Reduced Graphene Oxides: Lightâ€Weight and Highâ€ Shielding at Elevated Temperatures

Advanced Materials 26, 3484-3489 DOI: 10.1002/adma.201400108

Citation Report

#	Article	IF	CITATIONS
1	Enhanced absorbing properties of three-phase composites based on a thermoplastic-ceramic matrix (BaTiO ₃ + PVDF) and carbon black nanoparticles. Journal of Materials Chemistry A, 2014, 2, 18725-18730.	10.3	96
2	Excellent dielectric properties of Polyvinylidene fluoride composites based on sandwich structured MnO2/graphene nanosheets/MnO2. Composites Part A: Applied Science and Manufacturing, 2014, 67, 252-258.	7.6	47
3	Fabrication, microstructure and microwave absorption of multi-walled carbon nanotube decorated with CdS nanocrystal. Materials Letters, 2014, 125, 107-110.	2.6	30
4	SiC–Fe ₃ O ₄ dielectric–magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption. Journal of Materials Chemistry A, 2014, 2, 16397-16402.	10.3	215
5	Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale, 2014, 6, 5754-5761.	5.6	347
6	Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. Journal of Materials Chemistry A, 2014, 2, 16905-16914.	10.3	418
7	Cross‣tacking Aligned Carbonâ€Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities. Advanced Materials, 2014, 26, 8120-8125.	21.0	819
8	Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. Journal of Materials Chemistry A, 2014, 2, 10540.	10.3	420
9	Influence of temperature on dielectric properties and microwave absorbing performances of TiC nanowires/SiO2 composites. Ceramics International, 2014, 40, 15391-15397.	4.8	49
10	Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2015, 3, 6589-6599.	5.5	551
11	Growth of Fe ₃ O ₄ nanosheet arrays on graphene by a mussel-inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions. RSC Advances, 2015, 5, 101121-101126.	3.6	41
12	Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition. Journal of Materials Chemistry A, 2015, 3, 2734-2740.	10.3	192
13	Broadband and Tunable Highâ€Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam. Advanced Materials, 2015, 27, 2049-2053.	21.0	1,598
14	Designed Fabrication and Characterization of Three-Dimensionally Ordered Arrays of Core–Shell Magnetic Mesoporous Carbon Microspheres. ACS Applied Materials & Interfaces, 2015, 7, 5312-5319.	8.0	115
15	Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding. Carbon, 2015, 87, 206-214.	10.3	79
16	Electromagnetic interference shielding properties of polymer-grafted carbon nanotube composites with high electrical resistance. Carbon, 2015, 85, 363-371.	10.3	94
17	High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics. Journal of Materials Science, 2015, 50, 1478-1487.	3.7	91
18	Effect of Covalent Modification of Graphene Nanosheets on the Electrical Property and Electromagnetic Interference Shielding Performance of a Water-Borne Polyurethane Composite. ACS Applied Materials & Interfaces, 2015, 7, 2817-2826.	8.0	151

#	Article	IF	CITATIONS
19	High-temperature dielectric and electromagnetic interference shielding properties of SiCf/SiC composites using Ti3SiC2 as inert filler. Composites Part A: Applied Science and Manufacturing, 2015, 77, 195-203.	7.6	75
20	MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. ACS Applied Materials & amp; Interfaces, 2015, 7, 13604-13611.	8.0	687
21	Co ²⁺ /Co ³⁺ ratio dependence of electromagnetic wave absorption in hierarchical NiCo ₂ O ₄ –CoNiO ₂ hybrids. Journal of Materials Chemistry C, 2015, 3, 7677-7690.	5.5	405
22	Synergistic effect of Fe-doping and stacking faults on the dielectric permittivity and microwave absorption properties of SiC whiskers. Applied Physics Letters, 2015, 106, .	3.3	88
23	NiO Hierarchical Nanorings on SiC: Enhancing Relaxation to Tune Microwave Absorption at Elevated Temperature. ACS Applied Materials & Interfaces, 2015, 7, 7073-7077.	8.0	359
24	Electronic Structures and Adsorption of Li-Doped Graphenes for CO. Chinese Physics Letters, 2015, 32, 036802.	3.3	4
25	Reduced graphene oxide-CoFe 2 O 4 composite: Synthesis and electromagnetic absorption properties. Applied Surface Science, 2015, 345, 272-278.	6.1	96
26	Flexible few-layered graphene/poly vinyl alcohol composite sheets: synthesis, characterization and EMI shielding in X-band through the absorption mechanism. RSC Advances, 2015, 5, 36498-36506.	3.6	54
27	Effect of rare earths on microwave absorbing properties of RE-Co alloys. Journal of Rare Earths, 2015, 33, 271-276.	4.8	15
28	Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. Journal of Materials Chemistry A, 2015, 3, 13426-13434.	10.3	560
29	Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. Journal of Materials Chemistry C, 2015, 3, 4670-4677.	5.5	224
30	Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon, 2015, 93, 151-160.	10.3	213
31	3D Fe ₃ O ₄ nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. Journal of Materials Chemistry A, 2015, 3, 12621-12625.	10.3	284
32	Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe ₃ O ₄ nanocrystals as synergistic electromagnetic wave absorbers. Journal of Materials Chemistry C, 2015, 3, 4452-4463.	5.5	176
33	Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield. Carbon, 2015, 89, 260-271.	10.3	122
34	Fabrication of core–multishell MWCNT/Fe ₃ O ₄ /PANI/Au hybrid nanotubes with high-performance electromagnetic absorption. Journal of Materials Chemistry A, 2015, 3, 10566-10572.	10.3	90
35	Effect of helium gas pressure on dc conduction mechanism and EMI shielding properties of nanocrystalline carbon thin films. Materials Chemistry and Physics, 2015, 158, 10-17.	4.0	9
36	A novel â€~one-pot' synthetic method for preparation of (Ni0.65Zn0.35Fe2O4)x–(BaFe12O19)1â~'x nanocomposites and study of their microwave absorption and magnetic properties. Powder Technology, 2015, 279, 10-17.	4.2	33

#	Article	IF	CITATIONS
37	Nickel and silver coated nano-SiO ₂ with excellent conductivity and permeability. Surface Engineering, 2015, 31, 427-432.	2.2	3
38	Electrical Properties of Polyethylene Composites with Low Content of Neodymium. Polymer-Plastics Technology and Engineering, 2015, 54, 1135-1143.	1.9	3
39	Preparation and microwave absorption properties of uniform TiO ₂ @C core–shell nanocrystals. RSC Advances, 2015, 5, 77443-77448.	3.6	45
40	Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. Journal of Materials Chemistry C, 2015, 3, 11893-11901.	5.5	134
41	Uniform Fe ₃ O ₄ coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption. Dalton Transactions, 2015, 44, 18804-18809.	3.3	58
42	Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Applied Materials & Interfaces, 2015, 7, 19831-19842.	8.0	145
43	Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities. ACS Applied Materials & Interfaces, 2015, 7, 19408-19415.	8.0	330
44	Two-dimensional nanosheets of MoS ₂ : a promising material with high dielectric properties and microwave absorption performance. Nanoscale, 2015, 7, 15734-15740.	5.6	335
45	Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding. Composites Science and Technology, 2015, 118, 178-185.	7.8	107
46	Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. Journal of Materials Chemistry C, 2015, 3, 9276-9282.	5.5	129
47	Temperature dependent microwave absorption of ultrathin graphene composites. Journal of Materials Chemistry C, 2015, 3, 10017-10022.	5.5	432
48	Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: truly lightweight and high-performance microwave absorption materials. Journal of Materials Chemistry C, 2015, 3, 10146-10153.	5.5	75
49	Achieving hierarchical hollow carbon@Fe@Fe ₃ O ₄ nanospheres with superior microwave absorption properties and lightweight features. Journal of Materials Chemistry C, 2015, 3, 10232-10241.	5.5	377
50	Excellent electromagnetic wave absorption property of quaternary composites consisting of reduced graphene oxide, polyaniline and FeNi3@SiO2 nanoparticles. Applied Surface Science, 2015, 357, 908-914.	6.1	57
51	Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon, 2015, 85, 79-88.	10.3	141
52	Nanostructured La _{0.7} Sr _{0.3} MnO ₃ compounds for effective electromagnetic interference shielding in the X-band frequency range. Journal of Materials Chemistry C, 2015, 3, 820-827.	5.5	45
53	Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. Journal of Materials Chemistry A, 2015, 3, 2097-2107.	10.3	208
54	Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technology, 2015, 269, 443-451.	4.2	332

#	Article	IF	CITATIONS
55	Effect of Electrochemical Treatment on Electrical Conductivity of Conical Carbon Nanotubes. Journal of Nanotechnology, 2016, 2016, 1-5.	3.4	1
56	Stepâ€byâ€Step Strategy for Constructing Multilayer Structured Coatings toward Highâ€Efficiency Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2016, 3, 1500476.	3.7	70
57	Highâ€Performance Epoxy Nanocomposites Reinforced with Threeâ€Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding. Advanced Functional Materials, 2016, 26, 447-455.	14.9	579
58	Significantly enhanced electrical conductivity of silver nanowire/polyurethane composites via graphene oxide as novelÂdispersant. Composites Science and Technology, 2016, 132, 57-67.	7.8	23
59	Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding. Advanced Functional Materials, 2016, 26, 303-310.	14.9	697
60	Restoration of thermally reduced graphene oxide by atomic-level selenium doping. NPG Asia Materials, 2016, 8, e338-e338.	7.9	45
61	Open-cell phenolic carbon foam and electromagnetic interference shielding properties. Carbon, 2016, 104, 90-105.	10.3	101
62	Tunable Microwave Absorption Frequency by Aspect Ratio of Hollow Polydopamine@α-MnO ₂ Microspindles Studied by Electron Holography. ACS Applied Materials & Interfaces, 2016, 8, 9782-9789.	8.0	159
63	Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material. Journal of Materials Chemistry C, 2016, 4, 4193-4203.	5.5	138
64	A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale, 2016, 8, 8899-8909.	5.6	310
65	Enhanced Microwave Absorption Properties of CeO ₂ Nanoparticles Supported on Reduced Graphene Oxide. Nano, 2016, 11, 1650058.	1.0	27
66	Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. Journal of the European Ceramic Society, 2016, 36, 2695-2703.	5.7	221
67	Dielectric and microwave absorption properties of TiO2/Al2O3 coatings and improved microwave absorption by FSS incorporation. Journal of Alloys and Compounds, 2016, 678, 527-532.	5.5	31
68	Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites. Nanoscale Research Letters, 2016, 11, 141.	5.7	184
69	Lightweight flexible polyurethane/reduced ultralarge graphene oxide composite foams for electromagnetic interference shielding. RSC Advances, 2016, 6, 27517-27527.	3.6	79
70	Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2016, 8, 10600-10608.	8.0	188
71	Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology, 2016, 27, 065702.	2.6	120
72	Excellent dielectric properties of PVDF-based composites filled with carbonized PAN/PEG copolymer fibers. Composites Part A: Applied Science and Manufacturing, 2016, 87, 46-53.	7.6	25

#	Article	IF	CITATIONS
73	Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon, 2016, 104, 214-225.	10.3	349
74	Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon, 2016, 105, 438-447.	10.3	400
75	A coatable, light-weight, fast-response nanocomposite sensor for the <i>in situ</i> acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves. Smart Materials and Structures, 2016, 25, 065005.	3.5	25
76	Porous silicon carbide derived from apple fruit with high electromagnetic absorption performance. Journal of Materials Chemistry C, 2016, 4, 5349-5356.	5.5	46
77	Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon, 2016, 110, 130-137.	10.3	149
78	Iron cobalt/polypyrrole nanoplates with tunable broadband electromagnetic wave absorption. RSC Advances, 2016, 6, 92152-92158.	3.6	41
79	Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced graphene oxide-carbon fiber/epoxy resin composites. Composites Part B: Engineering, 2016, 105, 167-175.	12.0	92
80	Microwave absorption of a TiO ₂ @PPy hybrid and its nonlinear dielectric resonant attenuation mechanism. Journal Physics D: Applied Physics, 2016, 49, 385502.	2.8	19
81	Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353, 1137-1140.	12.6	3,688
82	A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding. RSC Advances, 2016, 6, 101283-101287.	3.6	55
83	Nano-carbon: preparation, assessment, and applications for NH ₃ gas sensor and electromagnetic interference shielding. RSC Advances, 2016, 6, 97266-97275.	3.6	32
84	Yolk–Shell Ni@SnO ₂ Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2016, 8, 28917-28925.	8.0	526
85	High-performance electromagnetic wave absorbing composites prepared by one-step transformation of Fe ³⁺ mediated egg-box structure of seaweed. RSC Advances, 2016, 6, 98128-98140.	3.6	30
86	Synthesis and shielding properties of PVP-stabilized-AgNPs-based graphene nanohybrid in the Ku band. Synthetic Metals, 2016, 221, 86-94.	3.9	24
87	Ti ₃ C ₂ MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Applied Materials & Interfaces, 2016, 8, 21011-21019.	8.0	775
88	ZnO nanoparticles' decorated reduced-graphene oxide: Easy synthesis, unique polarization behavior, and ionic conductivity. Materials and Design, 2016, 110, 311-316.	7.0	14
89	Synthesis, characterization and enhanced electromagnetic properties of NiFe2O4@SiO2-decorated reduced graphene oxide nanosheets. Ceramics International, 2016, 42, 17374-17381.	4.8	38
90	3D architecture reduced graphene oxide-MoS 2 composite: Preparation and excellent electromagnetic wave absorption performance. Composites Part A: Applied Science and Manufacturing, 2016, 90, 424-432.	7.6	129

#	Article	IF	CITATIONS
91	Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites. Materials and Design, 2016, 109, 68-78.	7.0	112
92	Electromagnetic Property and Tunable Microwave Absorption of 3D Nets from Nickel Chains at Elevated Temperature. ACS Applied Materials & Interfaces, 2016, 8, 22615-22622.	8.0	307
93	Glass–iron oxide, glass–iron and glass–iron–carbon composite hollow particles with tunable electromagnetic properties. Journal of Materials Chemistry C, 2016, 4, 7979-7988.	5.5	9
94	The hybrid of SnO2nanoparticle and polypyrrole aerogel: an excellent electromagnetic wave absorbing materials. Materials Research Express, 2016, 3, 075023.	1.6	12
95	Synthesis and microwave absorption property of two-dimensional porous nickel oxide nanoflakes/carbon nanotubes nanocomposites with a threaded structure. Journal of Alloys and Compounds, 2016, 689, 366-373.	5.5	32
96	The Preparation of Compressible and Fireâ€Resistant Spongeâ€5upported Reduced Graphene Oxide Aerogel for Electromagnetic Interference Shielding. Chemistry - an Asian Journal, 2016, 11, 2586-2593.	3.3	39
97	Graphene nanosheets/E-glass/epoxy composites with enhanced mechanical and electromagnetic performance. RSC Advances, 2016, 6, 80424-80430.	3.6	29
98	In situ growth of MoS ₂ nanosheets on reduced graphene oxide (RGO) surfaces: interfacial enhancement of absorbing performance against electromagnetic pollution. Physical Chemistry Chemical Physics, 2016, 18, 24931-24936.	2.8	81
99	Growing 3D ZnO nano-crystals on 1D SiC nanowires: enhancement of dielectric properties and excellent electromagnetic absorption performance. Journal of Materials Chemistry C, 2016, 4, 8897-8902.	5.5	48
100	In-situ synthesis of carbon nanotubes decorated by magnetite nanoclusters and their applications as highly efficient and enhanced microwave absorber. Ceramics International, 2016, 42, 19110-19118.	4.8	38
101	Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceramics International, 2016, 42, 16412-16416.	4.8	316
102	Graphene sheets stacked polyacrylate latex composites for ultra-efficient electromagnetic shielding. Materials Research Express, 2016, 3, 075012.	1.6	11
103	One-step synthesis of hydrophobic-reduced graphene oxide and its oil/water separation performance. Journal of Materials Science, 2016, 51, 8791-8798.	3.7	31
104	Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. Journal of Materials Chemistry C, 2016, 4, 4853-4862.	5.5	160
105	Preparation, Microwave Absorption and Infrared Emissivity of Ni-doped ZnO/Al Powders by Coprecipitation Method in the GHz Range. Nano, 2016, 11, 1650047.	1.0	20
106	Layer-by-layer assembly of graphene oxide on viscose fibers for the fabrication of flexible conductive devices. Cellulose, 2016, 23, 3761-3770.	4.9	13
107	Three-dimensional and highly ordered porous carbon–MnO ₂ composite foam for excellent electromagnetic interference shielding efficiency. RSC Advances, 2016, 6, 100713-100722.	3.6	53
108	Excellent Electromagnetic Interference Shielding by Graphene― MnFe ₂ O ₄ â€Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage in Polymer Matrix. ChemistrySelect, 2016, 1, 5995-6003.	1.5	40

#	Article	IF	CITATIONS
109	Tunable high-performance microwave absorption for manganese dioxides by one-step Co doping modification. Scientific Reports, 2016, 6, 37400.	3.3	14
110	Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2016, 8, 31878-31886.	8.0	86
111	Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties. ACS Applied Materials & Interfaces, 2016, 8, 32468-32476.	8.0	93
112	Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding. Scientific Reports, 2016, 6, 25601.	3.3	92
113	Coprecipitation Synthesis of Fe-doped ZnO Powders with Enhanced Microwave Absorption Properties. Nano, 2016, 11, 1650136.	1.0	9
114	Ultrasonic-assisted sol-gel synthesis of rugby-shaped SrFe2O4/reduced graphene oxide hybrid as versatile visible light photocatalyst. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69, 156-162.	5.3	14
115	Structure evolution of Prussian blue analogues to CoFe@C core–shell nanocomposites with good microwave absorbing performances. RSC Advances, 2016, 6, 105644-105652.	3.6	81
116	Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Scientific Reports, 2016, 6, 24837.	3.3	74
117	Graphene Oxide/Polyacrylamide/Aluminum Ion Cross‣inked Carboxymethyl Hemicellulose Nanocomposite Hydrogels with Very Tough and Elastic Properties. Chemistry - an Asian Journal, 2016, 11, 1697-1704.	3.3	42
118	Nature of Electromagnetic-Transparent SiO ₂ Shell in Hybrid Nanostructure Enhancing Electromagnetic Attenuation. Journal of Physical Chemistry C, 2016, 120, 12967-12973.	3.1	40
119	Charge transport mechanism of thermally reduced graphene oxide and their fabrication for high performance shield against electromagnetic pollution. Materials Chemistry and Physics, 2016, 180, 413-421.	4.0	23
120	Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers. Journal of Alloys and Compounds, 2016, 687, 227-231.	5.5	99
121	Microwave Absorbing Properties of MnAl Alloy Powder. Rare Metal Materials and Engineering, 2016, 45, 267-271.	0.8	2
122	Mn ²⁺ induced structure evolution and dual-frequency microwave absorption of Mn _x Fe _{3â°x} O ₄ hollow/porous spherical chains made by a one-pot solvothermal approach. Journal of Materials Chemistry C, 2016, 4, 7119-7129.	5.5	57
123	Multifunctional Stiff Carbon Foam Derived from Bread. ACS Applied Materials & Interfaces, 2016, 8, 16852-16861.	8.0	151
124	In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. Journal of Alloys and Compounds, 2016, 687, 833-838.	5.5	137
125	Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: Facile synthesis and enhanced microwave absorption properties. Carbon, 2016, 108, 52-60.	10.3	229
126	Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. Journal of Materials Chemistry C, 2016, 4, 7130-7140.	5.5	351

#	Article	IF	CITATIONS
127	CoNi@SiO ₂ @TiO ₂ and CoNi@Air@TiO ₂ Microspheres with Strong Wideband Microwave Absorption. Advanced Materials, 2016, 28, 486-490.	21.0	1,506
128	Interfacially Engineered Sandwichâ€Like rGO/Carbon Microspheres/rGO Composite as an Efficient and Durable Microwave Absorber. Advanced Materials Interfaces, 2016, 3, 1500684.	3.7	131
129	Synthesis of lightweight, hierarchical cabbage-like composites as superior electromagnetic wave absorbent. Chemical Engineering Journal, 2016, 289, 261-269.	12.7	43
130	Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon, 2016, 98, 196-203.	10.3	114
131	A MWCNT–nanoparticle composite as a highly efficient lightweight electromagnetic wave absorber in the range of 4–18 GHz. RSC Advances, 2016, 6, 4695-4704.	3.6	16
132	Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Advances, 2016, 6, 6467-6474.	3.6	101
133	Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon, 2016, 100, 109-117.	10.3	195
134	Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon, 2016, 100, 375-385.	10.3	177
135	Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon, 2016, 98, 599-606.	10.3	278
136	A self-assembly method for the fabrication of a three-dimensional (3D) polypyrrole (PPy)/poly(3,4-ethylenedioxythiophene) (PEDOT) hybrid composite with excellent absorption performance against electromagnetic pollution. Journal of Materials Chemistry C, 2016, 4, 82-88.	5.5	54
137	Graphene nanosheets/BaTiO ₃ ceramics as highly efficient electromagnetic interference shielding materials in the X-band. Journal of Materials Chemistry C, 2016, 4, 371-375.	5.5	167
138	Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Applied Materials & Interfaces, 2016, 8, 8050-8057.	8.0	448
139	Electrochemical capacitors based on the composite of graphene and nickel foam. Science China Chemistry, 2016, 59, 405-411.	8.2	9
140	Low Temperature Reduction of Graphene Oxide Using Hot-plate for Nanocomposites Applications. Journal of Materials Science and Technology, 2016, 32, 411-418.	10.7	24
141	Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites. Ceramics International, 2016, 42, 7099-7106.	4.8	15
142	Enhanced microwave absorption properties of ferroferric oxide/graphene composites with a controllable microstructure. RSC Advances, 2016, 6, 16952-16962.	3.6	36
143	Mn, Ti substituted barium ferrite to tune electromagnetic properties and enhanced microwave absorption. Journal of Materials Science: Materials in Electronics, 2016, 27, 5128-5135.	2.2	16
144	Electromagnetic response of magnetic graphene hybrid fillers and their evolutionary behaviors. Journal of Materials Science: Materials in Electronics, 2016, 27, 2760-2772.	2.2	10

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
145	Morphology-controlled synthesis, characterization and microwave absorption properti nanostructured 3D CeO 2. Materials Science in Semiconductor Processing, 2016, 41, 4		4.0	101
146	Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites w high-performance electromagnetic interference shielding. Carbon, 2016, 96, 768-777.	vith	10.3	301
147	Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties electromagnetic interference shielding effectiveness at high frequency. Ceramics Inter 42, 936-942.		4.8	70
148	Characterization of hybrid fillers based on carbon black of different types obtained by Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: De Applications, 2017, 231, 584-599.	impregnation. sign and	1.1	4
149	Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic nanoparticles and their applications as enhanced synergistic microwave absorbers. Car 493-502.	Fe3O4 [.] bon, 2017, 115,	10.3	327
150	Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon, 2017, 115, 629-639).	10.3	228
151	Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performanc Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2017, 9, 6		8.0	428
152	Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution. Journal of Materials Cher 5, 2175-2181.	mistry C, 2017,	5.5	134
153	An asymmetric electrically conducting self-aligned graphene/polymer composite thin fi electromagnetic interference shielding. AIP Advances, 2017, 7, .	lm for efficient	1.3	37
154	Electromagnetic wave absorption of silicon carbide based materials. RSC Advances, 20	17, 7, 595-605.	3.6	69
155	Microwave-absorption properties of SiOC ceramics derived from novel hyperbranched ferrocene-containing polysiloxane. Journal of the European Ceramic Society, 2017, 37,	2021-2030.	5.7	89
156	Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enh microwave absorption properties. Carbon, 2017, 116, 50-58.	anced	10.3	525
157	Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for exe transparent electromagnetic interference shielding and absorbing. 2D Materials, 2017	cellent , 4, 025021.	4.4	58
158	Natural fiber and aluminum sheet hybrid composites for high electromagnetic interfere performance. Composites Part B: Engineering, 2017, 114, 121-127.	ence shielding	12.0	73
159	High-performance near-field electromagnetic wave attenuation in ultra-thin and transp graphene films. 2D Materials, 2017, 4, 025003.	arent	4.4	36
160	The microstructures, growth mechanisms and properties of carbon nanowires and nan fabricated at different CVD temperatures. Diamond and Related Materials, 2017, 72, 7		3.9	16
161	Polydopamine decoration on 3D graphene foam and its electromagnetic interference s properties. Journal of Colloid and Interface Science, 2017, 493, 327-333.	shielding	9.4	86
162	Interface Polarization Strategy to Solve Electromagnetic Wave Interference Issue. ACS Materials & Interfaces, 2017, 9, 5660-5668.	Applied	8.0	300

