arabidopsis phenylpropanoid mutants overexpressing <i>FERULATE 5-HYDROXYLASE</i> . Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
303	Alterations in plant anatomy and higher lignin synthesis provides drought tolerance in cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Plant Physiology and Biochemistry, 2023, 201, 107905.	5.8	0
304	Soil mechanical reinforcement by the fibrous roots of selected rangeland plants using a large soil-root shear apparatus. Soil and Tillage Research, 2023, 234, 105852.	5.6	2
305	Molecular regulation of antioxidants and secondary metabolites act in conjunction to defend plants against pathogenic infection. South African Journal of Botany, 2023, 161, 247-257.	2.5	5
306	Natural alleles of Mediator subunit genes modulate plant height in chickpea. Plant Journal, 2023, 116, 1271-1292.	5.7	0
307	Enough is enough: feedback control of specialized metabolism. Trends in Plant Science, 2023, , .	8.8	1
308	CRISPR/Cas9 mutated p-coumaroyl shikimate 3'-hydroxylase 3 gene in Populus tomentosa reveals lignin functioning on supporting tree upright. International Journal of Biological Macromolecules, 2023, 253, 126762.	7.5	0
309	Flavonols have opposite effects on the interrelated glucosinolate and camalexin biosynthetic pathways in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 0, , .	4.8	0
310	Lignin polyphenol: From biomass to innovative food applications, and influence on gut microflora. Industrial Crops and Products, 2023, 206, 117696.	5.2	1
311	Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. Journal of Plant Physiology, 2023, 291, 154138.	3.5	3

#	Article	IF	CITATIONS
312	Transcriptomic Analyses Reveal Insights into the Shared Regulatory Network of Phenolic Compounds and Steviol Glycosides in Stevia rebaudiana. International Journal of Molecular Sciences, 2024, 25, 2136.	4.1	0
313	Imaging plant cell walls using fluorescent stains: The beauty is in the details. Journal of Microscopy, 0, , .	1.8	0