#	Article	IF	CITATIONS
163	High-efficient production of SiC/SiO 2 core-shell nanowires for effective microwave absorption. Materials and Design, 2017, 121, 185-193.	7.0	81
164	Remarkable microwave absorption performance of graphene at a very low loading ratio. Composites Part B: Engineering, 2017, 114, 395-403.	12.0	145
165	Preparation of polymer-derived graphene-like carbon-silicon carbide nanocomposites as electromagnetic interference shielding material for high temperature applications. Journal of Alloys and Compounds, 2017, 709, 313-321.	5.5	31
166	Reduced Graphene Oxide-Cu0.5Ni0.5Fe2O4-Polyaniline Nanocomposite: Preparation, Characterization and Microwave Absorption Properties. Journal of Electronic Materials, 2017, 46, 3707-3713.	2.2	9
167	A wearable microwave absorption cloth. Journal of Materials Chemistry C, 2017, 5, 2432-2441.	5.5	100
168	Pigeon-Excreta-Mediated Synthesis of Reduced Graphene Oxide (rGO)/CuFe ₂ O ₄ Nanocomposite and Its Catalytic Activity toward Sensitive and Selective Hydrogen Peroxide Detection. ACS Sustainable Chemistry and Engineering, 2017, 5, 4897-4905.	6.7	67
169	Conducting polymer coated metal-organic framework nanoparticles: Facile synthesis and enhanced electromagnetic absorption properties. Synthetic Metals, 2017, 228, 18-24.	3.9	179
170	Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning. Journal of Alloys and Compounds, 2017, 716, 306-320.	5.5	59
171	Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites. Physical Chemistry Chemical Physics, 2017, 19, 14596-14605.	2.8	43
172	Highly efficient large-scale preparation and electromagnetic property control of silica–NiFeP double shell composite hollow particles. RSC Advances, 2017, 7, 21721-21732.	3.6	5
173	Facile Synthesis and Hierarchical Assembly of Flowerlike NiO Structures with Enhanced Dielectric and Microwave Absorption Properties. ACS Applied Materials & Interfaces, 2017, 9, 16404-16416.	8.0	363
174	Facile fabrication of rGO/CNT hybrid fibers for high-performance flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 12147-12157.	2.2	6
175	High-temperature annealing of an iron microplate with excellent microwave absorption performance and its direct micromagnetic analysis by electron holography and Lorentz microscopy. Journal of Materials Chemistry C, 2017, 5, 6047-6053.	5.5	41
176	Carbon Nanotube–Multilayered Graphene Edge Plane Core–Shell Hybrid Foams for Ultrahighâ€Performance Electromagneticâ€Interference Shielding. Advanced Materials, 2017, 29, 1701583.	21.0	560
177	Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers. Materials Chemistry Frontiers, 2017, 1, 1786-1794.	5.9	56
178	High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite. Advanced Materials Technologies, 2017, 2, 1700078.	5.8	153
179	Three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO)/barium ferrite nanocomposites for electromagnetic absorption. Journal of Materials Science: Materials in Electronics, 2017, 28, 12900-12908.	2.2	16
180	Microstructures and EMI shielding properties of composite ceramics reinforced with carbon nanowires and nanowires-nanotubes hybrid. Ceramics International, 2017, 43, 12221-12231.	4.8	17

#	Article	IF	CITATIONS
181	Synthesis of hierarchical core-shell NiFe2O4@MnO2 composite microspheres decorated graphene nanosheet for enhanced microwave absorption performance. Ceramics International, 2017, 43, 11367-11375.	4.8	100
182	Role of singleâ€sourceâ€precursor structure on microstructure and electromagnetic properties of <scp>CNT</scp> sâ€si <scp>CN</scp> nanocomposites. Journal of the American Ceramic Society, 2017, 100, 4649-4660.	3.8	24
183	Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method. Journal of Alloys and Compounds, 2017, 719, 296-307.	5.5	46
184	Enhanced electromagnetic interference shielding behavior of Graphene Nanoplatelet/Ni/Wax nanocomposites. Journal of Materials Chemistry C, 2017, 5, 6471-6479.	5.5	58
185	Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. ACS Applied Materials & Interfaces, 2017, 9, 20038-20045.	8.0	323
186	Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Advances, 2017, 7, 27755-27761.	3.6	70
187	Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals. Applied Surface Science, 2017, 420, 858-867.	6.1	49
188	Fabrication and enhanced electromagnetic wave absorption properties of sandwich-like graphene@NiO@PANI decorated with Ag particles. Synthetic Metals, 2017, 229, 82-88.	3.9	28
189	Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 42 264
190	Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 21371-21381.	8.0	148
191	Fabrication and microwave absorption of multiwalled carbon nanotubes anchored with CoS nanoplates. Journal of Materials Science: Materials in Electronics, 2017, 28, 7622-7632.	2.2	24
192	Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against	12.0	170

192	electromagnetic polluting radiations. Composites Part B: Engineering, 2017, 120, 118-127.	12.0	170
193	Single-source-precursor derived RGO/CNTs-SiCN ceramic nanocomposite with ultra-high electromagnetic shielding effectiveness. Acta Materialia, 2017, 130, 83-93.	7.9	86
194	Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Composites Science and Technology, 2017, 144, 57-62.	7.8	47
195	Multiple Interfaces Structure Derived from Metal-Organic Frameworks for Excellent Electromagnetic Wave Absorption. Particle and Particle Systems Characterization, 2017, 34, 1700006.	2.3	74
196	Research progress of graphene-based microwave absorbing materials in the last decade. Journal of Materials Research, 2017, 32, 1213-1230.	2.6	62
197	Flexible, hydrophobic SiC ceramic nanofibers used as high frequency electromagnetic wave absorbers. Ceramics International, 2017, 43, 7424-7435.	4.8	76
198	Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Composites Part B: Engineering, 2017, 119, 41-56.	12.0	132

#	Article	IF	CITATIONS
199	High-temperature electromagnetic interference shielding of layered Ti3AlC2 ceramics. Scripta Materialia, 2017, 134, 47-51.	5.2	29
200	Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2017, 9, 11803-11810.	8.0	315
201	Fabrication of nano-Fe 3 O 4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sciences, 2017, 64, 51-61.	3.2	66
202	Nano ZnO enhanced 3D porous reduced graphene oxide (RGO) for light-weight superior electromagnetic interference shielding. Materials Research Express, 2017, 4, 025605.	1.6	2
203	Modeling for high-temperature dielectric behavior of multilayer C /Si3N4 composites in X-band. Journal of the European Ceramic Society, 2017, 37, 1961-1968.	5.7	32
204	A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. Journal of Materials Chemistry C, 2017, 5, 491-512.	5.5	305
205	Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shielding. Nanotechnology, 2017, 28, 045710.	2.6	34
206	Design of hollow ZnFe 2 O 4 microspheres@graphene decorated with TiO 2 nanosheets as a high-performance low frequency absorber. Materials Chemistry and Physics, 2017, 202, 184-189.	4.0	45
207	Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. ACS Applied Materials & Interfaces, 2017, 9, 36119-36129.	8.0	135
208	Controllable Fabricating Dielectric–Dielectric SiC@C Core–Shell Nanowires for High-Performance Electromagnetic Wave Attenuation. ACS Applied Materials & Interfaces, 2017, 9, 40690-40696.	8.0	137
209	One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties. Carbon, 2017, 125, 207-220.	10.3	120
210	Facial Synthesized Co-doped SnO ₂ @Multi-Walled Carbon Nanotubes as an Efficient Microwave Absorber in High Frequency Range. Nano, 2017, 12, 1750118.	1.0	5
211	Preparation of silver/reduced graphene oxide coated polyester fabric for electromagnetic interference shielding. RSC Advances, 2017, 7, 40452-40461.	3.6	47
212	Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. European Polymer Journal, 2017, 95, 520-538.	5.4	45
213	Cyanate Ester Resin Filled with Graphene Nanosheets and NiFe ₂ O ₄ –Reduced Graphene Oxide Nanohybrids for Efficient Electromagnetic Interference Shielding. Nano, 2017, 12, 1750066.	1.0	16
214	Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene. ACS Applied Materials & Interfaces, 2017, 9, 34221-34229.	8.0	112
215	Nano-structure tin/nitrogen-doped reduced graphene oxide composites as high capacity lithium-ion batteries anodes. Journal of Materials Science: Materials in Electronics, 2017, 28, 18994-19002.	2.2	21
216	MoS ₂ -Based Mixed-Dimensional van der Waals Heterostructures: A New Platform for Excellent and Controllable Microwave-Absorption Performance. ACS Applied Materials & Interfaces, 2017, 9, 34243-34255.	8.0	131

#	Article		CITATIONS
217	Ultralight and Flexible Polyurethane/Silver Nanowire Nanocomposites with Unidirectional Pores for Highly Effective Electromagnetic Shielding. ACS Applied Materials & Interfaces, 2017, 9, 32211-32219.	8.0	158
218	Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route. RSC Advances, 2017, 7, 42641-42652.	3.6	72
219	Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer. Journal of Materials Chemistry C, 2017, 5, 7479-7488.	5.5	146
220	Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding. Carbon, 2017, 123, 223-232.	10.3	91
221	A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti ₂ CT _x MXene. Journal of Materials Chemistry C, 2017, 5, 7621-7628.	5.5	177
222	Microstructure Design of Lightweight, Flexible, and High Electromagnetic Shielding Porous Multiwalled Carbon Nanotube/Polymer Composites. Small, 2017, 13, 1701388.	10.0	163
223	Estimating EMI shielding effectiveness of graphene-polymer composites at elevated temperatures. Materials Research Express, 2017, 4, 085605.	1.6	14
224	Enhanced electromagnetic wave absorption properties of MoS2-graphene hybrid nanosheets prepared by a hydrothermal method. Journal of Sol-Gel Science and Technology, 2017, 84, 104-109.	2.4	15
225	Low percolation threshold in flexible graphene/acrylic polyurethane composites with tunable negative permittivity. Composites Science and Technology, 2017, 151, 79-84.	7.8	47
226	A strong and tough polymer–carbon nanotube film for flexible and efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2017, 5, 8944-8951.	5.5	112
227	Hollow Semiconductor Nanospheresâ€Anchored Graphene Oxide Sheets for Effective Microwave Absorption. ChemistrySelect, 2017, 2, 10840-10847.	1.5	10
228	Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications. ACS Applied Materials & Interfaces, 2017, 9, 44609-44616.	8.0	270
229	Efficient and Lightweight Electromagnetic Wave Absorber Derived from Metal Organic Framework-Encapsulated Cobalt Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 42102-42110.	8.0	247
230	Three-dimensional nanostructured graphene: Synthesis and energy, environmental and biomedical applications. Synthetic Metals, 2017, 234, 53-85.	3.9	114
231	Highly Efficient Electromagnetic Wave Absorbing Metal-Free and Carbon-Rich Ceramics Derived from Hyperbranched Polycarbosilazanes. Journal of Physical Chemistry C, 2017, 121, 24774-24785.	3.1	78
232	Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Materials Chemistry and Physics, 2017, 199, 340-347.	4.0	55
233	Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon, 2017, 122, 718-725.	10.3	160
234	Single-source-precursor synthesis and electromagnetic properties of novel RGO–SiCN ceramic nanocomposites. Journal of Materials Chemistry C, 2017, 5, 7950-7960.	5.5	48

#	Article	IF	CITATIONS
235	Synthesis of hollow Cu _{1.8} S nano-cubes for electromagnetic interference shielding. Nanoscale, 2017, 9, 10961-10965.	5.6	31
236	Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Research, 2017, 10, 1595-1607.	10.4	82
237	Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Research, 2017, 10, 284-294.	10.4	162
238	Carbon nanofiber mats for electromagnetic interference shielding. Carbon, 2017, 111, 529-537.	10.3	121
239	An effective strategy to enhance mechanical, electrical, andÂelectromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites. Composites Part B: Engineering, 2017, 109, 155-169.	12.0	123
240	Fibre-reinforced multifunctional SiC matrix composite materials. International Materials Reviews, 2017, 62, 117-172.	19.3	207
241	High-temperature microwave absorbing properties of ordered mesoporous inter-filled SiC/SiO2 composites. Ceramics International, 2017, 43, 282-288.	4.8	51
242	Magnetic and microwave absorption properties of La-Nd-Fe alloys. Journal of Magnetism and Magnetic Materials, 2017, 423, 197-202.	2.3	42
243	Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon, 2017, 111, 248-257.	10.3	203
244	Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon, 2017, 111, 94-102.	10.3	184
245	Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon, 2017, 113, 55-62.	10.3	159
246	Fabrication of Porous Silicon Carbide Ceramics with High Electromagnetic Interference Shielding Effectiveness. ChemistrySelect, 2017, 2, 11131-11136.	1.5	4
247	Effect of Dy Content on Microwave Absorption Properties of Pr 2 Fe 17 Alloy. Rare Metal Materials and Engineering, 2017, 46, 2060-2064.	0.8	7
248	Effect of Silica Phase on Certain Properties of Natural Rubber Based Composites Reinforced by Carbon Black/Silica Hybrid Fillers. Progress in Rubber, Plastics and Recycling Technology, 2017, 33, 221-242.	1.8	3
249	Controllable synthesis, formation mechanism, and enhanced microwave absorption of dendritic AgFe alloy/Fe ₃ O ₄ nanocomposites. CrystEngComm, 2018, 20, 1997-2009.	2.6	25
250	Ultrathin Active Layer for Transparent Electromagnetic Shielding Window. ACS Omega, 2018, 3, 2765-2772.	3.5	11
251	Effect of Nickel Distributions Embedded in Amorphous Carbon Films on Transport Properties. Chinese Physics Letters, 2018, 35, 026501.	3.3	0
252	Direct Growth of Edgeâ€Rich Graphene with Tunable Dielectric Properties in Porous Si ₃ N ₄ Ceramic for Broadband Highâ€Performance Microwave Absorption. Advanced Functional Materials, 2018, 28, 1707205.	14.9	425

	CITATION R	Citation Report	
#	Article	IF	CITATIONS
253	Heterostructured Nanorings of Feâ^'Fe ₃ O ₄ @C Hybrid with Enhanced Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2018, 10, 9369-9378.	8.0	244
254	Economical synthesis of composites of FeNi alloy nanoparticles evenly dispersed in two-dimensional reduced graphene oxide as thin and effective electromagnetic wave absorbers. RSC Advances, 2018, 8, 8393-8401.	3.6	37
255	Multifunctional BiFeO3 composites: Absorption attenuation dominated effective electromagnetic interference shielding and electromagnetic absorption induced by multiple dielectric and magnetic relaxations. Composites Science and Technology, 2018, 159, 240-250.	7.8	90
256	Polypyrrole-MWCNT-Ag composites for electromagnetic shielding: Comparison between chemical deposition and UV-reduction approaches. Journal of Physics and Chemistry of Solids, 2018, 118, 80-87.	4.0	57
257	Hierarchically Porous Carbons Derived from Biomasses with Excellent Microwave Absorption Performance. ACS Applied Materials & amp; Interfaces, 2018, 10, 11108-11115.	8.0	318
258	Excellent Electromagnetic Wave Absorption of Ironâ€Containing SiBCN Ceramics at 1158 K Highâ€Temperature. Advanced Engineering Materials, 2018, 20, 1701168.	3.5	98
259	ZnO @ N-doped porous carbon/Co 3 ZnC coreâ€"shell heterostructures with enhanced electromagnetic wave attenuation ability. Chemical Engineering Journal, 2018, 342, 364-371. Facile synthesis of porous Fe ₃ O ₄ @C core/shell nanorod/graphene for improving microwave absorption properties. RSC Advances, 2018, 8, 15358-15365. Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thinâ€Film with Remarkable Electromagnetic Interference Shielding Effectiveness. Small, 2018, 14, e1704332.		92
260			21
261			111
262	Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance. Carbon, 2018, 135, 1-11.	10.3	60
263	Energy storage and loss capacity of grapheneâ€reinforced poly(vinylidene fluoride) nanocomposites from electrical and dielectric properties perspective: A review. Advances in Polymer Technology, 2018, 37, 2838-2858.	1.7	56
264	Novel Scaleâ€Like Structures of Graphite/TiC/Ti ₃ C ₂ Hybrids for Electromagnetic Absorption. Advanced Electronic Materials, 2018, 4, 1700617.	5.1	86
265	Strong mechanics and broadened microwave absorption of graphene-based sandwich structures and surface-patterned structures. Journal of Materials Science: Materials in Electronics, 2018, 29, 9683-9691.	2.2	9
266	Wool-Ball-Type Core-Dual-Shell FeCo@SiO2@MWCNTs Microcubes for Screening Electromagnetic Interference. ACS Applied Nano Materials, 2018, 1, 2261-2271.	5.0	22
267	Nanocomposites of Oriented Nickel Chains with Tunable Magnetic Properties for High-Performance Broadband Microwave Absorption. ACS Applied Nano Materials, 2018, 1, 1116-1123.	5.0	103
268	Electromagnetic interference shielding performance of nano-layered Ti3SiC2 ceramics at high-temperatures. AIP Advances, 2018, 8, .	1.3	17
269	A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures. Chemical Engineering Journal, 2018, 339, 487-498.	12.7	415
270	Coexistence of broad-bandwidth and strong microwave absorption in Co2+-Zr4+ co-doped barium ferrite ceramics. Ceramics International, 2018, 44, 6953-6958.	4.8	38

#	Article	IF	CITATIONS
271	Synthesis of polyaniline nanorods and Fe3O4 microspheres on graphene nanosheets and enhanced microwave absorption performances. Materials Chemistry and Physics, 2018, 209, 23-30.	4.0	48
272	Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2018, 107, 447-460.	7.6	95
273	Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites. Journal of Alloys and Compounds, 2018, 743, 163-174.	5.5	151
274	Robust and Mechanically and Electrically Self-Healing Hydrogel for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 8245-8257.	8.0	134
275	Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. Journal of Materials Chemistry C, 2018, 6, 1476-1486.	5.5	212
276	Transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te) and MX2-CIP composites: Promising materials with high microwave absorption performance. Journal of Alloys and Compounds, 2018, 743, 26-35.	5.5	37
277	Ultralight and Highly Elastic Graphene/Lignin-Derived Carbon Nanocomposite Aerogels with Ultrahigh Electromagnetic Interference Shielding Performance. ACS Applied Materials & Interfaces, 2018, 10, 8205-8213.	8.0	160
278	Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon, 2018, 132, 343-351.	10.3	280
279	Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Composites Science and Technology, 2018, 158, 86-93.	7.8	147
280	From nanoscale to macroscale: Engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption. Applied Surface Science, 2018, 439, 176-185.	6.1	26
281	Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers. Journal of Alloys and Compounds, 2018, 737, 412-420.	5.5	73
282	Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chemical Engineering Journal, 2018, 337, 522-531.	12.7	225
283	How effectively do carbon nanotube inclusions contribute to the electromagnetic performance of a composite material? Estimation criteria from microwave and terahertz measurements. Carbon, 2018, 129, 688-694.	10.3	18
284	Doping Strategy To Boost the Electromagnetic Wave Attenuation Ability of Hollow Carbon Spheres at Elevated Temperatures. ACS Sustainable Chemistry and Engineering, 2018, 6, 1539-1544.	6.7	59
285	Ti ₃ C ₂ MXene: a promising microwave absorbing material. RSC Advances, 2018, 8, 2398-2403.	3.6	189
286	Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon, 2018, 130, 59-68.	10.3	150
287	Facile synthesis and wide-band electromagnetic wave absorption properties of carbon-coated ZnO nanorods. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 398-403.	2.1	3
288	Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. Journal of Materials Science: Materials in Electronics, 2018, 29, 10177-10189.	2.2	86

ARTICLE IF CITATIONS Review: Recent process in the design of carbon-based nanostructures with optimized electromagnetic 289 5.5 74 properties. Journal of Alloys and Compounds, 2018, 749, 887-899. Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from Jackfruit 290 6.1 89 peel. Applied Surface Science, 2018, 447, 261-268. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by 291 10.3 270 electrospinning. Carbon, 2018, 134, 264-273. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (Mâ€⁻=â€⁻Fe, Co, Ni) for efficient 6.1 microwave absorption. Applied Surface Science, 2018, 447, 244-253. Synthesis of PPy/Ni/RGO and enhancement on its electromagnetic wave absorption performance. 293 4.8 55 Ceramics International, 2018, 44, 10352-10361. Porous Co nanospheres supported on nitrogen-doped graphene as high-efficiency electromagnetic wave absorbers with thin thickness. Journal of Alloys and Compounds, 2018, 742, 928-936. 294 5.5 Hollow Î³-Fe2O3@Poly(3, 4-ethylenedioxythiophene) versus Î³-Fe2O3@SiO2@Poly(3,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 507 Td (4-e 295 3.9 20 Metals, 2018, 239, 59-65. MWCNT/NiO-Fe3O4 hybrid nanotubes for efficient electromagnetic wave absorption. Journal of Alloys 296 5.5 44 and Compounds, 2018, 748, 111-116. Tetrazole amphiphile inducing growth of conducting polymers hierarchical nanostructures and their 297 2.6 10 electromagnetic absorption properties. Nanotechnology, 2018, 29, 215604. Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave 298 2.5 absorption. Journal of Applied Physics, 2018, 123, . Superior microwave absorption properties of ultralight reduced graphene oxide/black phosphorus 299 2.6 41 aerogel. Nanotechnology, 2018, 29, 235604. Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI 10.3 104 shielding at low content. Carbon, 2018, 133, 435-445. Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chemical 301 12.7 90 Engineering Journal, 2018, 344, 342-352. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of 5.5 electromagnetic waves. Journal of Materials Chemistry C, 2018, 6, 4586-4602 Electromagnetic and microwave absorption characteristics of PMMA composites filled with a 303 3.6 14 nanoporous resorcinol formaldehyde based carbon aerogel. RSC Advances, 2018, 8, 10855-10864. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. 304 39 Nanotechnology, 2018, 29, 184003. Microstructural, optical and electrical transport properties of Cd-doped 305 1.6 29 SnO₂nanoparticles. Materials Research Express, 2018, 5, 035045. Design of spinous Ni/N-GN nanocomposites as novel magnetic/dielectric microwave absorbents with high-efficiency absorption performance and thin thickness. Journal of Materials Science, 2018, 53, 9034-9045.

#	Article	IF	CITATIONS
307	Porous Co–C Core–Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance. ACS Applied Materials & Interfaces, 2018, 10, 11333-11342.	8.0	335
308	Effects of ultrasound vibration on the structure and properties of polypropylene/graphene nanoplatelets composites. Polymer Engineering and Science, 2018, 58, 377-386.	3.1	15
309	Zinc oxide-graphene based composite layers for electromagnetic interference shielding in the GHz frequency range. Thin Solid Films, 2018, 651, 152-157.	1.8	17
310	Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Research, 2018, 11, 530-541.	10.4	83
311	Enhanced Microwave Absorption Properties of Double-Layer Absorbers Based on Spherical NiO and CoO.2NiO.4Zn0.4Fe2O4 Ferrite Composites. Acta Metallurgica Sinica (English Letters), 2018, 31, 171-179.	2.9	36
312	Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Applied Surface Science, 2018, 434, 283-293.	6.1	140
313	3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe 3 O 4 nanoparticles co-decorated for efficient electromagnetic wave absorption. Composites Part B: Engineering, 2018, 136, 135-142.	12.0	160
314	Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties. Journal of Materials Chemistry C, 2018, 6, 10-18.	5.5	195
315	Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices. Journal of Materials Science and Technology, 2018, 34, 1026-1034.	10.7	50
316	Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon, 2018, 127, 209-217.	10.3	268
317	Microwave absorption properties of holey graphene/silicone rubber composites. Composites Part B: Engineering, 2018, 135, 119-128.	12.0	67
318	The construction of carbon-coated Fe3O4 yolk-shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption. Journal of Colloid and Interface Science, 2018, 511, 307-317.	9.4	111
319	Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Materials Research Bulletin, 2018, 98, 59-63.	5.2	127
320	Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Research, 2018, 11, 1426-1436.	10.4	430
321	Electromagnetic Properties of Reduced Graphene Oxide Buckypapers Obtained by Different Reduction Procedures. Physica Status Solidi (B): Basic Research, 2018, 255, 1700271.	1.5	4
322	Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chemical Engineering Journal, 2018, 332, 321-330.	12.7	411
323	Morphology controllable microwave absorption property of polyvinylbutyral (PVB)-MnO 2 nanocomposites. Composites Part B: Engineering, 2018, 132, 188-196.	12.0	74
324	The effect of defect emissions on enhancement photocatalytic performance of ZnSe QDs and ZnSe/rGO nanocomposites. Applied Surface Science, 2018, 435, 886-893.	6.1	96

#	Article	IF	CITATIONS
325	Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Research, 2018, 11, 2847-2861.	10.4	109
326	Ultralow-Threshold and Lightweight Biodegradable Porous PLA/MWCNT with Segregated Conductive Networks for High-Performance Thermal Insulation and Electromagnetic Interference Shielding Applications. ACS Applied Materials & Interfaces, 2018, 10, 1195-1203.	8.0	241
327	Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon, 2018, 127, 469-478.	10.3	169
328	Mechanically Insulated Graphene/Polymer Nanocomposites with Improved Dielectric Performance and Energy Storage Capacity. Polymer Science - Series A, 2018, 60, 875-885.	1.0	13
329	Boron carbide composites with highly aligned graphene nanoplatelets: light-weight and efficient electromagnetic interference shielding materials at high temperatures. RSC Advances, 2018, 8, 39314-39320.	3.6	11
330	Preparation and Microwave Absorption Properties of La-Ho-Fe Alloys. Rare Metal Materials and Engineering, 2018, 47, 3645-3650.	0.8	3
331	Synthesis and microwave absorbing properties of CeO2/multi-walled carbon nanotubes composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 19308-19315.	2.2	13
332	Doped, conductive SiO2 nanoparticles for large microwave absorption. Light: Science and Applications, 2018, 7, 87.	16.6	114
333	Electromagnetic interference shielding properties of graphene/MWCNT hybrid buckypaper. Micro and Nano Letters, 2018, 13, 1252-1254.	1.3	6
334	Structure modulation induced enhancement of microwave absorption in WS2 nanosheets. Applied Physics Letters, 2018, 113, .	3.3	30
336	Ultrathin Biomimetic Polymeric Ti ₃ C ₂ T _{<i>x</i>} MXene Composite Films for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 44787-44795.	8.0	298
337	Experimental Study on Tunable Electromagnetic Shielding by Microlattice Materials with Organized Microstructures. Advanced Engineering Materials, 2018, 20, 1700823.	3.5	1
338	Flexible Poly(vinyl alcohol)/Reduced Graphene Oxide Coated Carbon Composites for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2018, 1, 5854-5864.	5.0	42
339	Green Approach to Conductive PEDOT:PSS Decorating Magnetic-Graphene to Recover Conductivity for Highly Efficient Absorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 14017-14025.	6.7	113
340	Graphene Oxide Exoskeleton to Produce Selfâ€Extinguishing, Nonignitable, and Flame Resistant Flexible Foams: A Mechanically Tough Alternative to Inorganic Aerogels. Advanced Materials Interfaces, 2018, 5, 1801288.	3.7	59
341	Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Composites Part A: Applied Science and Manufacturing, 2018, 115, 371-382.	7.6	271
342	Enhanced thermal conductivity and mechanical property of flexible poly (vinylidene fluoride)/boron nitride/graphite nanoplatelets insulation films with high breakdown strength and reliability. Composites Science and Technology, 2018, 168, 381-387.	7.8	47
343	Synthesis of popcorn-like α-Fe2O3/3D graphene sponge composites for excellent microwave absorption properties by a facile method. Journal of Materials Science: Materials in Electronics, 2018, 29, 19443-19453.	2.2	19

#	Article	IF	CITATIONS
344	Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 40156-40167.	8.0	108
345	Preparation of a Chemically Reduced Graphene Oxide Reinforced Epoxy Resin Polymer as a Composite for Electromagnetic Interference Shielding and Microwave-Absorbing Applications. Polymers, 2018, 10, 1180.	4.5	36
346	Constructing 3D CNTs-SiO2@RGO structures by using GO sheets as template. Chemical Physics Letters, 2018, 713, 189-193.	2.6	9
347	Light weight RGO/Fe3O4 nanocomposite for efficient electromagnetic absorption coating in X-band. Journal of Materials Science: Materials in Electronics, 2018, 29, 19775-19782.	2.2	9
348	Carbon Composite Networks with Ultrathin Skin Layers of Graphene Film for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 38255-38263.	8.0	73
349	Dielectric and electromagnetic interference shielding properties of germanium dioxide nanoparticle reinforced poly(vinyl chloride) and poly(methylmethacrylate) blend nanocomposites. Journal of Materials Science: Materials in Electronics, 2018, 29, 20172-20188.	2.2	48
350	Enhanced Electromagnetic Microwave Absorption Property of Peapod-like MnO@carbon Nanowires. ACS Applied Materials & Interfaces, 2018, 10, 40078-40087.	8.0	126
351	Highly Electrically Conductive Three-Dimensional Ti ₃ C ₂ T _{<i>x</i>/i>} MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano, 2018, 12, 11193-11202.	14.6	671
352	Preparation of Polyaniline@MoS ₂ @Fe ₃ O ₄ Nanowires with a Wide Band and Small Thickness toward Enhancement in Microwave Absorption. ACS Applied Nano Materials, 2018, 1, 5865-5875.	5.0	69
353	Electrically Conductive and Mechanically Strong Graphene/Mullite Ceramic Composites for High-Performance Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 39245-39256.	8.0	64
354	Facile Synthesis of Carbon-Encapsulated Ni Nanoparticles Embedded into Porous Graphite Sheets as High-Performance Microwave Absorber. ACS Sustainable Chemistry and Engineering, 2018, 6, 16179-16185.	6.7	15
355	Tailoring impedance match and enhancing microwave absorption of Fe3O4/Bi24Fe2O39/Bi hollow porous microrods by controlling their composition. Progress in Natural Science: Materials International, 2018, 28, 575-583.	4.4	13
356	Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon, 2018, 140, 696-733.	10.3	574
357	Self-Assembled ZnO/Co Hybrid Nanotubes Prepared by Electrospinning for Lightweight and High-Performance Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2018, 1, 5297-5306.	5.0	76
358	Hydrated aramid nanofiber network enhanced flexible expanded graphite films towards high EMI shielding and thermal properties. Composites Science and Technology, 2018, 168, 28-37.	7.8	50
359	Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Composites Part B: Engineering, 2018, 152, 316-323.	12.0	133
360	Enhanced Magnetism by Temperature Induced Defects in Reduced Graphene Oxide Prepared From Coconut Shells. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	19
361	Microwave absorption properties of single- and double-layer absorbers based on electrospun nickel–zinc spinel ferrite and carbon nanofibers. Journal of Materials Science: Materials in Electronics, 2018, 29, 12258-12268.	2.2	31

CITAT		DEDODT
CHAI	ION	Report

#	Article	IF	CITATIONS
362	High-performance microwave absorption materials based on MoS 2 -graphene isomorphic hetero-structures. Journal of Alloys and Compounds, 2018, 758, 62-71.	5.5	77
363	Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics. Scientific Reports, 2018, 8, 7935.	3.3	24
364	Enhanced conductive loss in nickel–cobalt sulfide nanostructures for highly efficient microwave absorption and shielding. Journal Physics D: Applied Physics, 2018, 51, 235303.	2.8	4
365	Anticorrosive, Ultralight, and Flexible Carbonâ€Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding. Small, 2018, 14, e1800534.	10.0	310
366	Excellent microwave absorption of lamellar LaOCI/C nanocomposites with LaOCI nanoparticles embedded in carbon matrix. Journal of Alloys and Compounds, 2018, 764, 701-708.	5.5	9
367	Multiscale assembly of Fe2B porous microspheres for large magnetic losses in the gigahertz range. Journal of Alloys and Compounds, 2018, 765, 943-950.	5.5	47
368	Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber. ACS Applied Materials & Interfaces, 2018, 10, 24816-24828.	8.0	229
369	Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon, 2018, 139, 271-278.	10.3	68
370	Hybrid nanomaterials designed for volatile organic compounds sensors: A review. Materials and Design, 2018, 156, 154-166.	7.0	128
371	Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. Journal of Colloid and Interface Science, 2018, 530, 113-119.	9.4	86
372	Electromagnetic interference (EMI) shielding performance of lightweight metal decorated carbon nanostructures dispersed in flexible polyvinylidene fluoride films. New Journal of Chemistry, 2018, 42, 12945-12953.	2.8	34
373	Ultralight, highly flexible and conductive carbon foams for high performance electromagnetic shielding application. Journal of Materials Science: Materials in Electronics, 2018, 29, 13643-13652.	2.2	24
374	Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding. Fibers and Polymers, 2018, 19, 1064-1073.	2.1	69
375	Nanofinishes for protective textiles. , 2018, , 265-294.		3
376	Hierarchically porous carbons with controlled structures for efficient microwave absorption. Journal of Materials Chemistry C, 2018, 6, 8839-8845.	5.5	59
377	Integrated strength and toughness in graphene/calcium alginate films for highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2018, 6, 9166-9174.	5.5	54
378	Rational design of CNTs with encapsulated Co nanospheres as superior acid- and base-resistant microwave absorbers. Dalton Transactions, 2018, 47, 11554-11562.	3.3	17
379	Two-dimensional (2D) few-layers WS2 nanosheets: An ideal nanomaterials with tunable electromagnetic absorption performance. Applied Physics Letters, 2018, 113, .	3.3	38

#	Article	IF	CITATIONS
380	Humidity dependent impedance response of graphene/carbon nanotubes composite. Materials Research Express, 2018, 5, 095028.	1.6	6
381	Chiral polyaniline with superhelical structures for enhancement in microwave absorption. Chemical Engineering Journal, 2018, 352, 745-755.	12.7	88
382	Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites. Polymers, 2018, 10, 582.	4.5	23
383	Synthesis, Characterization, and Electromagnetic Wave Absorption Properties of Composites of Reduced Graphene Oxide with Porous LiFe ₅ O ₈ Microspheres. ACS Sustainable Chemistry and Engineering, 2018, 6, 10011-10020.	6.7	97
384	Aspect and mass ratio dependence of microwave heating in silicon carbide fibers at 2.45 GHz. Journal of Applied Physics, 2018, 123, .	2.5	2
385	In‣itu Coâ€Arc Discharge Synthesis of Fe ₃ O ₄ /SWCNT Composites for Highly Effective Microwave Absorption. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700989.	1.8	24
386	Janus-like Fe ₃ O ₄ /PDA vesicles with broadening microwave absorption bandwidth. Journal of Materials Chemistry C, 2018, 6, 7790-7796.	5.5	46
387	Recent Progresses of High-Temperature Microwave-Absorbing Materials. Nano, 2018, 13, 1830005.	1.0	136
388	Researching on X-Band Electromagnetic Interference Shielding Efficiency of MWCNTs Buckypapers Inserted with Mn Nanopowder. Nano, 2018, 13, 1850061.	1.0	1
389	Ni deposited onto MWCNTs buckypapers for improved broadband EMI shielding. Journal of Materials Science: Materials in Electronics, 2018, 29, 15034-15041.	2.2	11
390	Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels. Journal of Alloys and Compounds, 2018, 768, 6-14.	5.5	98
391	Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties. Journal of Materials Chemistry C, 2018, 6, 8679-8687.	5.5	195
392	The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core–Shell Structured Nanocomposites. Nanoscale Research Letters, 2018, 13, 68.	5.7	18
393	Ceramsite containing iron oxide and its use as functional aggregate in microwave absorbing cement-based materials. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 133-138.	1.0	13
394	The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide. Applied Physics Letters, 2018, 112, .	3.3	45
395	Polyol derived Ni and NiFe alloys for effective shielding of electromagnetic interference. Materials Chemistry Frontiers, 2018, 2, 1829-1841.	5.9	63
396	Progress in low-frequency microwave absorbing materials. Journal of Materials Science: Materials in Electronics, 2018, 29, 17122-17136.	2.2	150
397	Lightweight and nitrogen-doped graphene nanoribbons with tunable hierarchical structure for high performance electromagnetic wave absorption. Ceramics International, 2018, 44, 20259-20266.	4.8	22

		CITATION R	EPORT	
#	Article		IF	Citations
398	Highly Bendable and Durable Transparent Electromagnetic Interference Shielding Film P Wet Sintering of Silver Nanowires. ACS Applied Materials & Interfaces, 2018, 10, 2		8.0	91
399	Extended Working Frequency of Ferrites by Synergistic Attenuation through a Controlla Carbothermal Route Based on Prussian Blue Shell. ACS Applied Materials & amp; Interface 28887-28897.	ıble ces, 2018, 10,	8.0	83
400	Cellulose nanofibrils-reduced graphene oxide xerogels and cryogels for dielectric and electric and electric condectric and electrochemical storage applications. Polymer, 2018, 147, 260-270.		3.8	44
401	Thermally Driven Transport and Relaxation Switching Selfâ€Powered Electromagnetic Electromagn	nergy	10.0	733
402	Enhanced Polarization from Hollow Cube-like ZnSnO ₃ Wrapped by Multiw Nanotubes: As a Lightweight and High-Performance Microwave Absorber. ACS Applied N Interfaces, 2018, 10, 22602-22610.		8.0	163
403	Substantially improved energy density of SrTiO3 thin film by cyclic cooling–heating a interfacial blocking effect. Journal of Materials Chemistry C, 2018, 6, 7101-7110.	nd the	5.5	16
404	Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. Jo Materials Chemistry C, 2018, 6, 8812-8822.	urnal of	5.5	301
405	Conductive textiles. , 2018, , 305-334.			5
406	3D printed honeycomb spacers: Tailoring sandwich structures for enhanced electromag shielding. Journal of Reinforced Plastics and Composites, 2018, 37, 1072-1082.	netic	3.1	9
407	Applications of Printed 2D Materials. , 2019, , 179-216.			1
408	Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhar permittivity, permeability, and microwave absorption properties. Chemical Engineering J 355, 103-108.		12.7	199
409	Excellent microwave absorption of carbon black/reduced graphene oxide composite wit loading. Journal of Materials Science, 2019, 54, 13990-14001.	h low	3.7	42
410	Synthesis of LiCo0.94Mg0.06O2: a promising material with high dielectric and microwa performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 15935-15	ve absorption 942.	2.2	2
411	Highly Conductive Multifunctional rGO/CNT Hybrid Sponge for Electromagnetic Wave S Strain Sensor. Advanced Materials Technologies, 2019, 4, 1900443.	hielding and	5.8	32
412	Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity. Adv 2019, 6, 1901320.	anced Science,	11.2	40
413	Depositing CNTs on the interface and surface of C/PyC/SiCs for tunable mechanical and electromagnetic properties. Ceramics International, 2019, 45, 23411-23417.		4.8	11
414	Carbonaceous photonic crystals prepared by high-temperature/hydrothermal carboniza high-performance microwave absorbers. Journal of Materials Science, 2019, 54, 14343-		3.7	6
415	Mechanical properties and electromagnetic shielding performance of single-source-prec synthesized dense monolithic SiC/HfC _x N _{1â^*x} /C ceramic nand Journal of Materials Chemistry C, 2019, 7, 10683-10693.	ursor bcomposites.	5.5	27

#	Article	IF	CITATIONS
416	EMI shielding of ABS composites filled with different temperature-treated equal-quantity charcoals. RSC Advances, 2019, 9, 23718-23726.	3.6	6
417	Broadband and strong electromagnetic wave absorption of epoxy composites filled with ultralow content of non-covalently modified reduced graphene oxides. Carbon, 2019, 154, 115-124.	10.3	48
418	Stretched graphene nanosheets formed the "obstacle walls―in melamine sponge towards effective electromagnetic interference shielding applications. Materials and Design, 2019, 182, 108029.	7.0	46
419	Microwave filter characteristics of ferrite and polyaniline composites from 8.2 to 12.4ÂGHz. Journal of Materials Science: Materials in Electronics, 2019, 30, 14923-14927.	2.2	1
420	Dielectric loss and nonlinear resonance properties of zirconium boride (ZrB ₂) high-temperature ceramic. Materials Research Express, 2019, 6, 096312.	1.6	0
421	Graphitic carbon nitride decorated with FeNi ₃ nanoparticles for flexible planar micro-supercapacitor with ultrahigh energy density and quantum storage capacity. Dalton Transactions, 2019, 48, 12137-12146.	3.3	29
422	A sustainable construction of an efficient lightweight microwave absorber from polymeric sponge. Ceramics International, 2019, 45, 18572-18582.	4.8	17
423	Graphene anchored with super-tiny Ni nanoparticles for high performance electromagnetic absorption applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 14480-14489.	2.2	5
424	Electromagnetic Functions of Patterned 2D Materials for Micro–Nano Devices Covering GHz, THz, and Optical Frequency. Advanced Optical Materials, 2019, 7, 1900689.	7.3	105
425	Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Applied Surface Science, 2019, 494, 540-550.	6.1	91
426	Enhanced microwave absorption properties of La doping BaSnO3 ceramic powder. Journal of Materials Science: Materials in Electronics, 2019, 30, 15420-15428.	2.2	8
427	Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Composites Science and Technology, 2019, 182, 107754.	7.8	197
428	Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. Journal of Materials Science and Technology, 2019, 35, 2859-2867.	10.7	60
429	Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon, 2019, 154, 391-401.	10.3	179
430	Excellent energy storage density and charge–discharge performance of a novel Bi _{0.2} Sr _{0.7} TiO ₃ –BiFeO ₃ thin film. Journal of Materials Chemistry C, 2019, 7, 10891-10900.	5.5	42
431	In situ carbon nanotubes encapsulated metal Nickel as high-performance microwave absorber from Ni–Zn Metal–Organic framework derivative. Journal of Alloys and Compounds, 2019, 801, 609-618.	5.5	44
432	Ultralight and flexible graphene foam coated with Bacillus subtilis as a highly efficient electromagnetic interference shielding film. Applied Surface Science, 2019, 491, 616-623.	6.1	34
433	Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chemical Engineering Journal, 2019, 378, 122159.	12.7	168

#	Article	IF	CITATIONS
434	Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber. Journal of Alloys and Compounds, 2019, 803, 1119-1126.	5.5	51
435	Enhanced polarization from flexible hierarchical MnO ₂ arrays on cotton cloth with excellent microwave absorption. Nanoscale, 2019, 11, 13269-13281.	5.6	80
436	Self-Assembly Construction of WS ₂ –rGO Architecture with Green EMI Shielding. ACS Applied Materials & Interfaces, 2019, 11, 26807-26816.	8.0	117
437	Layered composites composed of multi-walled carbon nanotubes/manganese dioxide/carbon fiber cloth for microwave absorption in the X-band. RSC Advances, 2019, 9, 19217-19225.	3.6	25
438	The underlying mechanisms of enhanced microwave absorption performance for the NiFe2O4-decorated Ti3C2Tx MXene. Results in Physics, 2019, 15, 102750.	4.1	33
439	Surface modification and microwave absorption properties of lightweight CNT absorbent. Journal of Materials Science: Materials in Electronics, 2019, 30, 21048-21058.	2.2	14
440	Ultrathin 2D Nanomaterials for Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2019, 6, 1901454.	3.7	75
441	New model of dielectric strength of Debye relaxation in monohydroxy alcohols. International Journal of Modern Physics B, 2019, 33, 1950313.	2.0	2
442	An investigation of microstructural, magnetic and microwave absorption properties of multi-walled carbon nanotubes/Ni0.5Zn0.5Fe2O4. Scientific Reports, 2019, 9, 15523.	3.3	29
443	Electromagnetic shielding of ultrathin, lightweight and strong nonwoven composites decorated by a bandage-style interlaced layer electropolymerized with polyaniline. Journal of Materials Science: Materials in Electronics, 2019, 30, 20420-20431.	2.2	9
444	The rambutan-like C@NiCo2O4 composites for enhanced microwave absorption performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 3124-3136.	2.2	26
445	Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology, 2020, 31, 162001.	2.6	42
446	Comparative Study on Magnetism of Reduced Graphene Oxide (rGO) Prepared from Coconut Shells and the Commercial Product. Materials Science Forum, 0, 966, 290-295.	0.3	14
447	Lightweight non-woven fabric graphene aerogel composite matrices for assembling carbonyl iron as flexible microwave absorbing textiles. Journal of Materials Science: Materials in Electronics, 2019, 30, 17137-17144.	2.2	12
448	Flexible GnPs/EPDM with Excellent Thermal Conductivity and Electromagnetic Interference Shielding Properties. Nano, 2019, 14, 1950075.	1.0	11
449	Amorphous/Nanocrystalline Carbonized Hydrochars with Isomeric Heterogeneous Interfacial Polarizations for High-performance Microwave Absorption. Scientific Reports, 2019, 9, 12429.	3.3	15
450	Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. Journal of Alloys and Compounds, 2019, 809, 151837.	5.5	83
451	Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon, 2019, 155, 233-242.	10.3	109

#	Article	IF	CITATIONS
452	Effect of phase morphology on electromagnetic interference shielding performance of silicone rubber/POE blends containing ILs modified MWCNTs. Synthetic Metals, 2019, 256, 116140.	3.9	8
453	Graphene oxide-ferrite hybrid framework as enhanced broadband absorption in gigahertz frequencies. Scientific Reports, 2019, 9, 12111.	3.3	39
454	Two-dimensional copper(i) thiophenolates: a well-constructed conductive Cu–S network for excellent electromagnetic wave absorption. Journal of Materials Chemistry C, 2019, 7, 11621-11631.	5.5	10
455	Uniformly coating MnOx nanoflakes onto carbon nanofibers as lightweight and wideband microwave absorbers with frequency-selective absorption. Materials and Design, 2019, 183, 108167.	7.0	40
456	Unprecedented Electromagnetic Interference Shielding from Three-Dimensional Bi-continuous Nanoporous Graphene. Matter, 2019, 1, 1077-1087.	10.0	53
457	Electromagnetic shielding and multi-beam radiation with high conductivity multilayer graphene film. Carbon, 2019, 155, 506-513.	10.3	60
458	Hydrothermal solvothermal synthesis and microwave absorbing study of MCo ₂ O ₄ (M = Mn, Ni) microparticles. Advances in Applied Ceramics, 2019, 1 466-472.	l 8 j .1	11
459	Reticulated SiC coating reinforced carbon foam with tunable electromagnetic microwave absorption performance. Composites Part B: Engineering, 2019, 178, 107479.	12.0	35
460	Self-Assembled 3D Flower-like Composites of Heterobimetallic Phosphides and Carbon for Temperature-Tailored Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 38361-38371.	8.0	90
461	Dielectric and piezoelectric properties of 0.970(0.95(K0.485Na0.515)NbO3–0.05LiSbO3)–0.015CuO–0.015Al2O3/PVDF 0–3 composite reinforc two kinds of ZnO powder. Optical and Quantum Electronics, 2019, 51, 1.	ed with	5
462	Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites. Composites Part B: Engineering, 2019, 177, 107378.	12.0	67
463	Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Composites Science and Technology, 2019, 184, 107839.	7.8	106
464	Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes. RSC Advances, 2019, 9, 1419-1427.	3.6	45
465	Porous Co ₉ S ₈ nanotubes with the percolation effect for lightweight and highly efficient electromagnetic wave absorption. Journal of Materials Chemistry C, 2019, 7, 1696-1704.	5.5	44
466	Microwave absorption properties of SiO2 doped furan resin derived carbon particles. Journal of Materials Science: Materials in Electronics, 2019, 30, 3359-3364.	2.2	4
467	Nanocarbons: Preparation, assessments, and applications in structural engineering, spintronics, gas sensing, EMI shielding, and cloaking in X-band. , 2019, , 171-285.		12
468	Electromagnetic and acoustic double-shielding graphene-based metastructures. Nanoscale, 2019, 11, 1692-1699.	5.6	32
469	Oxygen vacancy defects enhanced electromagnetic wave absorption properties of 3D net-like multi-walled carbon nanotubes/cerium oxide nanocomposites. Journal of Alloys and Compounds, 2019, 785, 616-626.	5.5	52

#	Article	IF	CITATIONS
470	Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. Journal of Materials Chemistry C, 2019, 7, 2725-2733.	5.5	342
471	Crystalline–Amorphous Permalloy@Iron Oxide Core–Shell Nanoparticles Decorated on Graphene as High-Efficiency, Lightweight, and Hydrophobic Microwave Absorbents. ACS Applied Materials & Interfaces, 2019, 11, 6374-6383.	8.0	96
472	Microwave-absorbing properties of room-temperature ionic liquids. Journal Physics D: Applied Physics, 2019, 52, 155302.	2.8	15
473	Compositional Dependent Physicochemical and Photovoltaic Properties of the (TiO ₂) _{1â€x} (RGO) _x Nanocomposites for Sensitized Solar Cells Using Ru(II) Dyes. ChemistrySelect, 2019, 4, 1055-1068.	1.5	10
474	2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon, 2019, 146, 210-217.	10.3	161
475	Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. Journal of the European Ceramic Society, 2019, 39, 1743-1756.	5.7	124
476	Interfacial polarizations induced by incorporating traditional perovskites into reduced graphene oxide (RGO) for strong microwave response. Dalton Transactions, 2019, 48, 2359-2366.	3.3	16
477	Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo ₂ O ₄ nanostructures <i>via</i> a self-assembly process of flake units. Nanoscale, 2019, 11, 2694-2702.	5.6	166
478	Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. Journal of Materials Chemistry C, 2019, 7, 441-448.	5.5	238
479	Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability. CrystEngComm, 2019, 21, 816-826.	2.6	74
480	A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. Journal of Materials Science: Materials in Electronics, 2019, 30, 10961-10984.	2.2	103
481	Orthogonal pattern of spinnable multiwall carbon nanotubes for electromagnetic interference shielding effectiveness. Carbon, 2019, 152, 33-39.	10.3	23
482	Graphene-based materials and their biomedical and environmental applications: Recent advances. , 2019, , 243-257.		1
483	Extended Effective Frequency of Three-Dimensional Graphene with Sustainable Energy Attenuation. ACS Sustainable Chemistry and Engineering, 2019, 7, 10477-10483.	6.7	26
484	Rational design of mesoporous MnO2 microwave absorber with tunable microwave frequency response. Applied Surface Science, 2019, 490, 372-382.	6.1	53
485	Modified graphene as a conducting ink for electromagnetic interference shielding. Journal Physics D: Applied Physics, 2019, 52, 375302.	2.8	16
486	Enhanced electromagnetic shielding property of cf/mullite composites fabricated by spark plasma sintering. Ceramics International, 2019, 45, 18988-18993.	4.8	13
487	Fabrication of Reduced Graphene Oxide/Silver Nanoparticles Decorated Conductive Cotton Fabric for High Performing Electromagnetic Interference Shielding and Antibacterial Application. Fibers and Polymers, 2019, 20, 1161-1171.	2.1	140

#	Article	IF	CITATIONS
488	Compressible Highly Stable 3D Porous MXene/GO Foam with a Tunable High-Performance Stealth Property in the Terahertz Band. ACS Applied Materials & Interfaces, 2019, 11, 25369-25377.	8.0	78
489	Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution. Journal of Cleaner Production, 2019, 234, 588-596.	9.3	51
490	MOF-derived graphitized porous carbon/Fe–Fe3C nanocomposites with broadband and enhanced microwave absorption performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 12012-12022.	2.2	18
491	Lightweight three-dimensional Fe3O4/carbon micro-flowers with tunable microwave absorption properties. Journal of Alloys and Compounds, 2019, 798, 414-423.	5.5	30
492	Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. Journal of Physics and Chemistry of Solids, 2019, 134, 77-82.	4.0	33
493	Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon, 2019, 152, 159-187.	10.3	365
494	Preparation, characterization and microwave absorbing properties of MoS2 and MoS2 -reduced graphene oxide (RGO) composites. Journal of Solid State Chemistry, 2019, 277, 68-76.	2.9	34
495	Graphene-Wrapped MgO/Poly(vinyl alcohol) Composite Sheets: Dielectric and Electromagnetic Interference Shielding Properties at Elevated Temperatures. ACS Applied Materials & Interfaces, 2019, 11, 23714-23730.	8.0	16
496	Coreâ€shell structured ironâ€containing ceramic nanoparticles: Facile fabrication and excellent electromagnetic absorption properties. Journal of the American Ceramic Society, 2019, 102, 7098-7107.	3.8	18
497	Deposition of graphene and related nanomaterials by dynamic spray-gun method: a new route to implement nanomaterials in real applications. JPhys Materials, 2019, 2, 032002.	4.2	9
498	Preparation and Properties of Ultrathin Flexible Expanded Graphite Film via Adding Natural Rubber. Chinese Journal of Polymer Science (English Edition), 2019, 37, 806-814.	3.8	13
499	Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding. Composites Science and Technology, 2019, 181, 107682.	7.8	97
500	Reduced Graphene Oxide-Wrapped Super Dense Fe3O4 Nanoparticles with Enhanced Electromagnetic Wave Absorption Properties. Nanomaterials, 2019, 9, 845.	4.1	11
501	Microwave absorption enhancement of nickel cobalt phosphides by decorating on reduced graphene oxide. Journal of Solid State Chemistry, 2019, 277, 201-208.	2.9	20
502	Construction of core-shell structural nickel@graphite nanoplate functional particles with high electromagnetic shielding effectiveness. Composites Part B: Engineering, 2019, 173, 106904.	12.0	35
503	A comparative study of physico-mechanical and electrical properties of polymer-carbon nanofiber in wet and melt mixing methods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 245, 95-106.	3.5	33
504	Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application. Nanomaterials, 2019, 9, 621.	4.1	68
505	Two-step synthesis of self-assembled 3D graphene/shuttle-shaped zinc oxide (ZnO) nanocomposites for high-performance microwave absorption. Journal of Alloys and Compounds, 2019, 797, 1310-1319.	5.5	48

#	Article	IF	CITATIONS
506	Tailoring GO/BaFe ₁₂ O ₁₉ /La _{0.5} Sr _{0.5} MnO ₃ ternary nanocomposite and investigation of its microwave characteristics. Materials Research Express, 2019, 6, 085063.	1.6	24
507	Facile synthesis of lightweight carbonized hydrochars decorated with dispersed ZnO nanocrystals and enhanced microwave absorption properties. Carbon, 2019, 150, 259-267.	10.3	33
508	Microwave Absorption and Shielding Property of Fe–Si–Al Alloy/MWCNT/Polymer Nanocomposites. Langmuir, 2019, 35, 6950-6955.	3.5	27
509	Preparation and Characterization of Copper Chromium Oxide Nanoparticles Using Modified Solâ€Gel Route and Evaluation of Their Microwave Absorption Properties. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900057.	1.8	27
510	Synthesis and Characterization of Ternary Polyaniline/Barium Ferrite/Reduced Graphene Oxide Composite as Microwave-Absorbing Material. Journal of Electronic Materials, 2019, 48, 4400-4408.	2.2	29
511	Carbon Nanotubes and Their Assemblies: Applications in Electromagnetic Interference Shielding. , 2019, , 335-357.		2
512	Ï€-Ï€ stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites. Carbon, 2019, 149, 679-692.	10.3	87
513	Hierarchical carbon nanowires network modified PDCs-SiCN with improved microwave absorption performance. Ceramics International, 2019, 45, 14238-14248.	4.8	36
514	Room-Temperature Ferromagnetic Sr ₃ YCo ₄ O _{10+δ} and Carbon Black-Reinforced Polyvinylidenefluoride Composites toward High-Performance Electromagnetic Interference Shielding. ACS Omega, 2019, 4, 8196-8206.	3.5	31
515	Novel Straw-Derived Carbon Materials for Electromagnetic Interference Shielding: A Waste-to-Wealth and Sustainable Initiative. ACS Sustainable Chemistry and Engineering, 2019, 7, 9663-9670.	6.7	61
516	Enhanced electromagnetic interference shielding capability in bamboo fiber@polyaniline composites through microwave reflection cavity design. Composites Science and Technology, 2019, 178, 41-49.	7.8	81
517	Facile synthesis of hollow cube-like ZnSnO3 wrapped by nitrogen-doped graphene: As a high-performance and enhanced synergistic microwave absorber. Journal of Magnetism and Magnetic Materials, 2019, 486, 165251.	2.3	19
518	Preparation and microwave absorption properties of ZnFe2O4/polyaniline/graphene oxide composite. Results in Physics, 2019, 13, 102221.	4.1	33
519	Combination of various grain sizes from nano to micron in polycrystalline holmium manganite (HoMnO3) as potential microwave absorbing application. Journal of Materials Science: Materials in Electronics, 2019, 30, 10742-10753.	2.2	2
520	Reduced Graphene Oxide Functionalized Strontium Ferrite in Poly(3,4â€ethylenedioxythiophene) Conducting Network: A Highâ€Performance EMI Shielding Material. Advanced Materials Technologies, 2019, 4, 1900023.	5.8	72
521	Direct large-scale fabrication of C-encapsulated B4C nanoparticles with tunable dielectric properties as excellent microwave absorbers. Carbon, 2019, 148, 504-511.	10.3	30
522	Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Advanced Optical Materials, 2019, 7, 1900267.	7.3	245
523	Electromagnetic interference shielding effectiveness and skin depth of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT percolation threshold. Polymer International, 2019, 68, 1194-1203.	/Overlock 3.1	2 10 Tf 50 26

	CITATION	Report	
#	Article	IF	CITATIONS
524	Synergistic influence of micropore architecture and TiO2 coating on the microwave absorption properties of Co nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 5620-5630.	2.2	5
525	Synergetic effect of Fe3O4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Composites Part A: Applied Science and Manufacturing, 2019, 121, 139-148.	7.6	88
526	Eco-mimetic nanoarchitecture for green EMI shielding. Chemical Engineering Journal, 2019, 369, 1068-1077.	12.7	205
527	Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Composites Science and Technology, 2019, 174, 232-240.	7.8	84
528	Tunable electromagnetic wave-absorbing capability achieved in liquid-metal-based nanocomposite. Applied Physics Express, 2019, 12, 045005.	2.4	12
529	The novel amorphous SnS /RGO anode material with better cycling stability and superior rate performance. Electrochimica Acta, 2019, 305, 394-402.	5.2	7
530	Microwave-constructed honeycomb architectures of h-BN/rGO nano-hybrids for efficient microwave conversion. Composites Science and Technology, 2019, 174, 184-193.	7.8	34
531	Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Film Structures. ACS Applied Materials & Interfaces, 2019, 11, 11782-11791.	8.0	88
532	Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Applied Surface Science, 2019, 484, 383-391.	6.1	163
533	Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	3.4	14
534	Effect of Sm doping on the structural, morphological and dielectric properties of EuFeO3 ceramics. Solid State Sciences, 2019, 91, 28-35.	3.2	8
535	Controllable Synthesis of γ-Fe ₂ O ₃ Nanotube/Porous rGO Composites and Their Enhanced Microwave Absorption Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 7004-7013.	6.7	78
536	Interface Modulating CNTs@PANi Hybrids by Controlled Unzipping of the Walls of CNTs To Achieve Tunable High-Performance Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 12142-12153.	8.0	299
537	Atomic Layer Tailoring Titanium Carbide MXene To Tune Transport and Polarization for Utilization of Electromagnetic Energy beyond Solar and Chemical Energy. ACS Applied Materials & Map; Interfaces, 2019, 11, 12535-12543.	8.0	187
538	High-Temperature Oxidation-Resistant ZrN _{0.4} B _{0.6} /SiC Nanohybrid for Enhanced Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 15869-15880.	8.0	150
539	Permittivity-Regulating Strategy Enabling Superior Electromagnetic Wave Absorption of Lithium Aluminum Silicate/rGO Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 18626-18636.	8.0	129
540	Enhanced electromagnetic interference shielding effectiveness of hybrid fillers by segregated structure. AIP Conference Proceedings, 2019, , .	0.4	7
541	The effect of ZnCl ₂ activation on microwave absorbing performance in walnut shell-derived nano-porous carbon. RSC Advances, 2019, 9, 9718-9728.	3.6	46

			2
#		IF	CITATIONS
542	Electromagnetic Response and Energy Conversion for Functions and Devices in Lowâ€Dimensional Materials. Advanced Functional Materials, 2019, 29, 1807398.	14.9	592
543	Physical properties of the organic polymeric blend (PVA/PAM) modified with MgO nanofillers. Journal of Composite Materials, 2019, 53, 2831-2847.	2.4	39
544	Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Nanoscale, 2019, 11, 8616-8625.	5.6	83
545	3D printed SiC nanowire reinforced composites for broadband electromagnetic absorption. Ceramics International, 2019, 45, 11475-11483.	4.8	33
546	Synthesis of nitrogen-doped graphene wrapped SnO ₂ hollow spheres as high-performance microwave absorbers. RSC Advances, 2019, 9, 10745-10753.	3.6	17
547	Improved microwave absorbing properties of core-shell FeCo@C nanoparticles. Materials Research Express, 2019, 6, 075034.	1.6	14
548	Co/C Composite Derived from a Newly Constructed Metal–Organic Framework for Effective Microwave Absorption. Crystal Growth and Design, 2019, 19, 1518-1524.	3.0	73
549	Grapheneâ€Based Materials toward Microwave and Terahertz Absorbing Stealth Technologies. Advanced Optical Materials, 2019, 7, 1801318.	7.3	208
550	Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels. Carbon, 2019, 147, 27-34.	10.3	38
551	Electronic Structure and Electromagnetic Properties for 2D Electromagnetic Functional Materials in Gigahertz Frequency. Annalen Der Physik, 2019, 531, 1800390.	2.4	173
552	Preparation and Characterization of MWCNT/Zn0.25Co0.75Fe2O4 Nanocomposite and Investigation of Its Microwave Absorption Properties at X-Band Frequency Using Silicone Rubber Polymeric Matrix. Journal of Electronic Materials, 2019, 48, 3086-3095.	2.2	33
553	Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis. Carbon, 2019, 146, 301-312.	10.3	116
554	In-Situ Growth and Graphitization Synthesis of Porous Fe ₃ O ₄ /Carbon Fiber Composites Derived from Biomass as Lightweight Microwave Absorber. ACS Sustainable Chemistry and Engineering, 2019, 7, 5318-5328.	6.7	129
555	The synthesis of core–shell nanowires with intense dielectric and magnetic resonance properties at microwave frequency. Journal of Materials Chemistry C, 2019, 7, 3590-3597.	5.5	13
556	Tailoring Ti ₃ C ₂ T _x nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale, 2019, 11, 6080-6088.	5.6	168
557	Toward the Application of High Frequency Electromagnetic Wave Absorption by Carbon Nanostructures. Advanced Science, 2019, 6, 1801057.	11.2	312
558	Ferromagnetic Co ₂₀ Ni ₈₀ nanoparticles encapsulated inside reduced graphene oxide layers with superior microwave absorption performance. Journal of Materials Chemistry C, 2019, 7, 2943-2953.	5.5	66
559	A Flexible Microwave Shield with Tunable Frequencyâ€Transmission and Electromagnetic Compatibility. Advanced Functional Materials, 2019, 29, 1900163.	14.9	299

#	Article	IF	CITATIONS
560	Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 5874-5880.	2.2	21
561	The Facile Preparation of Flexible Graphene/Carbon Nanotubes Hybrid Papers for Electromagnetic Interference Shielding. Materials Science Forum, 2019, 956, 87-98.	0.3	3
562	Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale, 2019, 11, 23382-23391.	5.6	203
563	Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications. Nanoscale, 2019, 11, 19994-20005.	5.6	42
564	Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs <i>via</i> confined space synthesis. Nanoscale, 2019, 11, 22539-22549.	5.6	41
565	NiFe ₂ O ₄ Nanoparticles Synthesized by Dextrin from Corn-Mediated Sol–Gel Combustion Method and Its Polypropylene Nanocomposites Engineered with Reduced Graphene Oxide for the Reduction of Electromagnetic Pollution. ACS Omega, 2019, 4, 22069-22081.	3.5	42
566	Robustly Magnetic and Conductive Textile with High Electromagnetic Shielding Performance Prepared by Synchronous Thiol–Ene Click Chemistry. Industrial & Engineering Chemistry Research, 2019, 58, 23154-23165.	3.7	12
567	Fe/N-Codoped Hollow Carbonaceous Nanospheres Anchored on Reduced Graphene Oxide for Microwave Absorption. ACS Applied Nano Materials, 2019, 2, 8063-8074.	5.0	40
568	Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale, 2019, 11, 22804-22812.	5.6	106
569	Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Advances, 2019, 9, 29636-29644.	3.6	78
570	Broadband microwave absorber constructed by reduced graphene oxide/La _{0.7} Sr _{0.3} MnO ₃ composites. RSC Advances, 2019, 9, 41817-41823.	3.6	13
571	Enhanced electromagnetic interference shielding with low reflection induced by heterogeneous double-layer structure in BiFeO3/BaFe7(MnTi)2.5O19 composite. Journal of Alloys and Compounds, 2019, 772, 99-104.	5.5	24
572	Nanocrystalline graphite embedded in carbonized hydrochars: An alternative matrix material for microwave absorption. Materials Letters, 2019, 234, 249-252.	2.6	13
573	Multifunctional and Waterâ€Resistant MXeneâ€Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Advanced Functional Materials, 2019, 29, 1806819.	14.9	584
574	Controllable Coating of Polypyrrole on Silicon Carbide Nanowires as a Core–Shell Nanostructure: A Facile Method To Enhance Attenuation Characteristics against Electromagnetic Radiation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2100-2106.	6.7	67
575	Poly(vinylidene fluoride)-based nanocomposite employing oriented Bi2S3 nanorods with double-shell structure for high dielectric performance and loss suppression. Composites Science and Technology, 2019, 171, 118-126.	7.8	17
576	Sandwich CoFe ₂ O ₄ /RGO/CoFe ₂ O ₄ Nanostructures for High-Performance Electromagnetic Absorption. ACS Applied Nano Materials, 2019, 2, 315-324.	5.0	39
577	Three-dimensional carbon nanotube/SiC nanowire composite network structure for high-efficiency electromagnetic wave absorption. Ceramics International, 2019, 45, 6263-6267.	4.8	49

#	Article	IF	CITATIONS
578	Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon, 2019, 144, 433-439.	10.3	153
579	Mechanism of adsorption of tetracycline–Cu multiâ€pollutants by graphene oxide (GO) and reduced graphene oxide (rGO). Journal of Chemical Technology and Biotechnology, 2019, 94, 1176-1186.	3.2	29
580	Microwave dielectric properties of B and N co-doped SiC nanopowders prepared by combustion synthesis. Journal of Alloys and Compounds, 2019, 777, 1039-1043.	5.5	19
581	Facile synthesis of thin coating C/ZnO composites with strong electromagnetic wave absorption. Ceramics International, 2019, 45, 4448-4454.	4.8	24
582	Temperature-responsive and piezoresistive performances of poly(N- isopropylacrylamide)-grafted reduced graphene oxide smart fiber. Composites Science and Technology, 2019, 169, 186-194.	7.8	15
583	2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chemical Engineering Journal, 2019, 359, 1265-1302.	12.7	715
584	Layer by layer 2D MoS2/rGO hybrids: An optimized microwave absorber for high-efficient microwave absorption. Applied Surface Science, 2019, 470, 899-907.	6.1	62
585	Lightweight and Efficient Microwave-Absorbing Materials Based on Loofah-Sponge-Derived Hierarchically Porous Carbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1228-1238.	6.7	111
586	Enhanced Microwave Absorption Properties of Metal Organic Framework (MOF)-Derived Carbonaceous ZnO Incorporated Reduced Graphene Oxide Composites. Nano, 2019, 14, 1950005.	1.0	4
587	Effect of Temperature on Microwave-Absorption Property of Plasma-Sprayed Ti3SiC2/NASICON Coating. Journal of Electronic Materials, 2019, 48, 1506-1510.	2.2	9
588	Effect of fibre directionality on the microwave absorption properties of 3D braided SiCf/SiC composites. Ceramics International, 2019, 45, 7797-7803.	4.8	21
589	Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon, 2019, 145, 61-66.	10.3	237
590	Fabrication, characterization and electromagnetic wave absorption properties of covalently modified reduced graphene oxide based on dinuclear cobalt complex. Composites Part B: Engineering, 2019, 162, 569-579.	12.0	32
591	Three-Dimensional Architecture Reduced Graphene Oxide–LiFePO4 Composite: Preparation and Excellent Microwave Absorption Performance. Inorganic Chemistry, 2019, 58, 2031-2041.	4.0	75
592	Investigation on the optimization, design and microwave absorption properties of BaTb0.2Eu0.2Fe11.6O19/PANI decorated on reduced graphene oxide nanocomposites. Journal of Materials Science, 2019, 54, 6332-6346.	3.7	96
593	Fe3O4/Fe/C composites prepared by a facile thermal decomposition method and their application as microwave absorbers. Journal of Alloys and Compounds, 2019, 784, 1123-1129.	5.5	30
594	Preparation and identification of bare and capped CuFe2O4 nanoparticles using organic template and investigation of the size, magnetism, and polarization on their microwave characteristics. Nano Structures Nano Objects, 2019, 17, 112-122.	3.5	35
595	Temperature dependent dielectric and electric properties of zinc silicate nanorods. Nano Structures Nano Objects, 2019, 17, 123-128.	3.5	16

#	Article	IF	CITATIONS
596	Comparison in dielectric and microwave absorption properties of SiC coated carbon fibers with PyC and BN interphases. Surface and Coatings Technology, 2019, 359, 272-277.	4.8	41
597	Reduced Graphene Oxide/Silicon Nitride Composite for Cooperative Electromagnetic Absorption in Wide Temperature Spectrum with Excellent Thermal Stability. ACS Applied Materials & Interfaces, 2019, 11, 5364-5372.	8.0	64
598	An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance. Journal of Alloys and Compounds, 2019, 776, 43-51.	5.5	54
599	Bead nano-necklace spheres on 3D carbon nanotube scaffolds for high-performance electromagnetic-interference shielding. Chemical Engineering Journal, 2019, 360, 1241-1246.	12.7	34
600	Reduced graphene oxide wrapped cube-like ZnSnO3: As a high-performance microwave absorber. Journal of Alloys and Compounds, 2019, 777, 544-553.	5.5	74
601	Field effect in amorphous carbon nanomesh directly synthesized from phase-separated polymer blends. Carbon, 2019, 142, 285-290.	10.3	6
602	Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon, 2019, 142, 346-353.	10.3	253
603	Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Composites Part B: Engineering, 2019, 160, 131-139.	12.0	86
604	A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@rGO/SiO2 composites. Composites Part B: Engineering, 2019, 166, 187-195.	12.0	158
605	Flower-like Bi0.9La0.1FeO3 microspheres modified by reduced graphene oxide as a thin and strong electromagnetic wave absorber. Journal of Alloys and Compounds, 2019, 781, 723-733.	5.5	14
606	Lightweight NiFe2O4-Reduced Graphene Oxide-Elastomer Nanocomposite flexible sheet for electromagnetic interference shielding application. Composites Part B: Engineering, 2019, 166, 95-111.	12.0	59
607	EMW absorption properties of in-situ growth seamless SiBCN-graphene hybrid material. Ceramics International, 2019, 45, 659-664.	4.8	11
608	Multifunctional broadband microwave absorption of flexible graphene composites. Carbon, 2019, 141, 608-617.	10.3	197
609	Flexible graphene composites with high thermal conductivity as efficient heat sinks in high-power LEDs. Journal Physics D: Applied Physics, 2019, 52, 025103.	2.8	18
610	Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @Âcarbon composites derived from metal-organic frameworks. Carbon, 2019, 142, 20-31.	10.3	352
611	Recent progress in microwave absorption of nanomaterials: composition modulation, structural design, and their practical applications. IET Nanodielectrics, 2019, 2, 2-10.	4.1	30
612	Crystal phase control synthesis of metallic 1T-WS2 nanosheets incorporating single walled carbon nanotubes to construct superior microwave absorber. Journal of Alloys and Compounds, 2020, 815, 152335.	5.5	21
613	Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption. Chemical Engineering Journal, 2020, 382, 122980.	12.7	181

ARTICLE IF CITATIONS # Tailoring of complex permittivity, permeability, and microwave-absorbing properties of CoFe2O4/NG/PMMA nanocomposites through swift heavy ions irradiation. Ceramics International, 4.8 12 614 2020, 46, 317-324. Visible and IR transparent Co-doped SnO2 thin films with efficient electromagnetic shielding 5.5 performance. Journal of Alloys and Compounds, 2020, 815, 152480. Metalâ^'organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for 616 10.3 111 electromagnetic wave absorption. Carbon, 2020, 156, 378-388. â€~Trigger-free' self-healable electromagnetic shielding material assisted by co-doped graphene 34 nanostructures. Chemical Engineering Journal, 2020, 382, 122816. Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group 618 10.3 204 relaxation toward energy storage and green EMI shielding. Carbon, 2020, 157, 80-89. High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon, 2020, 157, 570-577. 619 10.3 Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceramics 620 4.8 101 International, 2020, 46, 1249-1268. Electromagnetic wave absorption enhancement of double-layer structural absorbers based on carbon nanofibers and hollow Co2Y hexaferrite microfibers. Journal of Alloys and Compounds, 2020, 814, 5.5 152302 Overview on nanocarbon sponges in polymeric nanocomposite. Materials Research Innovations, 2020, 622 2.3 7 24, 309-320. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chemical Engineering Journal, 12.7 2020, 379, 122304. Micro-nanospheres assembled with helically coiled nitrogen-doped carbon nanotubes: Fabrication 624 7.0 27 and microwave absorption properties. Materials and Design, 2020, 186, 108290. Plasma-induced FeSiAl@Al2O3@SiO2 coreâ€"shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chemical Engineering Journal, 2020, 384, 123371. Dielectric, thermal and mechanical properties of hybrid PMMA/RGO/Fe2O3 nanocomposites fabricated 626 4.8 35 by in-situ polymerization. Ceramics International, 2020, 46, 5828-5840. X-Band Microwave Analysis and Characterization of Zinc Substituted Nickel Ferrites Prepared by 2.2 Sol–Gel Citrate Route. Journal of Electronic Materials, 2020, 49, 668-680. A thin dielectric ceramic coating with good absorbing properties composed by tungsten carbide and 628 20 5.5alumina. Journal of Alloys and Compounds, 2020, 818, 152851. Enhanced Microwave Absorption of Reduced Graphene Oxide/Ni0.4Zn0.4Co0.2Fe2O4 Composite at 2.2 Ultrathin Thickness. Journal of Electronic Materials, 2020, 49, 1721-1727. Synthesis of 3D flower-like Fe₃S₄ microspheres and quasi-sphere Fe₃S₄-RGO hybrid-architectures with enhanced electromagnetic wave 630 2.6 21 absorption. Nanotechnology, 2020, 31, 085708. 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceramics International, 4.8 2020, 46, 6199-6204.

#	Article	IF	CITATIONS
632	Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon, 2020, 157, 427-436.	10.3	64
633	Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Science Bulletin, 2020, 65, 138-146.	9.0	139
634	Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption. Carbon, 2020, 160, 307-316.	10.3	40
635	Rational design of 2D hierarchically laminated Fe ₃ O ₄ @nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. Journal of Materials Chemistry C, 2020, 8, 2123-2134.	5.5	183
636	Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity. Journal of Materials Chemistry C, 2020, 8, 147-157.	5.5	60
637	Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. Journal of Materials Chemistry C, 2020, 8, 500-509.	5.5	76
638	Design of controlled-morphology NiCo2O4 with tunable and excellent microwave absorption performance. Ceramics International, 2020, 46, 7833-7841.	4.8	68
639	Electromagnetic loss mechanisms in antimony doped tin oxide and reduced graphene oxide multilayer films. Ceramics International, 2020, 46, 9011-9015.	4.8	3
640	Sandwich-like cobalt/reduced graphene oxide/cobalt composite structure presenting synergetic electromagnetic loss effect. Journal of Colloid and Interface Science, 2020, 561, 687-695.	9.4	23
641	3D conductive network wrapped CeO2-x Yolk@Shell hybrid microspheres for selective-frequency microwave absorption. Carbon, 2020, 162, 86-94.	10.3	49
642	Fabrication of C-doped SiC nanocomposites with tailoring dielectric properties for the enhanced electric magnetic wave absorption. Carbon, 2020, 157, 788-795.	10.3	45
643	Rational design of hollow nanosphere \hat{I}^3 -Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. Journal of Alloys and Compounds, 2020, 822, 153570.	5.5	53
644	Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers. ACS Applied Materials & Interfaces, 2020, 12, 4895-4905.	8.0	370
645	Dualâ€direction high thermal conductivity polymer composites with outstanding electrical insulation and electromagnetic shielding performance. Polymer Composites, 2020, 41, 1673-1682.	4.6	14
646	Lightweight and flexible 3D graphene microtubes membrane for high-efficiency electromagnetic-interference shielding. Chemical Engineering Journal, 2020, 387, 124025.	12.7	76
647	N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon, 2020, 159, 357-365.	10.3	185
648	Sandwich-like Magnetic Graphene Papers Prepared with MOF-Derived Fe ₃ O ₄ –C for Absorption-Dominated Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2020, 59, 154-165.	3.7	73
649	Conductive Ag Microspheres with Lychee-like Morphology on the Enhanced Microwave Absorption Properties of MWCNTs. Journal of Physical Chemistry C, 2020, 124, 1190-1196.	3.1	21

#	Article	IF	CITATIONS
650	Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites. Materials Research Bulletin, 2020, 124, 110732.	5.2	54
651	Improving the electromagnetic shielding of fabricated NdFeB particles by a coating thin carbonaceous layer. Chemical Physics Letters, 2020, 739, 137015.	2.6	3
652	In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber. Nano Research, 2020, 13, 72-78.	10.4	36
653	Construction of multiple heterogeneous interface and its effect on microwave absorption of SiBCN ceramics. Ceramics International, 2020, 46, 7823-7832.	4.8	33
654	Fabrication of reduced graphene oxide (RGO) and nanocomposite with thermoplastic polyurethane (TPU) for EMI shielding application. Journal of Materials Science: Materials in Electronics, 2020, 31, 967-974.	2.2	39
655	Magnetic Dodecahedral CoC-Decorated Reduced Graphene Oxide as Excellent Electromagnetic Wave Absorber. Journal of Electronic Materials, 2020, 49, 1204-1214.	2.2	23
656	Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon, 2020, 158, 45-54.	10.3	139
657	Sandwich-like SiCnw/C/Si3N4 porous layered composite for full X-band electromagnetic wave absorption at elevated temperature. Composites Part B: Engineering, 2020, 183, 107629.	12.0	51
658	Fe nanoparticles and CNTs co-decorated porous carbon/graphene foam composite for excellent electromagnetic interference shielding performance. Journal of Alloys and Compounds, 2020, 820, 153108.	5.5	45
659	Tunable Electromagnetic Wave Absorption of Supramolecular Isomerâ€Derived Nanocomposites with Different Morphology. Advanced Materials Interfaces, 2020, 7, 1901820.	3.7	65
660	Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Composites Science and Technology, 2020, 188, 107991.	7.8	73
661	Microwave Materials for Defense and Aerospace Applications. , 2020, , 165-213.		3
662	Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Composites Science and Technology, 2020, 200, 108457.	7.8	59
663	Carbon dot mediated trihybrid formation by reduction of GO and <i>in situ</i> gold nanocluster fabrication: photo-switching behaviour and degradation of chemical warfare agent stimulants. Journal of Materials Chemistry C, 2020, 8, 15735-15741.	5.5	12
664	MOF Induces 2D GO to Assemble into 3D Accordionâ€Like Composites for Tunable and Optimized Microwave Absorption Performance. Small, 2020, 16, e2003905.	10.0	85
665	Superior Microwave Absorption Properties Derived from the Unique 3D Porous Heterogeneous Structure of a CoS@Fe3O4@rGO Aerogel. Materials, 2020, 13, 4527.	2.9	8
666	Orthogonally structured graphene nanointerface for lightweight SiC nanowire-based nanocomposites with enhanced mechanical and electromagnetic-interference shielding properties. Composites Part B: Engineering, 2020, 202, 108381.	12.0	16
667	Recent Advances in the Electromagnetic Interference Shielding of 2D Materials beyond Graphene. ACS Applied Electronic Materials, 2020, 2, 3048-3071.	4.3	59

#	Article	IF	CITATIONS
668	Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 17969-17979.	10.3	64
669	Dielectric Responses in Multilayer C _f /Si ₃ N ₄ as High-Temperature Microwave-Absorbing Materials. , 0, , .		0
670	MOF-Derived Ni1â^'xCox@Carbon with Tunable Nano–Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber. Nano-Micro Letters, 2020, 12, 150.	27.0	222
671	Cations' ordering, magnetic properties and strongly enhanced microwave absorption properties of La2NiMn1-Ru O6. Ceramics International, 2020, 46, 13907-13914.	4.8	5
672	Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon, 2020, 168, 606-623.	10.3	490
673	Assembling Nano–Microarchitecture for Electromagnetic Absorbers and Smart Devices. Advanced Materials, 2020, 32, e2002112.	21.0	259
674	Enhanced electromagnetic wave absorption properties of ionic liquid doped graphene. Journal of Materials Science: Materials in Electronics, 2020, 31, 13273-13283.	2.2	3
675	A kind of tunable Co/C microwave absorber derived from Co-ZIF-9 for lightweight and efficient microwave absorber. Composites Part C: Open Access, 2020, 2, 100039.	3.2	1
676	Collagen Fiber/Fe ₃ O ₄ /Polypyrrole Nanocomposites for Absorption-Type Electromagnetic Interference Shielding and Radar Stealth. ACS Applied Nano Materials, 2020, 3, 11906-11915.	5.0	19
677	Synthesis of reduced graphene oxides with magnetic Co nanocrystals coating for electromagnetic absorption properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 22616-22628.	2.2	3
678	Intercalation: Constructing Nanolaminated Reduced Graphene Oxide/Silica Ceramics for Lightweight and Mechanically Reliable Electromagnetic Interference Shielding Applications. ACS Applied Materials & Interfaces, 2020, 12, 55148-55156.	8.0	25
679	Dielectric properties and microwaves response behavior of polypyrrole-derived N-doped carbon nanotubes. Journal of Materials Science: Materials in Electronics, 2021, 32, 25820-25828.	2.2	1
680	Sustainable wood-based composites for microwave absorption and electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 24267-24283.	10.3	145
681	Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon, 2020, 169, 276-287.	10.3	148
682	Polymer-Assisted Fabrication of Silver Nanowire Cellular Monoliths: Toward Hydrophobic and Ultraflexible High-Performance Electromagnetic Interference Shielding Materials. ACS Applied Materials & Interfaces, 2020, 12, 38584-38592.	8.0	38
683	Reduced Graphene Oxide-CoFe ₂ O ₄ /FeCo Nanoparticle Composites for Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2020, 3, 8939-8948.	5.0	27
684	Electrical conductivity and electromagnetic interference shielding effectiveness of nanoâ€ s tructured carbon assisted poly(methyl methacrylate) nanocomposites. Polymer Engineering and Science, 2020, 60, 2414-2427.	3.1	22
685	Structural, electromagnetic properties and broad microwave absorption bandwidth of SrFe12-2Co Ru O19. Ceramics International, 2020, 46, 22338-22344.	4.8	1

#	Article	IF	CITATIONS
686	Highâ€ŧemperature electromagnetic wave absorption properties of C _f /SiCNFs/Si ₃ N ₄ composites. Journal of the American Ceramic Society, 2020, 103, 6822-6832.	3.8	66
687	ZnO Nanorod-Based Microflowers Decorated with Fe ₃ O ₄ Nanoparticles for Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2020, 3, 8319-8327.	5.0	51
688	Self-healable ZnO@ multiwalled carbon nanotubes (MWCNTs) /DA-PDMS nanocomposite via Diels-Alder chemistry as microwave absorber: A novel multifunctional material. Carbon, 2020, 169, 235-247.	10.3	33
689	Enhanced electromagnetic interference shielding and mechanical properties of segregated polymer/carbon nanotube composite via selective microwave sintering. Composites Science and Technology, 2020, 199, 108355.	7.8	50
690	Combustion synthesis and dielectric properties of B4C/Al2O3/CNTs composite powders. Journal of Materials Science: Materials in Electronics, 2021, 32, 25735-25747.	2.2	4
691	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. ACS Applied Materials & Interfaces, 2020, 12, 50793-50802.	8.0	47
692	Enhanced dielectric, EMI shielding effectiveness, linear and nonlinear optical properties of CdO/SnO2 nanocomposites. Nano Structures Nano Objects, 2020, 24, 100554.	3.5	12
693	Multifunctional Graphene Composites for Electromagnetic Shielding and Thermal Management at Elevated Temperatures. Advanced Electronic Materials, 2020, 6, 2000520.	5.1	78
694	Intrinsic ferromagnetism in 4H-SiC single crystal induced by Al-doping. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	2
695	Structural, thermal, optical and conductive properties of PAM/PVA polymer composite doped with Ag nanoparticles for electrochemical application. Journal of Materials Science: Materials in Electronics, 2020, 31, 16780-16792.	2.2	46
696	Rutile TiO ₂ Nanoparticles Encapsulated in a Zeolitic Imidazolate Framework-Derived Hierarchical Carbon Framework with Engineered Dielectricity as an Excellent Microwave Absorber. ACS Applied Materials & Interfaces, 2020, 12, 48140-48149.	8.0	22
697	Facial synthesis of Al@MnO2 with enhanced microwave absorption and low infrared emissivity. Journal of Materials Science: Materials in Electronics, 2020, 31, 18791-18802.	2.2	11
698	Galvanic Replacement Reaction Involving Core–Shell Magnetic Chains and Orientation‶unable Microwave Absorption Properties. Small, 2020, 16, e2003502.	10.0	322
699	Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance. ACS Applied Materials & Interfaces, 2020, 12, 40859-40869.	8.0	231
700	Natural iron embedded hierarchically porous carbon with thin–thickness and high-efficiency microwave absorption properties. RSC Advances, 2020, 10, 38989-38999.	3.6	6
701	A novel gradient graphene composite with broadband microwave absorption fabricated by fused deposition modelling. Materials Technology, 2022, 37, 280-287.	3.0	5
702	A Facile Synthesis of Novel Amorphous TiO2 Nanorods Decorated rGO Hybrid Composites with Wide Band Microwave Absorption. Nanomaterials, 2020, 10, 2141.	4.1	20
703	Interfacial polarization and tunable dielectric properties of coaxial SiC/CFs materials. Journal of Alloys and Compounds, 2020, 831, 154753.	5.5	5

# 704	ARTICLE Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. Journal of Materials Science and Technology, 2020, 52, 119-126.	IF 10.7	Citations 286
705	Dielectric loss behavior and microwaves absorption properties of TiB ₂ ceramic. Materials Research Express, 2020, 7, 046301.	1.6	8
706	Raman and XPS depth profiling technique to investigate the corrosion behavior of FeSiAl alloy in salt spray environment. Journal of Alloys and Compounds, 2020, 834, 155075.	5.5	33
707	Record-High Transparent Electromagnetic Interference Shielding Achieved by Simultaneous Microwave Fabry–Pérot Interference and Optical Antireflection. ACS Applied Materials & Interfaces, 2020, 12, 26659-26669.	8.0	42
708	Metal-Level Robust, Folding Endurance, and Highly Temperature-Stable MXene-Based Film with Engineered Aramid Nanofiber for Extreme-Condition Electromagnetic Interference Shielding Applications. ACS Applied Materials & Interfaces, 2020, 12, 26485-26495.	8.0	113
709	Ultrawide bandwidth and large-angle electromagnetic wave absorption based on triple-nested helix metamaterial absorbers. Journal of Applied Physics, 2020, 127, .	2.5	22
710	Multifunctional Bulk Hybrid Foam for Infrared Stealth, Thermal Insulation, and Microwave Absorption. ACS Applied Materials & Interfaces, 2020, 12, 28727-28737.	8.0	209
711	Highly flexible, light-weight and mechanically enhanced (Mo2C/PyC)f fabrics for efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105955.	7.6	12
712	Effect of Zn and Ir doping on microwave absorption of SrFe12-2Zn Ir O19. Journal of Magnetism and Magnetic Materials, 2020, 513, 167076.	2.3	9
713	Facile preparation of carbon nanosheet frameworks/magnetic nanohybrids with heterogeneous interface as an excellent microwave absorber. Journal of Alloys and Compounds, 2020, 838, 155586.	5.5	14
714	Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents. Carbon, 2020, 166, 218-226.	10.3	63
715	Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105960.	7.6	144
716	Excellent electromagnetic wave absorption properties of porous core-shell CoO/Co@C nanocomposites derived from a needle-shaped Co(OH)2@ZIF-67 template. Journal of Alloys and Compounds, 2020, 842, 155807.	5.5	47
717	Enhanced microwave absorption from the magnetic-dielectric interface: A hybrid rGO@Ni-doped-MoS2. Materials Research Bulletin, 2020, 130, 110943.	5.2	40
718	Inverse-opal-based carbon composite monoliths for microwave absorption applications. Carbon, 2020, 166, 328-338.	10.3	31
719	A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. Journal of Alloys and Compounds, 2020, 842, 155638.	5.5	50
720	Filler-Free Conducting Polymers as a New Class of Transparent Electromagnetic Interference Shields. ACS Applied Materials & Interfaces, 2020, 12, 28596-28606.	8.0	50
721	Fabrication of the SrFe11MnO19 / CoFe1.9Bi0.1O4 ferrite nanocomposite and investigation the properties of its microwave absorption in X-band. Physica B: Condensed Matter, 2020, 594, 412290.	2.7	3

ARTICLE IF CITATIONS Largeâ \in scale synthesis of hollow carbon fibers with ultraâ \in large diameter by thermally controlled 722 3.8 5 pyrolysis. Journal of the American Ceramic Society, 2020, 103, 5629-5637. Bioinspired Micro Glue Threads Fabricated by Liquid Bridge-to-Solidification as an Effective Sensing 723 Platform. ACS Sensors, 2020, 5, 1977-1986. Development of sulfide, nitrogen co-doping hollow carbon with wideband electromagnetic 724 3.6 5 absorption capability. RSC Advances, 2020, 10, 22570-22577. Fe3O4/carbonized cellulose micro-nano hybrid for high-performance microwave absorber. Carbohydrate Polymers, 2020, 245, 116531. Drawing advanced electromagnetic functional composites with ultra-low filler loading. Chemical 726 12.7 13 Engineering Journal, 2020, 399, 125720. Introduction of Naâ[®] in Reduced Graphene Oxide Prepared From Coconut Shells and Its Magnetic Properties. IEEE Transactions on Magnetics, 2020, 56, 1-6. 2.1 Flexible MXene/EPDM rubber with excellent thermal conductivity and electromagnetic interference 728 2.3 29 performance. Applied Physics A: Materials Science and Processing, 2020, 126, 1. Synthesis and microwave absorption performance of Fe-containing SiOC ceramics derived from 729 5.5 20 silicon oxycarbide. Journal of Alloys and Compounds, 2020, 843, 156029. Single-layer copper particles integrated with a carbon nanotube film for flexible electromagnetic 730 5.5 18 interference shielding. Journal of Materials Chemistry C, 2020, 8, 9945-9953. Superior Microwave Absorption Based on ZnO Capped MnO₂ Nanostructures. Advanced 24 Materials Interfaces, 2020, 7, 2000407. Metalâ€"organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption 732 properties in low frequencies. Journal of Materials Science: Materials in Electronics, 2020, 31, 2.2 18 11700-11713. Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived 166 from metal-organic frameworks with enhanced microwave absorption. Carbon, 2020, 167, 364-377. Graphene and MXene Nanomaterials: Toward Highâ€Performance Electromagnetic Wave Absorption in 734 14.9 356 Gigahertz Band Range. Advanced Functional Materials, 2020, 30, 2000475. A reduced graphene oxide/bi-MOF-derived carbon composite as high-performance microwave absorber with tunable dielectric properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 2.2 11774-11783. Controllable fabrication and multifunctional applications of graphene/ceramic composites. Journal 736 17.4 77 of Advanced Ceramics, 2020, 9, 271-291. High-temperature electromagnetic interference shielding materials., 2020, , 379-390. Hollow Polypyrrole Nanofiber-Based Self-Assembled Aerogel: Large-Scale Fabrication and Outstanding 738 Performance in Electromagnetic Pollution Management. Industrial & amp; Engineering Chemistry 3.7 10 Research, 2020, 59, 7604-7610. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for 739 173 flexible and ultrahigh microwave absorption. Carbon, 2020, 163, 348-359.

#	Article	IF	CITATIONS
740	Magnetized MXene Microspheres with Multiscale Magnetic Coupling and Enhanced Polarized Interfaces for Distinct Microwave Absorption via a Spray-Drying Method. ACS Applied Materials & Interfaces, 2020, 12, 18138-18147.	8.0	108
741	Flexible and Ultrathin Waterproof Cellular Membranes Based on Highâ€Conjunction Metalâ€Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding. Advanced Materials, 2020, 32, e1908496.	21.0	234
742	Heterogeneous iron–nickel compound/RGO composites with tunable microwave absorption frequency and ultralow filler loading. Physical Chemistry Chemical Physics, 2020, 22, 8639-8646.	2.8	51
743	Tuning the microwave absorption capacity of TiP2O7 by composited with biomass carbon. Applied Surface Science, 2020, 515, 145974.	6.1	59
744	Highly flexible and ultrathin Mo2C film via in-situ growth on graphene oxide for electromagnetic shielding application. Carbon, 2020, 163, 254-264.	10.3	36
745	The remarkably improved hydrogen storage performance of MgH ₂ by the synergetic effect of an FeNi/rGO nanocomposite. Dalton Transactions, 2020, 49, 4146-4154.	3.3	46
746	Observation of anomalous phase transition and band gap shrinkage in zinc germanate nanorods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 259, 114602.	3.5	2
747	Nanocelluloseâ€MXene Biomimetic Aerogels with Orientationâ€Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 2020, 7, 2000979.	11.2	303
748	Rational construction of Co@C polyhedrons covalently-grafted on magnetic graphene as a superior microwave absorber. Journal of Alloys and Compounds, 2020, 843, 156031.	5.5	28
749	Microwave Absorption Performance of SiC/ZrC/SiZrOC Hybrid Nanofibers with Enhanced High-Temperature Oxidation Resistance. ACS Sustainable Chemistry and Engineering, 2020, 8, 10490-10501.	6.7	33
750	Porous VGCF@polyaniline nanohybrids with manipulated porous structures for effective microwave absorption. Journal of Materials Science: Materials in Electronics, 2020, 31, 12830-12841.	2.2	6
751	Electromagnetic wave absorbing performances with Fe2O3 nanotubes/reduced graphene oxide composite sponge. Journal of Materials Science: Materials in Electronics, 2020, 31, 11366-11378.	2.2	6
752	Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption. Composites Science and Technology, 2020, 195, 108206.	7.8	73
753	Reduced graphene oxide bubbles with tunable electromagnetic shielding effectiveness. Scripta Materialia, 2020, 187, 407-412.	5.2	11
754	Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels <i>via</i> tuning the carbonization temperature. Journal of Materials Chemistry C, 2020, 8, 5191-5201.	5.5	51
755	Effect of SiC layer on microwave absorption properties of novel three-dimensional interconnected SiC foam with double-layer hollow skeleton. Materials Research Express, 2020, 7, 015073.	1.6	8
756	Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties. Applied Surface Science, 2020, 513, 145778.	6.1	71
757	Electromagnetic property of polymer derived SiC–C solid solution formed at ultra-high temperature. Carbon, 2020, 162, 74-85.	10.3	23

#	Article	IF	CITATIONS
758	Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption. Carbon, 2020, 162, 283-291.	10.3	71
759	Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon, 2020, 162, 157-171.	10.3	189
760	Porous carbon nanorods decorated with graphitic carbon bubbles encapsulated NiSe nanoparticles as an efficient microwave absorber. Ceramics International, 2020, 46, 13752-13761.	4.8	16
761	Exfoliation and defect control of graphene oxide for waterborne electromagnetic interference shielding coatings. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105838.	7.6	37
762	Second Time-Scale Synthesis of High-Quality Graphite Films by Quenching for Effective Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 3121-3128.	14.6	57
763	Microwave absorption properties of SiCN ceramics doped with cobalt nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 3803-3816.	2.2	17
764	Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film. Advanced Materials, 2020, 32, e1907411.	21.0	310
765	A composite with a gradient distribution of graphene and its anisotropic electromagnetic reflection. RSC Advances, 2020, 10, 3314-3318.	3.6	3
766	Thermoplastic polymer composites for EMI shielding applications. , 2020, , 73-99.		10
767	Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 2927-2938.	14.6	254
768	Facile One-Pot Solvothermal Synthesis of the RGO/MWCNT/Fe ₃ O ₄ Hybrids for Microwave Absorption. ACS Omega, 2020, 5, 2899-2909.	3.5	17
769	Micro-computed tomography enhanced cross-linked carboxylated acrylonitrile butadiene rubber with the decoration of new generation conductive carbon black for high strain tolerant electromagnetic wave absorber. Materials Today Communications, 2020, 24, 100989.	1.9	29
770	Light-weight and highly flexible TaC modified PyC fiber fabrics derived from cotton fiber textile with excellent electromagnetic shielding effectiveness. Chemical Engineering Journal, 2020, 387, 124085.	12.7	30
771	Lightweight and Robust Carbon Nanotube/Polyimide Foam for Efficient and Heat-Resistant Electromagnetic Interference Shielding and Microwave Absorption. ACS Applied Materials & Interfaces, 2020, 12, 8704-8712.	8.0	227
772	Nanoinfiltration for Enhancing Microwave Attenuation in Polystyrene–Nanoparticle Composites. ACS Applied Nano Materials, 2020, 3, 1872-1880.	5.0	8
773	Polypyrrole Chains Decorated on CoS Spheres: A Core-Shell Like Heterostructure for High-Performance Microwave Absorption. Nanomaterials, 2020, 10, 166.	4.1	22
774	Carbon fiber-based polymer composite via ceramization toward excellent electromagnetic interference shielding performance and high temperature resistance. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105769.	7.6	30
775	High-efficiency electromagnetic wave absorption of epoxy composites filled with ultralow content of reduced graphene/carbon nanotube oxides. Composites Science and Technology, 2020, 189, 108020.	7.8	44

#	Article	IF	CITATIONS
776	Hydrophobic SiC@C Nanowire Foam with Broad-Band and Mechanically Controlled Electromagnetic Wave Absorption. ACS Applied Materials & 2020, 12, 8555-8562.	8.0	55
777	SiC/rGO Core–Shell Nanowire as a Lightweight, Highly Efficient Gigahertz Electromagnetic Wave Absorber. ACS Applied Electronic Materials, 2020, 2, 473-482.	4.3	32
778	Electromagnetic Shielding of Monolayer MXene Assemblies. Advanced Materials, 2020, 32, e1906769.	21.0	410
779	Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Research, 2020, 13, 477-484.	10.4	135
780	Co/C broad band electromagnetic wave absorption composite derived from preferred precursor ZIF-67: preparation and performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 6418-6434.	2.2	8
781	Preparation and microwave absorption properties of petal CoO/CNFs composites. Journal of Materials Science: Materials in Electronics, 2020, 31, 7606-7615.	2.2	8
782	Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Composites Communications, 2020, 19, 90-98.	6.3	73
783	Laterally compressed graphene foam/acrylonitrile butadiene styrene composites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 133, 105887.	7.6	42
784	Tannic Acid-Mediated <i>In Situ</i> Controlled Assembly of NiFe Alloy Nanoparticles on Pristine Graphene as a Superior Oxygen Evolution Catalyst. ACS Applied Energy Materials, 2020, 3, 3966-3977.	5.1	29
785	Environment-Stable CoxNiy Encapsulation in Stacked Porous Carbon Nanosheets for Enhanced Microwave Absorption. Nano-Micro Letters, 2020, 12, 102.	27.0	218
786	Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes. Carbon, 2020, 165, 150-162.	10.3	52
787	In-situ deposition of three-dimensional graphene on selective laser melted copper scaffolds for high performance applications. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105904.	7.6	22
788	Scalable Manufacturing of Free‣tanding, Strong Ti ₃ C ₂ T <i>_x</i> MXene Films with Outstanding Conductivity. Advanced Materials, 2020, 32, e2001093.	21.0	613
789	CoFe2O4/Fe magnetic nanocomposite: Exchange coupling behavior and microwave absorbing property. Ceramics International, 2020, 46, 17903-17916.	4.8	42
790	Investigating the effect of honeycomb structure composite on microwave absorption properties. Composites Communications, 2020, 19, 182-188.	6.3	38
791	Electromagnetic wave absorption performance of Graphene/SiC nanowires based on graphene oxide. Journal of Alloys and Compounds, 2020, 835, 155172.	5.5	28
792	The influence of MWCNTs on microwave absorption properties of Co/C and Ba-Hexaferrite hybrid nanocomposites. Synthetic Metals, 2020, 263, 116369.	3.9	22
793	Conjugate Microporous Polymer-Derived Conductive Porous Carbon Nanoparticles with Narrow Pore-Size Distribution for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2020, 3, 4553-4561.	5.0	19

#	Article	IF	CITATIONS
794	Polymerâ€derived Co ₂ Si@SiC/C/SiOC/SiO ₂ /Co ₃ O ₄ nanoparticles: Microstructural evolution and enhanced EM absorbing properties. Journal of the American Ceramic Society, 2020, 103, 6764-6779.	3.8	14
795	Correlating the gradient nitrogen doping and electromagnetic wave absorption of graphene at gigahertz. Journal of Alloys and Compounds, 2021, 854, 157113.	5.5	20
796	Optimization of FeNi/SWCNT composites by a simple co-arc discharge process to improve microwave absorption performance. Journal of Alloys and Compounds, 2021, 852, 156712.	5.5	36
797	Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon, 2021, 172, 516-528.	10.3	85
798	MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chemical Engineering Journal, 2021, 405, 126626.	12.7	103
799	Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. Journal of Materials Science and Technology, 2021, 68, 61-69.	10.7	224
800	Microwave absorption properties of polymer-derived SiCN(CNTs) composite ceramics. Ceramics International, 2021, 47, 1294-1302.	4.8	46
801	Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption. Journal of Colloid and Interface Science, 2021, 582, 177-186.	9.4	64
802	Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption. Journal of Colloid and Interface Science, 2021, 583, 321-330.	9.4	79
803	Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding. Journal of Materials Science and Technology, 2021, 72, 154-161.	10.7	45
804	Electrospinning and in-situ hierarchical thermal treatment to tailor C–NiCo2O4 nanofibers for tunable microwave absorption. Carbon, 2021, 171, 953-962.	10.3	185
805	Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chemical Engineering Journal, 2021, 405, 126676.	12.7	63
806	Facile fabrication of ultrathin graphene film with ultrahigh electrical conductivity and superb electromagnetic interference shielding effectiveness. Journal of Materials Chemistry C, 2021, 9, 214-222.	5.5	19
807	Sandwich-like sulfur-free expanded graphite/CoNi hybrids and their synergistic enhancement of	5.5	24
	microwave absorption. Journal of Alloys and Compounds, 2021, 862, 158005.		
808	Multi-scale structural nitrogen-doped rGO@CNTs composites with ultra-low loading towards microwave absorption. Applied Surface Science, 2021, 538, 147943.	6.1	41
808 809	Multi-scale structural nitrogen-doped rGO@CNTs composites with ultra-low loading towards	6.1 3.1	41
	Multi-scale structural nitrogen-doped rGO@CNTs composites with ultra-low loading towards microwave absorption. Applied Surface Science, 2021, 538, 147943. Effects of mineral fillers addition and preparation method on the morphology and electrical conductivity of epoxy/multiwalled carbon nanotube nanocomposites. Polymer Engineering and		

ARTICLE IF CITATIONS Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior 812 10.3 118 microwave absorption. Carbon, 2021, 173, 918-931. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption 164 and excellent thermal infrared properties. Carbon, 2021, 173, 501-511. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective 814 10.7 32 bandwidth. Journal of Materials Science and Technology, 2021, 76, 166-173. Significantly improved dielectric properties of bio-compatible starch/reduced graphene oxide 3.9 nanocompósites. Synthetic Metals, 2021, 271, 116624. Mechanically strong, thermally conductive and flexible graphene composite paper for exceptional 816 electromagnetic interference shielding. Materials Science and Engineering B: Solid-State Materials 3.5 19 for Advanced Technology, 2021, 263, 114893. Enhanced electromagnetic wave absorption properties of Ni magnetic coating-functionalized SiC/C nanofibers synthesized by electrospinning and magnetron sputtering technology. Chemical Physics 2.6 Letters, 2021, 763, 138230. Two birds with one stone: Graphene oxide@sulfonated polyaniline nanocomposites towards high-performance electromagnetic wave absorption and corrosion protection. Composites Science and Technology, 2021, 204, 108630. 818 7.8 68 A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon, 2021, 174, 662-672. 10.3 98 A scalable three-dimensional porous î»-MnO2/rGO/Ca-alginate composite electroactive film with 820 potential-responsive ion-pumping effect for selective recovery of lithium ions. Separation and 7.9 29 Purification Technology, 2021, 259, 118111. Smart MXene-Based Janus films with multi-responsive actuation capability and high electromagnetic 10.3 interference shielding performances. Carbon, 2021, 175, 594-602. Recent progress in morphological engineering of carbon materials for electromagnetic interference 822 10.3120 shielding. Carbon, 2021, 172, 569-596. Engineering Dielectric Loss of FeCo/Polyvinylpyrrolidone Coreâ€Shell Nanochains@Graphene Oxide Composites with Excellent Microwave Absorbing Properties. Advanced Engineering Materials, 2021, 23, 3.5 Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly 824 3.3 6 Efficient Electromagnetic Wave Absorbing Materials. Chinese Physics Letters, 2021, 38, 015201. Thin copper hybrid structures by spray-assisted layer by layer chemical deposition on fabric surfaces for electromagnetic interference shielding. Colloids and Interface Science Communications, 2021, 40, 4.1 100365. Double Layer Material Designed to Reduce Electromagnetic Radiation with Carbon Black, Silicon 826 2 0.3Carbide and Manganese Zinc Ferrite. Journal of Aerospace Technology and Management, 0, 13, . Molten salt assisted synthesis and electromagnetic wave absorption properties of (V_{1â[^]xâ[^]y}Ti_xCr_y)₂AlC solid solutions. Journal of 23 Materials Chemistry C, 2021, 9, 7697-7705. Shielding Performance of Materials Under the Excitation of High-Intensity Transient Electromagnetic 828 4.2 4 Pulse. IEEE Access, 2021, 9, 49697-49704. Multiple interface-induced evolution of electromagnetic patterns for efficient microwave absorption 829 at low thickness. Inorganic Chemistry Frontiers, 2021, 8, 1810-1818.

#	Article	IF	CITATIONS
830	CNT@NiO/natural rubber with excellent impedance matching and low interfacial thermal resistance toward flexible and heat-conducting microwave absorption applications. Journal of Materials Chemistry C, 2021, 9, 869-880.	5.5	59
831	Growth of NiAlâ€Layered Double Hydroxide on Graphene toward Excellent Anticorrosive Microwave Absorption Application. Advanced Science, 2021, 8, 2002658.	11.2	227
832	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry A, 2021, 9, 8896-8949.	10.3	184
833	Absorption-enhanced EMI shielding using silver decorated three-dimensional porous architected reduced graphene oxide in polybenzoxazine composites. New Journal of Chemistry, 2021, 45, 16939-16948.	2.8	8
834	Constructing a nitrogen-doped carbon and nickel composite derived from a mixed ligand nickel-based a metal–organic framework toward adjustable microwave absorption. Nanoscale, 2021, 13, 9204-9216.	5.6	42
835	Broadening the absorption bandwidth by novel series–parallel cross convex–concave structures. Journal of Materials Chemistry C, 2021, 9, 5411-5424.	5.5	21
836	Enhanced microwave absorption performance of light weight N-doped carbon nanoparticles. RSC Advances, 2021, 11, 7954-7960.	3.6	6
837	Opportunities and challenges in microwave absorption of nickel–carbon composites. Physical Chemistry Chemical Physics, 2021, 23, 20795-20834.	2.8	29
838	A TTF–TCNQ complex: an organic charge-transfer system with extraordinary electromagnetic response behavior. Journal of Materials Chemistry C, 2021, 9, 3316-3323.	5.5	89
839	Hybrid structure of MWCNT/ferrite and GO incorporated composites for microwave shielding properties and their practical applications. RSC Advances, 2021, 11, 9775-9787.	3.6	20
840	Preparation iron-nickel/graphene heterogeneous composites for enhanced microwave absorption performance via electrochemical exfoliation/deposition technique. Materials Chemistry and Physics, 2021, 260, 124155.	4.0	5
841	High-Performance Multifunctional Carbon–Silicon Carbide Composites with Strengthened Reduced Graphene Oxide. ACS Nano, 2021, 15, 2880-2892.	14.6	44
842	First principles study on electronic structure, ferromagnetism and dielectric properties of α-Fe, FeSiAl and Fe ₃ Si. Journal of Physics: Conference Series, 2021, 1777, 012036.	0.4	0
843	High electromagnetic interference shielding effectiveness in MgO composites reinforced by aligned graphene platelets. Journal of the American Ceramic Society, 2021, 104, 2868-2878.	3.8	8
844	Electromagnetic-wave shielding promulgation of cluster like FZ@MWCNT composite incorporated in GO matrices by polarization relaxation and potential degradation. Materials Characterization, 2021, 172, 110884.	4.4	9
845	Functionalized carbonized monarch butterfly wing scales (FCBW) ornamented by β-Co(OH) ₂ nanoparticles: an investigation on its microwave, magnetic, and optical characteristics. Nanotechnology, 2021, 32, 195201.	2.6	13
846	Enhancement of electromagnetic wave absorption in MnFe2O4 nano-hollow spheres. Journal of Applied Physics, 2021, 129, .	2.5	15
847	Sustainable Double-Network Structural Materials for Electromagnetic Shielding. Nano Letters, 2021, 21, 2532-2537.	9.1	83

#	Article	IF	CITATIONS
848	Reduced Graphene Oxide/Fe ₃ O ₄ /Polyaniline Ternary Composites as a Superior Microwave Absorber in the Shielding of Electromagnetic Pollution. ACS Omega, 2021, 6, 9164-9175.	3.5	49
849	Effects of La3+ or Ti4+ doping on dielectric and microwave absorption performance of CaMnO3 in the 8.2–18ÂGHz. Journal of Materials Science: Materials in Electronics, 2021, 32, 10329-10338.	2.2	6
850	1D Electromagnetic-Gradient Hierarchical Carbon Microtube via Coaxial Electrospinning Design for Enhanced Microwave Absorption. ACS Applied Materials & Interfaces, 2021, 13, 15939-15949.	8.0	54
851	A simple and reliable route to prepare high-temperature microwave high-performing absorbers. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	2
852	Improving the flexibility of graphene nanosheets films by using aramid nanofiber framework. Composites Part A: Applied Science and Manufacturing, 2021, 142, 106265.	7.6	17
853	Preparation and characterization of an effective microwave absorbent: RGO-MoS2-Fe3O4 nanocomposite. Journal of Materials Science: Materials in Electronics, 2021, 32, 9640-9649.	2.2	5
854	Reconfigurable liquid electromagnetic metamaterials driven by magnetic fields. Applied Physics Express, 2021, 14, 041002.	2.4	7
855	Synthesis and Enhanced Electro-Magnetic Wave Absorbing Properties of Reduced Graphene Oxide-Fe3O4-Polyaniline Ternary Nano-Composites. Science of Advanced Materials, 2021, 13, 473-480.	0.7	1
856	Structural, fabrication and enhanced electromagnetic wave absorption properties of reduced graphene oxide (rGO)/zirconium substituted cobalt ferrite (Co0·5ZrO·5Fe2O4) nanocomposites. Physica B: Condensed Matter, 2021, 605, 412784.	2.7	23
857	Controllable synthesis of SiC wrapped LDHs to reinforce microwave absorption and exothermic properties of styrene-butadiene-styrene (SBS) polymer modified asphalt. Materials Research Express, 2021, 8, 035501.	1.6	3
858	Electrically Conductive Ti ₃ C ₂ T _{<i>x</i>} MXene/Polypropylene Nanocomposites with an Ultralow Percolation Threshold for Efficient Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2021, 60, 4342-4350.	3.7	49
859	MoS2-Decorated/Integrated Carbon Fiber: Phase Engineering Well-Regulated Microwave Absorber. Nano-Micro Letters, 2021, 13, 114.	27.0	79
860	Developing MXenes from Wireless Communication to Electromagnetic Attenuation. Nano-Micro Letters, 2021, 13, 115.	27.0	115
861	Environmentally Friendly and Multifunctional Shaddock Peel-Based Carbon Aerogel for Thermal-Insulation and Microwave Absorption. Nano-Micro Letters, 2021, 13, 102.	27.0	257
862	MOFâ^'Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption. Composites Part B: Engineering, 2021, 211, 108643.	12.0	83
863	Hollow graphene fibres of highly ordered structure via coaxial wet spinning with application to multi-functional flexible wearables. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126193.	4.7	9
864	Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon, 2021, 174, 638-646.	10.3	134
865	Polypyrrole/γ-Fe2O3/g-C3N4 nanocomposites for high-performance electromagnetic wave absorption. Synthetic Metals, 2021, 274, 116716.	3.9	28

#	Article	IF	CITATIONS
866	Conductive MXene/melamine sponge combined with 3D printing resin base prepared as an electromagnetic interferences shielding switch. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106238.	7.6	28
867	The microwave absorption properties of residual carbon from coal gasification fine slag. Fuel, 2021, 290, 120050.	6.4	49
868	Thorny trunk-like structure of reduced graphene oxide/HKUST-1 MOF for enhanced EMI shielding capability. Ceramics International, 2021, 47, 10027-10034.	4.8	13
869	Hollow Engineering to Co@Nâ€Doped Carbon Nanocages via Synergistic Protectingâ€Etching Strategy for Ultrahigh Microwave Absorption. Advanced Functional Materials, 2021, 31, 2102812.	14.9	488
870	Interfacial and defect polarization in MXene-like laminated spinel for electromagnetic wave absorption application. Journal of Colloid and Interface Science, 2021, 588, 813-825.	9.4	53
871	Chemically Room Temperature Crosslinked Polyvinyl Alcohol (PVA) with Anomalous Microwave Absorption Characteristics. Macromolecular Rapid Communications, 2021, 42, e2000763.	3.9	9
872	Thermally insulating robust carbon composite foams with high EMI shielding from natural cotton. Journal of Materials Science and Technology, 2021, 94, 113-122.	10.7	28
873	Off/on switchable smart electromagnetic interference shielding aerogel. Matter, 2021, 4, 1735-1747.	10.0	114
874	Fabrication and characterization of PVC based flexible nanocomposites for the shielding against EMI, NIR, and thermal imaging signals. Results in Physics, 2021, 24, 104183.	4.1	24
875	Design, Fabrication and Characteristics of Eco-Friendly Microwave Absorbing Materials: A Review. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2022, 39, 756-774.	3.2	14
876	Lightweight and flexible poly(ether-block-amide)/multiwalled carbon nanotube composites with porous structure and segregated conductive networks for electromagnetic shielding applications. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106356.	7.6	28
877	Sandwich-structural Ni/Fe3O4/Ni/cellulose paper with a honeycomb surface for improved absorption performance of electromagnetic interference. Carbohydrate Polymers, 2021, 260, 117840.	10.2	32
878	Rational design and fabrication of lightweight porous polyimide composites containing polyaniline modified graphene oxide and multiwalled carbon nanotube hybrid fillers for heat-resistant electromagnetic interference shielding. Polymer, 2021, 224, 123742.	3.8	30
879	Lignin doped epoxy acrylate sandwich electromagnetic shielding material synergized with Fe ₃ O ₄ and CNT. Journal of Dispersion Science and Technology, 2022, 43, 2209-2217.	2.4	1
881	Enhanced dielectric, thermal stability, and energy storage properties in compositionally engineered lead-free ceramics at morphotropic phase boundary. Ceramics International, 2021, 47, 17220-17233.	4.8	9
882	Microwave absorption characteristic of a double-layer X-band absorber based on MWCNTs/La0.6Sr0.4Mn0.5Fe0.5O4 coated with PEDOT polymer. Ceramics International, 2021, 47, 17736-17744.	4.8	25
883	Effects of Impedance and Dielectric Loss on the Electromagnetic Shielding Performance of an Ultrathin Carbon Nanotube Buckypaperâ€Reinforced Silicon Carbide Nanocomposite. Advanced Engineering Materials, 2021, 23, 2001487.	3.5	6
884	Hydrothermal synthesis of micro-flower like morphology aluminum-doped MoS2/rGO nanohybrids for high efficient electromagnetic wave shielding materials. Ceramics International, 2021, 47, 15648-15660.	4.8	15

#	Article	IF	CITATIONS
885	Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon, 2021, 177, 304-331.	10.3	239
886	Iron (II) complex supported on graphene nanosheet: An efficient and heterogeneous catalyst for epoxidation of alkenes. Applied Surface Science Advances, 2021, 4, 100074.	6.8	2
887	Adjustable ironâ€containing SiBCN ceramics with highâ€ŧemperature microwave absorption and antiâ€oxidation properties. Journal of the American Ceramic Society, 2021, 104, 5244-5256.	3.8	12
888	Flexible PTFE/MXene/PI soft electrothermal actuator with electromagnetic-interference shielding property. Chemical Engineering Journal, 2021, 414, 128883.	12.7	65
889	Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106376.	7.6	126
890	Effect of reduced graphene oxide content on electromagnetic and mechanical properties of monolayer coated composites. Journal of the Textile Institute, 0, , 1-8.	1.9	0
891	Ultrathin nickel oxide nanosheets: Highly exposed Ni3+-doped high-energy {110} facets. Materials Research Bulletin, 2021, 139, 111251.	5.2	9
892	Recent Advances in Design and Fabrication of Nanocomposites for Electromagnetic Wave Shielding and Absorbing. Materials, 2021, 14, 4148.	2.9	31
893	A nanostructure of reduced graphene oxide and NiO/ZnO hollow spheres toward attenuation of electromagnetic waves. Materials Chemistry and Physics, 2021, 266, 124530.	4.0	13
894	Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chemical Engineering Journal, 2021, 415, 129054.	12.7	60
895	Free-Standing Working Electrodes for Supercapacitors Based on Composite Polymer Nanofibers and Functionalized with Graphene Oxide. Journal of Electronic Materials, 2021, 50, 5599-5611.	2.2	5
896	Nitrogen-doped graphene oxide and lanthanum-doped cobalt ferrite composites as high-performance microwave absorber. Journal of Materials Science: Materials in Electronics, 2021, 32, 21685-21696.	2.2	3
897	Vertical Graphene Nanosheet/Polyimide Composite Films for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2021, 4, 7461-7470.	5.0	16
898	Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption. Journal of Materials Science: Materials in Electronics, 2021, 32, 26151.	2.2	1
899	Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. Journal of Alloys and Compounds, 2021, 870, 159442.	5.5	59
900	Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. Journal of Advanced Ceramics, 2021, 10, 832-842.	17.4	78
901	Preparation of SiC Nanowire/Carbon Fiber Composites with Enhanced Electromagnetic Wave Absorption Performance. Advanced Engineering Materials, 2021, 23, 2100434.	3.5	26
902	Effect of filler loading and thickness parameters on the microwave absorption characteristic of double-layered absorber based on MWCNT/BaTiO3/pitted carbonyl iron composite. Ceramics International, 2021, 47, 19538-19545.	4.8	21

#	Article	IF	Citations
" 903	Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption. Journal of Colloid and Interface Science, 2021, 593, 370-379.	9.4	86
904	High electromagnetic interference shielding effectiveness achieved by multiple internal reflection and absorption in polybenzoxazine/graphene foams. Journal of Applied Polymer Science, 2021, 138, 51318.	2.6	9
905	Boosted multi-polarization from silicate-glass@rGO doped with modifier cations for superior microwave absorption. Journal of Colloid and Interface Science, 2021, 593, 96-104.	9.4	20
906	Electromagnetic absorber converting radiation for multifunction. Materials Science and Engineering Reports, 2021, 145, 100627.	31.8	169
907	Tuning electromagnetic absorption properties of transition metal oxides by hydrogenation with nascent hydrogen. Chemical Engineering Journal, 2021, 417, 127980.	12.7	18
908	Rational design of ZnO/ZnO nanocrystal-modified rGO foam composites with wide-frequency microwave absorption properties. Ceramics International, 2021, 47, 33584-33595.	4.8	9
909	Tunable electromagnetic interference shielding ability of MXene/chitosan/silver nanowire sandwich films. Functional Materials Letters, 2021, 14, 2151041.	1.2	11
910	Flexible conductive nanocomposite PEDOT:PSS/Te nanorod films for superior electromagnetic interference (EMI) shielding: A new exploration. Journal of Industrial and Engineering Chemistry, 2021, 100, 233-247.	5.8	25
911	Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2TX MXene/polymer films. Carbon, 2021, 181, 130-142.	10.3	46
912	Electromagnetic shielding performance of SiC/graphitic carbon-SiCN porous ceramic nanocomposites derived from catalyst assisted single-source-precursors. Journal of the European Ceramic Society, 2021, 41, 4806-4814.	5.7	21
913	Titanium Carbide MXene Shows an Electrochemical Anomaly in Water-in-Salt Electrolytes. ACS Nano, 2021, 15, 15274-15284.	14.6	56
914	Ultrafast Growth of Large Area Graphene on Si Wafer by a Single Pulse Current. Molecules, 2021, 26, 4940.	3.8	4
915	Multifunctional lithium Aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption. Chemical Engineering Journal, 2021, 418, 129429.	12.7	48
916	Hollow Ni/C microsphere@graphene foam with dual-spatial and porous structure on the microwave absorbing performance. Journal of Alloys and Compounds, 2021, 873, 159811.	5.5	32
917	Synergistic effects of yolk-shell and nanopore architectures on the microwave absorption performance of Co@void@C nanocomposites. Journal of Magnetism and Magnetic Materials, 2021, 531, 167954.	2.3	8
918	Ti ₃ C ₂ T _x nanohybrids: tunable local conductive network and efficient EMI shielding performance for multifunctional materials and devices. Nanotechnology, 2021, 32, 442002.	2.6	2
919	Electromagnetic Shielding Effectiveness of an Absorber-Like Carbonyl Iron-FeNi Double-Layer Composite. Journal of Materials Engineering and Performance, 2022, 31, 643-650.	2.5	2
920	Silver-Doped Cadmium Selenide/Graphene Oxide-Filled Cellulose Acetate Nanocomposites for Photocatalytic Degradation of Malachite Green toward Wastewater Treatment. ACS Omega, 2021, 6, 23129-23138.	3.5	28

#	Article	IF	CITATIONS
921	Boosted Interfacial Polarization from the Multidimensional Core–Shell–Flat Heterostructure CNP@PDA@GO/rGO for Enhanced Microwave Absorption. Industrial & Engineering Chemistry Research, 2021, 60, 12343-12352.	3.7	18
922	Mechanical and Electromagnetic Shielding Properties of Carbon Foam. Advanced Engineering Materials, 2021, 23, 2100452.	3.5	21
923	Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	11
924	Lightweight graphene encapsulated with polyaniline for excellent electromagnetic shielding performance in X-band (8.2–12.4ÂGHz). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115227.	3.5	23
925	Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nature Communications, 2021, 12, 4655.	12.8	84
926	Structural, double Jonscher response andÂnon-Debye-type relaxor behavior of Ba0.75Sr0.25Ti0.9Zn0.2O3 ceramic. Journal of Materials Science: Materials in Electronics, 2021, 32, 23333-23348.	2.2	5
927	Constructing and optimizing hollow bird-nest-patterned C@Fe3O4 composites as high-performance microwave absorbers. Journal of Magnetism and Magnetic Materials, 2021, 532, 167990.	2.3	30
928	Sunshine foaming of compact Ti3C2T MXene film for highly efficient electromagnetic interference shielding and energy storage. Carbon, 2021, 182, 124-133.	10.3	27
929	Conversion of silicon carbide fibers to continuous graphene fibers by vacuum annealing. Carbon, 2021, 182, 435-444.	10.3	12
930	Rational construction of porous N-doped Fe2O3 films on porous graphene foams by molecular layer deposition for tunable microwave absorption. Journal of Colloid and Interface Science, 2021, 598, 45-55.	9.4	23
931	High temperature metamaterial enhanced electromagnetic absorbing coating prepared with alumina ceramic. Journal of Alloys and Compounds, 2021, 874, 159822.	5.5	22
932	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Advanced Materials, 2021, 33, e2103495.	21.0	62
933	Facile synthesis of Ti3C2TX–MXene composite with polyhedron Fe3O4/ carbonyl iron toward microwave absorption. Journal of Materials Science: Materials in Electronics, 2021, 32, 23762-23775.	2.2	5
934	Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Composites Part B: Engineering, 2021, 220, 108985.	12.0	95
935	Preparation and characterization of nanocomposites of MoS2 nanoflowers and palygorskite nanofibers as lightweight microwave absorbers. Applied Clay Science, 2021, 211, 106169.	5.2	10
936	Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties. Carbon, 2021, 182, 484-496.	10.3	53
937	Genetic Dielectric Genes Inside 2D Carbonâ€Based Materials with Tunable Electromagnetic Function at Elevated Temperature. Small Structures, 2021, 2, 2100104.	12.0	157
938	High Frequency Electromagnetic Shielding by Biochar-Based Composites. Nanomaterials, 2021, 11, 2383.	4.1	25

#	Article	IF	CITATIONS
939	Dual-functional carbonized loofah@GNSs-CNTs reinforced by cyanate ester composite with highly efficient electromagnetic interference shielding and thermal management. Composites Part B: Engineering, 2021, 223, 109132.	12.0	35
940	Thermally-tailoring dielectric "genes―in graphene-based heterostructure to manipulate electromagnetic response. Carbon, 2021, 184, 136-145.	10.3	139
941	Construction of MOF-Derived Co/C shell on carbon fiber surface to enhance multi-polarization effect towards efficient broadband electromagnetic wave absorption. Carbon, 2021, 184, 571-582.	10.3	69
942	Sustainable paper templated ultrathin, light-weight and flexible niobium carbide based films against electromagnetic interference. Carbon, 2021, 183, 929-939.	10.3	9
943	Architectured interfacial interlocking structure for enhancing mechanical properties of Al matrix composites reinforced with graphene nanosheets. Carbon, 2021, 183, 685-701.	10.3	30
944	Tailoring high-electroconductivity carbon cloth coated by nickel cobaltate/nickel oxide: A case of transition from microwave shielding to absorption. Carbon, 2021, 183, 138-149.	10.3	62
945	Hybrid shell of MXene and reduced graphene oxide assembled on PMMA bead core towards tunable thermoconductive and EMI shielding nanocomposites. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106574.	7.6	56
946	Synthesizing CNx heterostructures on ferromagnetic nanoparticles for improving microwave absorption property. Applied Surface Science, 2021, 564, 150480.	6.1	5
947	Salt template-steered sintering synthesis of flaky C/Co composites for ultra-wide band microwave assimilation. Journal of Alloys and Compounds, 2021, 879, 160486.	5.5	4
948	Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Composites Part B: Engineering, 2021, 222, 109067.	12.0	133
949	A hierarchical carbon Fiber@MXene@ZnO core-sheath synergistic microstructure for efficient microwave absorption and photothermal conversion. Carbon, 2021, 183, 872-883.	10.3	75
950	Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon, 2021, 184, 562-570.	10.3	74
951	Synthesis and microwave absorbing properties of N-doped carbon microsphere composites with concavo-convex surface. Carbon, 2021, 184, 195-206.	10.3	35
952	Electromagnetic interference shielding properties of hierarchical core-shell palladium-doped MoS2/CNT nanohybrid materials. Ceramics International, 2021, 47, 27586-27597.	4.8	5
953	Molybdenum disulfide/nanodiamonds hybrid for high electromagnetic absorption. Diamond and Related Materials, 2021, 118, 108535.	3.9	3
954	3D-printed impedance gradient Al2O3 ceramic with in-situ growing needle-like SiC nanowires for electromagnetic wave absorption. Ceramics International, 2021, 47, 31990-31999.	4.8	28
955	Graphene oxide-assisted Co-sintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance. Carbon, 2021, 185, 186-197.	10.3	36
956	Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption. Journal of Materials Science and Technology, 2021, 92, 51-59.	10.7	45

#	Article	IF	CITATIONS
957	Facile synthesis of lightweight 3D hierarchical NiCo2O4 nanoflowers/reduced graphene oxide composite foams with excellent electromagnetic wave absorption performance. Journal of Materials Science and Technology, 2021, 91, 187-199.	10.7	33
958	Fabrication of flower-like surface Ni@Co3O4 nanowires anchored on RGO nanosheets for high-performance microwave absorption. Applied Surface Science, 2021, 565, 150483.	6.1	35
959	Integrated hierarchical macrostructures of flexible basalt fiber composites with tunable electromagnetic interference (EMI) shielding and rapid electrothermal response. Composites Part B: Engineering, 2021, 224, 109193.	12.0	46
960	Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber. Journal of Colloid and Interface Science, 2021, 602, 834-845.	9.4	34
961	Encapsulating FeCo alloys by single layer graphene to enhance microwave absorption performance. Materials Today Nano, 2021, 16, 100138.	4.6	18
962	One pot synthesis and electromagnetic interference shielding behavior of reduced graphene oxide nanocomposites decorated with Ni0.5Co0.5Fe2O4 nanoparticles. Journal of Alloys and Compounds, 2021, 887, 161472.	5.5	32
963	Structural, magnetic and microwave properties of Ba1-xNdxFe12O19. Journal of Magnetism and Magnetic Materials, 2021, 539, 168400.	2.3	10
964	Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers. Journal of Materials Science and Technology, 2021, 94, 239-246.	10.7	45
965	Magnetic TiN composites for efficient microwave absorption: Nanoribbons vs nanoparticles. Composites Communications, 2021, 28, 100919.	6.3	27
966	Probing on crystallographic structural and surface morphology of hydrothermally synthesized MoS2 nanoflowers consisting of nanosheets. Applied Surface Science Advances, 2021, 6, 100167.	6.8	11
967	Synthesis of hollow spherical MoS2@Fe3O4-GNs ternary composites with enhanced microwave absorption performance. Applied Surface Science, 2021, 569, 150812.	6.1	29
968	Recent progress in two-dimensional materials for microwave absorption applications. Chemical Engineering Journal, 2021, 425, 131558.	12.7	71
969	Enhanced X-band wave dissipation performance in bilayer absorber composed of bare epoxy resin and epoxy resin filled with [CaTiO3/ZnFe2O4]@C nanocomposite. Journal of Magnetism and Magnetic Materials, 2021, 539, 168385.	2.3	11
970	Strong microwave absorption by dipole polarization and widened magnetic resonance in doped SrFe12-2Zn Ru O19. Journal of Magnetism and Magnetic Materials, 2022, 541, 168559.	2.3	7
971	Dielectric absorption correlated to ferromagnetic behavior in (Cr, Ni)-codoped 4H–SiC for microwave applications. Journal of Molecular Structure, 2022, 1248, 131462.	3.6	31
972	Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 100, 206-215.	10.7	48
973	Morphological evolution of nanosheets-stacked spherical ZnO for preparation of GO-Zn/ZnO ternary nanocomposite: A novel electrochemical platform for nanomolar detection of antihistamine promethazine hydrochloride. Journal of Alloys and Compounds, 2022, 890, 161768.	5.5	15
974	A temperature-responsive composite for adaptive microwave absorption. Chemical Engineering Journal, 2022, 427, 131746.	12.7	25

#	Article	IF	CITATIONS
975	A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. Journal of Colloid and Interface Science, 2022, 605, 193-203.	9.4	79
976	Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chemical Engineering Journal, 2022, 428, 131167.	12.7	95
977	Facile fabrication of indium tin oxide/nanoporous carbon composites with excellent low-frequency microwave absorption. Journal of Alloys and Compounds, 2021, 889, 161636.	5.5	28
978	Magnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shielding. Journal of Materials Science and Technology, 2022, 96, 11-20.	10.7	27
979	Natural wood templated hierarchically cellular NbC/Pyrolytic carbon foams as Stiff, lightweight and High-Performance electromagnetic shielding materials. Journal of Colloid and Interface Science, 2022, 606, 1543-1553.	9.4	19
980	Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chemical Engineering Journal, 2022, 427, 130940.	12.7	108
981	A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. Journal of Colloid and Interface Science, 2022, 605, 13-22.	9.4	144
982	Graphite/nickel nanoparticle composites prepared by soft chemical methods. Journal of Physics and Chemistry of Solids, 2022, 160, 110349.	4.0	1
983	Fish bone-derived interconnected carbon nanofibers for efficient and lightweight microwave absorption. SN Applied Sciences, 2021, 3, 1.	2.9	1
984	Recent progress in two-dimensional materials for terahertz protection. Nanoscale Advances, 2021, 3, 1515-1531.	4.6	18
985	Highly anisotropic thermal and electrical conductivities of nylon composite papers with the integration of strength and toughness. Journal of Materials Chemistry A, 2021, 9, 22982-22993.	10.3	11
986	Morphology-induced dielectric enhancement in polymer nanocomposites. Nanoscale, 2021, 13, 10933-10942.	5.6	27
987	Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based MOFs towards lightweight and efficient microwave absorbers. Nanoscale, 2021, 13, 3119-3135.	5.6	94
988	Accurately Engineering 2 <i>D</i> /2D/0D Heterojunction In Hierarchical Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures for Electromagnetic Wave Absorption and Shielding. ACS Applied Materials & Interfaces, 2021, 13, 5866-5876.	8.0	56
989	Fire/heat-resistant, anti-corrosion and folding Ti ₂ C ₃ T _{<i>x</i>} MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. Journal of Materials Chemistry C, 2021, 9, 10425-10434.	5.5	45
990	Microwave Materials for Defense and Aerospace Applications. , 2019, , 1-48.		1
991	Electromagnetic Interference (EMI) Shielding Effectiveness (SE) of Polymer-Carbon Composites. Springer Series on Polymer and Composite Materials, 2019, , 339-368.	0.7	10
992	Investigation of the conductive network formation of polypropylene/graphene nanoplatelets composites for different platelet sizes. Journal of Materials Science, 2017, 52, 13103-13119.	3.7	31

#	Article	IF	CITATIONS
993	Microwave Absorption of Crystalline Fe/MnO@C Nanocapsules Embedded in Amorphous Carbon. Nano-Micro Letters, 2020, 12, 57.	27.0	141
994	Synthesis and electromagnetic property of Li 0.35 Zn 0.3 Fe 2.35 O 4 grafted with polyaniline fibers. Applied Surface Science, 2017, 420, 154-160.	6.1	18
995	Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework. Chemical Engineering Journal, 2017, 326, 945-955.	12.7	244
996	2D-layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption. Ceramics International, 2020, 46, 17085-17092.	4.8	50
997	Combination effect of carbon nanofiber and ketjen carbon black hybrid nanofillers on mechanical, electrical, and electromagnetic interference shielding properties of chlorinated polyethylene nanocomposites. Composites Part B: Engineering, 2020, 197, 108071.	12.0	51
998	Effects of the degree of oxidation of pitch fibers on their stabilization and carbonization behaviors. New Carbon Materials, 2020, 35, 722-730.	6.1	8
999	Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheet/Metal–Organic Framework Composites for Microwave Absorption. ACS Applied Nano Materials, 2021, 4, 691-701.	5.0	72
1000	Toward Architected Nanocomposites: MXenes and Beyond. ACS Nano, 2021, 15, 21-28.	14.6	28
1001	Preparation of cobalt sulfide nanoparticles wrapped into reduced graphene oxide with tunable microwave absorption performance. Journal of Applied Physics, 2020, 127, .	2.5	19
1002	Percolation threshold of multiwall carbon nanotube-PVDF composite for electromagnetic wave propagation. Nano Express, 2020, 1, 010060.	2.4	12
1003	Harvesting the Vibration Energy with BaTiO3@Graphene for the Piezocatalytic Degradation of Methylene Blue. Journal of Environmental Science and Engineering Technology, 2020, 8, 84-91.	0.1	4
1004	MXene/wood-based composite materials with electromagnetic shielding properties. Holzforschung, 2021, 75, 494-499.	1.9	11
1005	Preparation and Electromagnetic Absorption Performance of Ni-RGO. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 567.	1.3	3
1006	Hybrid Carbon Nanomaterials for Electromagnetic Interference Shielding. Composites Research, 2016, 29, 138-144.	0.1	1
1007	Large-scale preparation of graphene oxide film and its application for electromagnetic interference shielding. RSC Advances, 2021, 11, 33302-33308.	3.6	7
1008	Highly self-healable and recyclable graphene nanocomposites composed of a Diels–Alder crosslinking/P3HT nanofibrils dual-network for electromagnetic interference shielding. Journal of Materials Chemistry C, 2021, 9, 15622-15640.	5.5	5
1009	Organic–inorganic hybrid-reinforced flexible and robust 2D papers for high-efficiency microwave-absorbing films. Journal of Materials Chemistry A, 2021, 9, 24503-24509.	10.3	14
1010	Regulating pH value synthesis of NiCo2O4 with excellent electromagnetic wave absorbing performance. Journal of Materials Science: Materials in Electronics, 2021, 32, 26059-26073.	2.2	9

#	Article	IF	CITATIONS
1011	Magnetic Energy Morphing, Capacitive Concept for Ni _{0.3} Zn _{0.4} Ca _{0.3} Fe ₂ O ₄ Nanoparticles Embedded in Graphene Oxide Matrix, and Studies of Wideband Tunable Microwave Absorption. ACS Applied Materials & amp; Interfaces, 2021, 13, 46967-46979.	8.0	23
1012	Enhanced Microwave Absorption of Shape Anisotropic Fe ₃ O ₄ Nanoflakes and Their Composites. Advanced Engineering Materials, 2022, 24, 2100790.	3.5	10
1013	MXene nanohybrids: Excellent electromagnetic properties for absorbing electromagnetic waves. Ceramics International, 2022, 48, 1484-1493.	4.8	17
1014	Coral-like carbon-based composite derived from layered structure Co-MOF-71 with outstanding impedance matching and tunable microwave absorption performance. Journal of Materials Science and Technology, 2022, 108, 10-17.	10.7	28
1015	Synthesis and characterization of nanoparticles reinforced epoxy based advanced radar absorbing composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 28007-28018.	2.2	9
1016	D-xylose-derived carbon microspheres modified by CuFe2O4 nanoparticles with excellent microwave absorption properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 26726-26739.	2.2	4
1017	Co, Ni-coordinated ZIF derived nitrogen doped carbon network with encapsulated alloy for microwave absorption. Diamond and Related Materials, 2021, 120, 108669.	3.9	5
1018	Laser-assisted transformation of a phenol-based resin to high quality graphene-like powder for supercapacitor applications. Chemical Engineering Journal, 2022, 430, 133179.	12.7	16
1019	Effect of boron content on the microstructure and electromagnetic properties of SiBCN ceramics. Ceramics International, 2022, 48, 3037-3050.	4.8	8
1020	In Situ Synthesis of CoCeS _{<i>x</i>} Bimetallic Sulfide Nanoparticles on a Biâ€Pyrene Terminated Molecular Wire Modified Graphene Surface for Supercapacitors. Chemistry - A European Journal, 2021, 27, 17402-17411.	3.3	9
1021	Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sensors, 2021, 6, 3841-3881.	7.8	45
1022	Ultrafine Cellulose Nanofiberâ€Assisted Physical and Chemical Crossâ€Linking of MXene Sheets for Electromagnetic Interference Shielding. Small Methods, 2021, 5, e2100889.	8.6	59
1023	Chapter 7 Cement-Based Electromagnetic Functional Materials. , 2016, , 273-344.		0
1024	Electrical transport properties and related mechanism of single SnO ₂ nanowire device. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 246801.	0.5	2
1025	Interfacial interaction and Schottky contact of two-dimensional WS ₂ /graphene heterostructure. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 097101.	0.5	9
1026	Green Photocatalyst for Diverge Applications. Environmental Chemistry for A Sustainable World, 2020, , 1-18.	0.5	1
1027	Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 238102-238102.	0.5	0
1028	Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation. Journal of Materials Science and Technology, 2022, 108, 236-243.	10.7	61

		CITATION REPORT		
#	Article		IF	CITATIONS
1029	Highly Improved Microwave Absorbing and Mechanical Properties in Cold Sintered ZnC Incorporating Graphene Oxide. Journal of the European Ceramic Society, 2022, 42, 993) by 3-1000.	5.7	31
1030	Regulating pyrolysis strategy to construct CNTs-linked porous cubic Prussian blue anal derivatives for lightweight and broadband microwave absorption. Chemical Engineering 2022, 430, 132879.	ogue g Journal,	12.7	105
1031	MXene-decorated nanofiber film based on layer-by-layer assembly strategy for high-per electromagnetic interference shielding. Applied Surface Science, 2022, 574, 151552.	formance	6.1	15
1032	Growth of magnetic metals on carbon microspheres with synergetic dissipation abilitie microwave absorption. Journal of Materials Science and Technology, 2022, 107, 100-1		10.7	60
1033	Theoretical study on Schottky regulation of WSe ₂ /graphene heterostruct nonmetallic elements. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 117101.	ure doped with	0.5	4
1034	Facile synthesis of CoFe2O4/reduced graphene oxide nanocomposites with adjusting p morphology for efficient microwave absorption. Journal of Magnetism and Magnetic M 546, 168903.		2.3	7
1035	Dielectric properties of calamansi (Citrus microcarpa) under highâ€ŧemperature treat Food Science, 2021, 86, 5375.	ment. Journal of	3.1	0
1036	In Situ Dual-Template Method of Synthesis of Inverse-Opal Co ₃ O ₄ @TiO ₂ with Wideband Microwave Abso Chemistry, 2021, 60, 18455-18465.	rption. Inorganic	4.0	15
1037	Mechanically Robust Flexible Multilayer Aramid Nanofibers and MXene Film for High-Pe Electromagnetic Interference Shielding and Thermal Insulation. Nanomaterials, 2021, 1		4.1	9
1038	Excellent microwave absorption of Fe3O4/Ag composites attained by synergy of considered loss and dielectric loss. Ceramics International, 2022, 48, 5824-5830.	derable magnetic	4.8	24
1039	Dielectric regulation of ultralight EG/bimetallic sulfide hybrids with boosted electromag absorption properties. Composites Communications, 2022, 29, 101007.	inetic wave	6.3	4
1040	Lightweight Cellulose Nanofibril/Reduced Graphene Oxide Aerogels with Unidirectional Efficient Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2021,	Pores for 8, 2101437.	3.7	25
1041	Lightweight N-doped C/ZnO composites prepared from zinc-based acrylate resin precu electromagnetic wave absorption at 2–18ÂCHz. Journal of Alloys and Compounds, 2	rsors for 022, 896, 162810.	5.5	6
1042	Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-perform microwave absorption. Carbon, 2022, 188, 442-452.	nance	10.3	44
1043	Controllable synthesis of flower-like ZnO modified by CuO nanoparticles/N-RGO compo efficient microwave absorption properties. Ceramics International, 2022, 48, 6948-695		4.8	13
1044	Additive manufacturing of nanocellulose/polyborosilazane derived CNFs-SiBCN ceramic for ultra-broadband electromagnetic absorption. Chemical Engineering Journal, 2022, 4		12.7	30
1045	Impedance amelioration of coaxial-electrospun TiO2@Fe/C@TiO2 vesicular carbon mic dielectric-magnetic synergy toward highly efficient microwave absorption. Chemical En Journal, 2022, 433, 133640.		12.7	25
1046	Nanocellulose-polysilazane single-source-precursor derived defect-rich carbon nanofibe nanocomposites with excellent electromagnetic absorption performance. Carbon, 202		10.3	17

#	Article	IF	CITATIONS
1047	Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 111, 57-65.	10.7	37
1048	Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chemical Engineering Journal, 2022, 431, 133908.	12.7	15
1049	Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. Journal of Colloid and Interface Science, 2022, 609, 33-42.	9.4	48
1050	Dataâ€driven methodology to realize strong and broadband microwave absorption properties of polymerâ€fly ash cenosphere composite. Journal of Applied Polymer Science, 2022, 139, 51981.	2.6	6
1051	Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers. Nano-Micro Letters, 2022, 14, 11.	27.0	169
1052	Systematic fabrication and electromagnetic performance of porous biomass carbon/ferrite nanocomposites. Journal of Alloys and Compounds, 2022, 896, 163048.	5.5	12
1053	Ti ₃ C ₂ T <i>_x</i> MXene Nanosheets Sandwiched between Ag Nanowire-Polyimide Fiber Mats for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2021, 4, 13976-13985.	5.0	27
1054	Rational Design of Three-Dimensional Boron and Nitrogen Co-Doped Carbon Nanotubes Encapsulated with Nickel Nanoparticles Composite for Enhance Electromagnetic Wave Absorbing. SSRN Electronic Journal, 0, , .	0.4	0
1055	Design of porous FeNi-carbon nanosheets by a double-effect synergistic strategy for electromagnetic wave absorption. Carbon, 2022, 190, 125-135.	10.3	36
1056	3D porous biomass-derived carbon materials: biomass sources, controllable transformation and microwave absorption application. Green Chemistry, 2022, 24, 647-674.	9.0	85
1057	Hierarchically porous biochar derived from orthometric integration of wooden and bacterial celluloses for high-performance electromagnetic wave absorption. Composites Science and Technology, 2022, 218, 109184.	7.8	18
1058	Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance. Carbon, 2022, 188, 376-384.	10.3	52
1059	Anisotropic electromagnetic wave absorption performance of Polyimide/multi-walled carbon nanotubes composite aerogels with aligned slit-like channels structure. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106781.	7.6	34
1060	Dielectric and microwave absorption properties of Na _{0.5} Bi _{0.5} TiO ₃ –SrTiO ₃ system. Ferroelectrics, 2021, 583, 252-263.	0.6	0
1061	Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2022, 5, 2328-2338.	21.1	31
1062	Solutionâ€gated transistor based on electrochemically reduced graphene oxide channel. Journal of Materials Science, 2022, 57, 4652-4663.	3.7	1
1063	Porous carbons for environment remediation. , 2022, , 541-802.		0
1064	Magnetic nanoparticles and its composites toward the remediation of electromagnetic interference pollution. , 2022, , 677-703.		Ο

#	Article	IF	CITATIONS
1065	A new trial for lightweight MXene hybrid aerogels with high electromagnetic interference shielding performance. Journal of Materials Science: Materials in Electronics, 2022, 33, 4093-4103.	2.2	8
1066	Co Nanoparticles Encapsulated in Carbon Nanotubes Decorated Carbon Aerogels Toward Excellent Microwave Absorption. Industrial & Engineering Chemistry Research, 2022, 61, 1684-1693.	3.7	6
1067	The smallest anions, induced porosity and graphene interfaces in C12A7:e ^{â^'} electrides: a paradigm shift in electromagnetic absorbers and shielding materials. Journal of Materials Chemistry C, 2022, 10, 969-982.	5.5	10
1068	Ni@CNTs/Al ₂ O ₃ Ceramic Composites with Interfacial Solder Strengthen the Segregated Network for High Toughness and Excellent Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2022, 14, 4443-4455.	8.0	20
1069	Hierarchically assembled carbon microtube@SiC nanowire/Ni nanoparticle aerogel for highly efficient electromagnetic wave absorption and multifunction. Carbon, 2022, 191, 227-235.	10.3	45
1070	Monodisperse MnO nanoparticles in situ grown on reduced graphene oxide via hydrophobic interaction for excellent electromagnetic wave absorption. Journal of Materials Research, 2022, 37, 2175-2184.	2.6	3
1071	Preparation and enhancement microwave absorption properties of carbon fibers coated with CoNi alloy by solvothermal. Journal of Materials Science: Materials in Electronics, 2022, 33, 4510-4522.	2.2	8
1072	Electromagnetic interference shielding materials: recent progress, structure design, and future perspective. Journal of Materials Chemistry C, 2021, 10, 44-72.	5.5	101
1073	Mechanism of hopping conduction in Be–Fe–Al–Te–O semiconducting glasses and glass–ceramics. Journal of Materials Science, 2022, 57, 1633-1647.	3.7	5
1074	FeCoNiCr _{0.4} Cu _{<i>X</i>} High-Entropy Alloys with Strong Intergranular Magnetic Coupling for Stable Megahertz Electromagnetic Absorption in a Wide Temperature Spectrum. ACS Applied Materials & Interfaces, 2022, 14, 7012-7021.	8.0	27
1075	Natural wood-based metamaterials for highly efficient microwave absorption. Holzforschung, 2022, 76, 368-379.	1.9	2
1076	Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review. Composites Part B: Engineering, 2022, 233, 109652.	12.0	108
1077	Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Progress in Polymer Science, 2022, 126, 101505.	24.7	105
1078	Room temperature self-healing CIP/PDA/MWCNTs composites based on imine reversible covalent bond as microwave absorber. Reactive and Functional Polymers, 2022, 172, 105179.	4.1	8
1079	Tailoring the internal structure of porous copper film via size-controlled copper nanosheets for electromagnetic interference shielding. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 278, 115611.	3.5	5
1080	Dielectric loss and electromagnetic absorption performance study of 1T/2H-MoS2/Mo2S3 nanocomposites with different ratios. Current Applied Physics, 2022, 36, 51-62.	2.4	4
1081	Rational design of three-dimensional boron and nitrogen co-doped carbon nanotubes encapsulated with nickel nanoparticles composite for enhance electromagnetic wave absorbing. Applied Surface Science, 2022, 583, 152505.	6.1	10
1082	Carbon@SiC(SiCnws)-Sc2Si2O7 ceramics with multiple loss mediums for improving electromagnetic shielding performance. Journal of the European Ceramic Society, 2022, 42, 2274-2281.	5.7	31

#	Article	IF	CITATIONS
1083	Mode properties of elliptical dielectric waveguide with nested eccentric hollow cylinder coated with graphene. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 108101.	0.5	2
1084	A journey of thermoplastic elastomer nanocomposites for electromagnetic shielding applications: from bench to transitional research. Materials Advances, 2022, 3, 2670-2691.	5.4	25
1085	Design of 3D lightweight Ti3C2T MXene porous film with graded holes for efficient electromagnetic interference shielding performance. Ceramics International, 2022, 48, 14578-14586.	4.8	14
1086	Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding. Nano-Micro Letters, 2022, 14, 59.	27.0	135
1087	A novel double 3D continuous phase composite with ultra-broadband wave absorption from gigahertz to UV–vis-NIR for extremely cold environment. Chemical Engineering Journal, 2022, 436, 135220.	12.7	11
1088	A Novel Double 3d Continuous Phase Composites with Ultra-Broadband Wave Absorption from Gigahertz to Uv-Vis-Nir for Extremely Cold Environment. SSRN Electronic Journal, 0, , .	0.4	0
1089	Aperture control in polymer-based composites with hybrid core–shell spheres for frequency-selective electromagnetic interference shielding. Journal of Materials Chemistry A, 2022, 10, 8751-8760.	10.3	15
1090	A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands. Journal of Materials Chemistry A, 2022, 10, 7705-7717.	10.3	35
1091	Metal–Organic Framework-Derived Core–Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption. ACS Applied Materials & Interfaces, 2022, 14, 10577-10587.	8.0	64
1092	Development of high-efficient double-layer microwave absorbers based on 3D cabbage-like CoFe2O4 and cauliflower-like polypyrrole. Ceramics International, 2022, 48, 16374-16385.	4.8	12
1093	Pitfalls in Electromagnetic Skin-Depth Determination. Journal of Electronic Materials, 2022, 51, 1893-1899.	2.2	7
1094	Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth. Nano-Micro Letters, 2022, 14, 63.	27.0	108
1095	Ultrafast Growth of Highly Conductive Graphene Films by a Single Subsecond Pulse of Microwave. ACS Nano, 2022, 16, 6676-6686.	14.6	3
1096	All-Ceramic SiC Aerogel for Wide Temperature Range Electromagnetic Wave Attenuation. ACS Applied Materials & Interfaces, 2022, 14, 15360-15369.	8.0	26
1097	Recent Progress in the Application of Cellulose in Electromagnetic Interference Shielding Materials. Macromolecular Materials and Engineering, 2022, 307, .	3.6	16
1098	A review of recent advances on the properties of polypropylene - carbon nanotubes composites. Journal of Thermoplastic Composite Materials, 2023, 36, 3737-3770.	4.2	8
1099	Two-dimensional Ti3C2Tx/carbonized wood metacomposites with weakly negative permittivity. Advanced Composites and Hybrid Materials, 2022, 5, 2369-2377.	21.1	24
1100	Magnetic and microwave absorbing properties of La0.7Sr0.3MnO3 nanoparticles. AIP Advances, 2022, 12, .	1.3	4

#	Article	IF	CITATIONS
1101	Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances. Nano-Micro Letters, 2022, 14, 77.	27.0	91
1102	Ultra-high conductive graphene assembled film for millimeter wave electromagnetic protection. Science Bulletin, 2022, 67, 1122-1125.	9.0	12
1103	Functional Polyaniline/MXene/Cotton Fabrics with Acid/Alkali-Responsive and Tunable Electromagnetic Interference Shielding Performances. ACS Applied Materials & Interfaces, 2022, 14, 12703-12712.	8.0	58
1104	Layers-to-layers assembled graphene-boron nitride for polymer composites with enhanced thermal stability and dielectric constant at low loss. Journal of Materials Science: Materials in Electronics, 2022, 33, 10734-10751.	2.2	1
1105	Flexible Electromagnetic Shielding Material Using Multi-Walled Carbon Nanotube Coated Cotton Fabric. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12, 479-488.	2.5	1
1106	Graphite-like carbon nitride (g-C3N4): A promising microwave absorber. Ceramics International, 2022, 48, 16461-16476.	4.8	19
1107	Dual gradient direct ink writing of functional geopolymer-based carbonyl-iron/graphene composites for adjustable broadband microwave absorption. Ceramics International, 2022, 48, 9277-9285.	4.8	22
1108	Introducing graphite nanosheets to change the microscopic morphology of CoS nanoparticles to obtain ultra-thin and excellent electromagnetic wave absorption performance. Diamond and Related Materials, 2022, 124, 108913.	3.9	5
1109	Superior <scp>EMI</scp> shielding effectiveness with enhanced electrical conductivity at low percolation threshold of flexible novel ethylene methyl acrylate/singleâ€walled carbon nanotube nanocomposites. Polymer Engineering and Science, 2022, 62, 2047-2060.	3.1	5
1110	Flexible magnetoelectric coupling nanocomposite films with multilayer network structure for dual-band EMI shielding. Composites Science and Technology, 2022, 222, 109387.	7.8	14
1111	Binary hybrid filler composite formulations of surface modified Fe–Si–Al alloys for multifunctional EMI shielding and thermal conduction. Materials Chemistry and Physics, 2022, 284, 126024.	4.0	3
1112	PAN/W18O49/Ag nanofibrous membrane for high-efficient and multi-band electromagnetic-interference shielding with broad temperature tolerance and good thermal isolating capacity. Composites Part B: Engineering, 2022, 236, 109793.	12.0	13
1113	Achieving multiband compatible and mechanical tuning absorber using edge topological defect-induced graphene plasmon. Carbon, 2022, 192, 1-13.	10.3	8
1114	Ni/NiO/SiO2/C nanofibers with strong wideband microwave absorption and robust hydrophobicity. Applied Surface Science, 2022, 588, 152964.	6.1	32
1115	In-situ hydrothermal synthesis of NiCo alloy particles@hydrophilic carbon cloth to construct corncob-like heterostructure for high-performance electromagnetic wave absorbers. Journal of Colloid and Interface Science, 2022, 616, 823-833.	9.4	22
1116	Synergistically enhancing electromagnetic interference shielding performance and thermal conductivity of polyvinylidene fluoride-based lamellar film with MXene and graphene. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106945.	7.6	37
1117	Electromagnetic interference shielding films with enhanced absorption using double percolation of poly (methyl methacrylate) beads and CIP/MWCNT/TPU composite channel. Materials Today Communications, 2022, 31, 103401.	1.9	6
1118	Ultrasonically assisted solvohydrothermal synthesis of nanocrystalline Zn-Ni ferrite advanced material for EMI shielding. Journal of Alloys and Compounds, 2022, 906, 164199.	5.5	23

#	Article	IF	CITATIONS
1119	Carbon/Carbon-Ag-Fe3O4 dual shell hollow microspheres: High efficient pyrolysis synthesis and broad band microwave absorption. Journal of Alloys and Compounds, 2022, 905, 164254.	5.5	13
1120	Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding. Carbohydrate Polymers, 2022, 286, 119306.	10.2	34
1121	Energy-dependent carrier scattering at weak localizations leading to decoupling of thermopower and conductivity. Carbon, 2022, 194, 62-71.	10.3	3
1122	Biomass derived graphene-like multifold carbon nanosheets with excellent electromagnetic wave absorption performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128826.	4.7	26
1123	One-pot synthesis of Cu@porous nitrogen–doped carbon (Cu@PNC) for high-efficiency electromagnetic wave absorption. Journal of Alloys and Compounds, 2022, 908, 164620.	5.5	7
1124	Preparation, Characterization, and Terahertz Spectroscopy Characteristics of Reduced Graphene Oxide-Doped Epoxy Resin Coating. Coatings, 2021, 11, 1503.	2.6	3
1125	Study of dielectric behavior of ternary composites of epoxy-barium titanate with iron oxide and ferrite in the band (DC-12.5 GHz). Inorganic and Nano-Metal Chemistry, 0, , 1-9.	1.6	6
1126	Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2022, 5, 1078-1089.	21.1	118
1127	Magnetic nanomaterials for electromagnetic interference shielding application. , 2022, , 607-622.		0
1128	Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions. Materials Today Physics, 2022, 24, 100695.	6.0	11
1129	Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption. Nano-Micro Letters, 2022, 14, 102.	27.0	156
1130	Construction of Si3N4/SiO2/SiC–Y2Si2O7 composite ceramics with gradual impedance matching structure for high-temperature electromagnetic wave absorption. Ceramics International, 2022, 48, 23172-23181.	4.8	18
1131	Formation of Sn filled CNTs nanocomposite: Study of their magnetic, dielectric properties and enhanced microwave absorption performance at gigahertz frequencies. Ceramics International, 2022, 48, 21961-21971.	4.8	5
1132	CeFe ₂ O ₄ Nanoparticle/Graphene Oxide Composites with Synergistic Superhydrophobicity and Microwave Absorption. ACS Applied Nano Materials, 2022, 5, 6513-6522.	5.0	9
1133	Ti3C2Tx-coated diatom frustules-derived porous SiO2 composites with high EMI shielding and mechanical properties. Ceramics International, 2022, 48, 22845-22853.	4.8	3
1134	Superhydrophobic Ti3C2Tx MXene/aramid nanofiber films for high-performance electromagnetic interference shielding in thermal environment. Chemical Engineering Journal, 2022, 446, 136945.	12.7	34
1135	Electromagnetic Interference Shielding by Reduced Graphene Oxide Foils. ACS Applied Nano Materials, 2022, 5, 6792-6800.	5.0	13
1136	Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Research, 2022, 15, 6751-6760.	10.4	100

#	Article	IF	CITATIONS
1137	Digital Light Processing 3D-Printed Ceramic Metamaterials for Electromagnetic Wave Absorption. Nano-Micro Letters, 2022, 14, 122.	27.0	61
1138	Construction of string-bead-like spatial conductive network derived from CoFe Prussian blue analogue and carbon nanotube composite for excellent electromagnetic wave absorption. Carbon, 2022, 196, 290-303.	10.3	32
1139	Hierarchical bath lily-like hollow microspheres constructed by graphene and Fe3O4 nanoparticles with enhanced broadband and highly efficient low-frequency microwave absorption. Carbon, 2022, 196, 280-289.	10.3	16
1140	Single source precursor derived SiBCNHf ceramic with enhanced highâ€ŧemperature microwave absorption and antioxidation. Journal of Materials Science and Technology, 2022, 126, 215-227.	10.7	21
1141	Fine-tuning the electromagnetic parameters of 2D conjugated metal-organic framework semiconductors for anti-electromagnetic interference in the Ku band. Chemical Engineering Journal, 2022, 444, 136574.	12.7	19
1142	Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. Journal of Materials Science and Technology, 2022, 127, 48-60.	10.7	86
1143	Electromagnetic wave absorbing properties of coconut shell-derived nanocomposite. Carbon, 2022, 196, 354-364.	10.3	26
1144	Multi-interfacial magnetic carbon nanotubes encapsulated hydrangea-like NiMo/MoC/N-doped carbon composites for efficient microwave absorption. Carbon, 2022, 196, 828-839.	10.3	54
1145	Progress of 2D MXenes based composites for efficient electromagnetic interference shielding applications: A review. Synthetic Metals, 2022, 287, 117095.	3.9	15
1146	Broadband electromagnetic wave absorbing performance by designing the foam structure and double-layer for cement-based composites containing MWCNTs. Cement and Concrete Composites, 2022, 131, 104595.	10.7	17
1147	Enhanced dielectric and electrostatic energy density of electronic conductive organic-metal oxide frameworks at ultra-high frequency. Carbon, 2022, 196, 749-762.	10.3	13
1148	Multilayer intercalation: MXene/cobalt ferrite electromagnetic wave absorbing two-dimensional materials. Journal of Physics and Chemistry of Solids, 2022, 168, 110797.	4.0	11
1149	Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties. Journal of Materials Science and Technology, 2022, 128, 148-159.	10.7	23
1150	Polymer nanocomposites for defense applications. , 2022, , 373-414.		0
1151	Improvement of electromagnetic interference properties of 3D few-layer graphene composite by means of freeze-drying. Ceramics International, 2022, 48, 26107-26115.	4.8	2
1152	Hierarchical Engineering of Doubleâ€5helled Nanotubes toward Heteroâ€Interfaces Induced Polarization and Microscale Magnetic Interaction. Advanced Functional Materials, 2022, 32, .	14.9	161
1153	Light-weight, low-loading and large-sheet reduced graphene oxide for high-efficiency microwave absorber. Carbon, 2022, 196, 1024-1034.	10.3	24
1154	Green and facile production of high-quality graphene from graphite by the intercalation and decomposition of oxalic acid. Materials Letters, 2022, 323, 132567.	2.6	0

#	Article	IF	CITATIONS
1155	Asymmetric multilayered MXene-AgNWs/cellulose nanofiber composite films with antibacterial properties for high-efficiency electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 129, 181-189.	10.7	40
1156	Salt Template Assisted Synthesis of Fe@Graphene for High-Performance Electromagnetic Wave Absorption. SSRN Electronic Journal, 0, , .	0.4	0
1157	The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2022, 5, 1658-1698.	21.1	94
1158	Effect of particle size on dielectric and microwave absorption properties of starch-derived micron-carbon spheres. Journal of Materials Science: Materials in Electronics, 2022, 33, 16488-16500.	2.2	3
1159	Tailoring of EMI shielding properties of polyaniline with MWCNTs embedment in X-band (8.2–12.4ÂGHz). Journal of Physics and Chemistry of Solids, 2022, 169, 110867.	4.0	12
1160	Absorption-dominated electromagnetic shielding and excellent thermal conduction properties of poly(vinylidene fluoride)/SnBi58/Co-C composites with layered structure. Journal of Alloys and Compounds, 2022, 921, 165998.	5.5	4
1161	Coatings Comprised of Graphene Oxide Decorated with Helical Polypyrrole Nanofibers for Microwave Absorption and Corrosion Protection. ACS Applied Nano Materials, 2022, 5, 9780-9791.	5.0	10
1162	Microwave Absorption Performance of Core–Shell rGO/Ni _{0.5} Co _{0.5} Fe ₂ O ₄ @PEDOT Composite: An Effective Approach to Reduce Electromagnetic Wave Pollution. Advanced Engineering Materials, 2022, 24	3.5	13
1163	A laminated carbon nanotubes/silicon boron carbonitride film for high-efficiency electromagnetic interference shielding with oxidation resistance. Carbon, 2022, 197, 65-75.	10.3	11
1164	Synthesis of tetragonal copper-nickel ferrite decorated nitrogen-doped reduced graphene oxide composite as a thin and high-efficiency electromagnetic wave absorber. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129411.	4.7	14
1165	Synergistic Enhancement of Thermal Conduction and Microwave Absorption of Silica Films Based on Graphene /C Hiral Ppy/Al2o3 Ternary Aerogels. SSRN Electronic Journal, 0, , .	0.4	0
1166	Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2022, 5, 1158-1167.	21.1	53
1167	Influence of interfacial aspects on electromagnetic interference shielding performance of graphene reinforced nanocomposites: an overview. Composite Interfaces, 2022, 29, 1373-1396.	2.3	4
1168	Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Research, 2022, 15, 8546-8554.	10.4	54
1169	Microstructure Design of High-Entropy Alloys Through a Multistage Mechanical Alloying Strategy for Temperature-Stable Megahertz Electromagnetic Absorption. Nano-Micro Letters, 2022, 14, .	27.0	26
1170	Flexible MXene/Cellulose Nanofiber Aerogels for Efficient Electromagnetic Absorption. ACS Applied Nano Materials, 2022, 5, 9771-9779.	5.0	23
1171	A Review on Grapheneâ€Based Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption. Advanced Functional Materials, 2022, 32, .	14.9	165
1172	Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption. Carbon, 2022, 197, 466-475.	10.3	63

ARTICLE IF CITATIONS MXene@C heterogeneous nanocomposites with the 2D-0D structure for ultra-light and broadband 1173 10.3 33 electromagnetic wave absorption. Carbon, 2022, 197, 444-454. Tunable high-performance electromagnetic interference shielding of intrinsic N-doped chitin-based 1174 carbon aerogel. Carbon, 2022, 198, 142-150. Silver doped dodecahedral metal-organic framework anchored RGO nanosheets for nanomolar 1175 quantification of priority toxic pollutant in aquatic environment. Journal of Alloys and Compounds, 5.5 14 2022, 922, 166180. Heterointerface engineering in quaternary magnetic structures for high-efficiency and thermal stable microwave absorption. Journal of Alloys and Compounds, 2022, 924, 166461. Optimization of electromagnetic shielding and mechanical properties of reduced graphene 1177 3.1 11 oxide/polyurethane composite foam. Polymer Engineering and Science, 2022, 62, 3075-3087. Highly conductive and flexible electromagnetic shielding film obtained by molding an expanded graphite/silver/sodium alginate aerogel. Diamond and Related Materials, 2022, 128, 109264. Strong Holocellulose-Based Nanopaper with a Sandwich-Like Structure for Effective Electromagnetic 1179 6.7 11 Shielding. ACS Sustainable Chemistry and Engineering, 2022, 10, 11396-11405. Bayesian optimization of nanophotonic electromagnetic shielding with very high visible transparency. 1180 3.4 Optics Express, 2022, 30, 33182. Multilevel Structural Design and Heterointerface Engineering of a Host–Guest Binary Aerogel 1181 27 toward Multifunctional Broadband Microwave Absorption., 2022, 4, 1787-1797. Microwave-Assisted Photocatalytic Degradation of Organic Pollutants via CNTs/TiO2. Catalysts, 2022, 3.5 12,940. A high-flux polydopamine/reduced graphene oxide/MOF-5 composite membrane via a mussel-inspired 1183 7 3.7 method for dye wastewater purification. Journal of Materials Science, 2022, 57, 14799-14818. Multifunctional Ti3C2TX MXene/Aramid nanofiber/Polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. 12.0 Composites Part B: Engineering, 2022, 243, 110161 Bridging Sheet Size Controls Densification of MXene Films for Robust Electromagnetic Interference 1185 4.1 2 Shielding. IScience, 2022, , 105001. The influence of ambient temperature and X-band frequency on EMI shielding performance of 3.2 graphene/silica nanocomposites. Mechanics of Materials, 2022, 173, 104412 Flexible MOF on CoXFe1-XOOH@Biomass derived Alloy@Carbon films for efficient electromagnetic 1187 10.3 7 interference shielding and energy conversion. Carbon, 2022, 199, 96-109. Salt template assisted synthesis of Fe@graphene for high-performance electromagnetic wave 23 absorption. Carbon, 2022, 199, 268-278 Synergistic enhancement of thermal conduction and microwave absorption of silica films based on 1189 10.3 26 graphene/chiral PPy/Al2O3 ternary aerogels. Carbon, 2022, 199, 1-12. Achieving broadband microwave absorption and excellent mechanical properties via constructing 3D 1190 reduced graphene oxide networks in glass fiber/epoxy resin composites. Composites Science and Technology, 2022, 229, 109666.

#	Article	IF	Citations
1191	Optimization of polyaniline nanofiber loading in polymer matrix for strong microwave absorption using materials data-driven discovery. Composites Communications, 2022, 35, 101289.	6.3	8
1192	Fe/Fe3O4/biomass carbon derived from agaric to achieve high-performance microwave absorption. Diamond and Related Materials, 2022, 129, 109386.	3.9	15
1193	Self-Limited ultraviolet laser sintering of liquid metal particles for μm-Thick flexible electronics devices. Materials and Design, 2022, 223, 111189.	7.0	8
1194	MoS2-based materials for microwave absorption: An overview of recent advances and prospects. Synthetic Metals, 2022, 291, 117188.	3.9	21
1195	Strategic Design Rgo Foam Composites Towards Excellent Electromagnetic Shielding Performance, Good Thermal Management Ability and Flame Retardancy. SSRN Electronic Journal, 0, , .	0.4	0
1196	Core-Shell Structure Design and Microwave Absorption Enhancement of Multi-Dimensional Nanocomposites. SSRN Electronic Journal, 0, , .	0.4	0
1197	Oxidation-Resistant Vitamin C/Mxene Foam Via Surface Hydrogen Bonding for Stable Electromagnetic Interference Shielding in Air Ambient. SSRN Electronic Journal, 0, , .	0.4	0
1198	Robust Microwave Absorption in Silver-Cobalt Hollow Microspheres with Heterointerfaces and Electric-Magnetic Synergism: Towards Achieving Lightweight and Absorption-Type Microwave Shielding Composites. SSRN Electronic Journal, 0, , .	0.4	0
1199	In Situ Synthesis of Cocesx Quantum Dots Based on Bifunctional Conducting Molecules Modified Porous Graphene for High Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
1200	Strategic Design Rgo Foam Composites Towards Excellent Electromagnetic Shielding Performance, Good Thermal Management Ability and Flame Retardancy. SSRN Electronic Journal, 0, , .	0.4	0
1201	MXene-Reinforced Liquid Metal/Polymer Fibers via Interface Engineering for Wearable Multifunctional Textiles. ACS Nano, 2022, 16, 14490-14502.	14.6	66
1202	Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance. Nano-Micro Letters, 2022, 14, .	27.0	46
1203	Recent advance in three-dimensional porous carbon materials for electromagnetic wave absorption. Science China Materials, 2022, 65, 2911-2935.	6.3	25
1204	Role of carbonaceous fillers in electromagnetic interference shielding behavior of polymeric composites: A review. Polymer Composites, 2022, 43, 7701-7723.	4.6	27
1205	Multiâ€Interfaces Regulated Polyaniline/Nanoâ€Fe ₃ O ₄ /Graphene Ternary Hybrids for Ultraâ€Broadband Electromagnetic Absorption. Macromolecular Materials and Engineering, 2022, 307, .	3.6	2
1206	Robust microwave absorption in silver-cobalt hollow microspheres with heterointerfaces and electric-magnetic synergism: Towards achieving lightweight and absorption-type microwave shielding composites. Journal of Materials Science and Technology, 2023, 138, 245-255.	10.7	52
1207	Efficient microwave absorption with Vn+1CnT MXenes. Cell Reports Physical Science, 2022, 3, 101073.	5.6	29
1208	A Novel Hierarchically Lightweight Porous Carbon Derived from Egg White for Strong Microwave Absorption. Engineering, 2022, 18, 161-172.	6.7	5

#	Article	IF	CITATIONS
1209	The Effective Surface Metallization of Hollow Glass Microspheres for Flexible Electromagnetic Shielding Film. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 779-786.	1.0	0
1210	Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Research, 2023, 16, 1387-1413.	10.4	28
1211	Simple preparation and microwave absorption of TERGO/ZnO porous composites. Materials Today Communications, 2022, 33, 104494.	1.9	1
1212	Highly flexible and ultrathin electromagnetic-interference-shielding film with a sandwich structure based on PTFE@Cu and Ni@PVDF nanocomposite materials. RSC Advances, 2022, 12, 29688-29696.	3.6	5
1213	Toward strong X-band-electromagnetic-wave-absorbing materials: polyimide/carbon nanotube composite aerogel with radial needle-like porous structure. Journal of Materials Chemistry A, 2022, 10, 25140-25147.	10.3	6
1214	Multifunctional Waterborne Polyurethane Nanocomposite Films with Remarkable Electromagnetic Interference Shielding, Electrothermal and Solarthermal Performances. Chinese Journal of Polymer Science (English Edition), 2023, 41, 267-277.	3.8	5
1215	Graphite Nanosheet-Based Carbon Foams for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 16784-16792.	5.0	5
1216	Ultra-stable graphene aerogels for electromagnetic interference shielding. Science China Materials, 2023, 66, 1106-1113.	6.3	12
1217	Carbon Nanocoils/Carbon Foam as the Dynamically Frequencyâ€Tunable Microwave Absorbers with an Ultrawide Tuning Range and Absorption Bandwidth. Advanced Functional Materials, 2022, 32, .	14.9	67
1218	Rational design of carbon-rich silicon oxycarbide nanospheres for high-performance microwave absorbers. Carbon, 2023, 202, 213-224.	10.3	8
1219	Controllable synthesis of FeSe2/rGO porous composites towards an excellent electromagnetic wave absorption with broadened bandwidth. Ceramics International, 2023, 49, 5997-6005.	4.8	7
1220	Carbon Nanotubes with Tailored Amorphous Graphitic Components for Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2022, 5, 16136-16144.	5.0	10
1221	Recent progress on hybrid fibrous electromagnetic shields: Key protectors of living species against electromagnetic radiation. Matter, 2022, 5, 3807-3868.	10.0	19
1222	Electrical conductivity and impedance spectroscopy studies of ceramic (Ba0.8Sr0.2)Ti0.95(Zn1/3Nb2/3)0.05O3 doped with Bi2O3. Solid State Communications, 2022, 358, 115003.	1.9	3
1223	Self-Healing Nanocomposites with Carbon Nanotube/Graphene/Fe ₃ O ₄ Nanoparticle Tricontinuous Networks for Electromagnetic Radiation Shielding. ACS Applied Nano Materials, 2022, 5, 16423-16439.	5.0	11
1224	Smart electromagnetic interference shields based on flexible PEDOT:PSS/Bi2Te3 films. Materials Chemistry and Physics, 2023, 293, 126922.	4.0	10
1225	Doping of CaFe0.5Mn0.5O3-δ with the rare earth element Sm to modulate the porous structure and oxygen vacancies to enhance microwave absorption. Journal of Alloys and Compounds, 2023, 934, 167824.	5.5	3
1226	Facile fabrication of novel high-performance electromagnetic interference shielding nickel foam. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130352.	4.7	5

#	Article	IF	CITATIONS
1227	Solvothermal synthesis of CoCeSx quantum dots based on Bi-pyrene-terminated molecular wires modified porous graphene for high performance supercapacitors. Journal of Alloys and Compounds, 2023, 932, 167614.	5.5	3
1228	Amorphous carbon engineering of hierarchical carbonaceous nanocomposites toward boosted dielectric polarization for electromagnetic wave absorption. Carbon, 2023, 201, 1011-1024.	10.3	22
1229	Quad-band microwave absorbers based on MoO3-x@MWCNT with tunable morphologies for multifunctional multiband absorption. Carbon, 2023, 201, 1160-1173.	10.3	10
1230	Oxidation-resistant vitamin C/MXene foam via surface hydrogen bonding for stable electromagnetic interference shielding in air ambient. Applied Surface Science, 2023, 610, 155396.	6.1	3
1231	Nanofilms of Fe ₃ Co ₇ on a Mixed Cellulose Membrane for Flexible and Wideband Electromagnetic Absorption. ACS Applied Nano Materials, 2022, 5, 17194-17202.	5.0	4
1232	Electromagnetic wave absorption properties of Ca1-xCexFe0.5Mn0.5O3–δ ceramics prepared by a sol–gel combustion method. Ceramics International, 2022, , .	4.8	0
1233	MOF-derived core-shell Co9S8 @MoS2 nanocubes anchored on RGO to construct heterostructure for high-efficiency microwave attenuation. Journal of Alloys and Compounds, 2023, 935, 168106.	5.5	11
1234	Transparent Thermally Tunable Microwave Absorber Prototype Based on Patterned VO2 Film. Engineering, 2023, 29, 198-206.	6.7	8
1235	Modulation of electrical and optical properties of doping controlled SnO2 thin-film double layers. Journal of the Korean Physical Society, 2023, 82, 181-187.	0.7	1
1237	An ultralight lithiophilic framework with Faraday-shielded cages for stable lithium metal anodes. Journal of Materials Chemistry A, 2023, 11, 657-665.	10.3	2
1238	MXene-based multilayered flexible strain sensor integrating electromagnetic shielding and Joule heat. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130706.	4.7	6
1239	Preparation mechanism and properties of a ceramic–based interference microwave absorbing composite prepared by a high–temperature foaming method. Materials Chemistry and Physics, 2023, 296, 127199.	4.0	5
1240	Perspectives for electromagnetic radiation protection with MXenes. Carbon, 2023, 204, 17-25.	10.3	38
1241	High-performance pinecone-like MOF derivative electromagnetic wave-absorbing composite via in situ anisotropic-oriented growth. Journal of Alloys and Compounds, 2023, 937, 168283.	5.5	3
1242	Reduced graphene oxide/MnFe2O4 nanocomposite papers for fast electrical heating and microwave absorption. Applied Surface Science, 2023, 613, 156001.	6.1	6
1243	Recent Progress of Research into Conductive Nanomaterials for Use in Electromagnetic Interference Shields. Applied Science and Convergence Technology, 2022, 31, 120-127.	0.9	1
1244	Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption. Chemical Engineering Journal, 2023, 457, 141102.	12.7	10
1245	Conductive fabrics based on carbon nanotube/Ti3C2Tx MXene/polyaniline/liquid metal quaternary composites with improved performance of EMI shielding and joule heating. Composites Communications, 2023, 38, 101476.	6.3	12

#	Article	IF	CITATIONS
1246	Review and Perspective of Tailorable <scp>Metalâ€Organic</scp> Framework for Enhancing Microwave Absorption. Chinese Journal of Chemistry, 2023, 41, 1080-1098.	4.9	10
1247	Hierarchical pomegranate-like MnO@N-doped carbon with enhanced conduction loss and interfacial polarization for tunable and broadband microwave absorption. Journal of Materials Science, 2023, 58, 211-229.	3.7	3
1248	Ink-Coated Silver Films on PET for Flexible, High Performance Electromagnetic Interference Shielding and Joule Heating. ACS Applied Electronic Materials, 2023, 5, 173-180.	4.3	5
1249	Reduced graphene oxide layers full of bubbles for electromagnetic interference shielding. Journal of Materials Chemistry C, 2023, 11, 1949-1959.	5.5	8
1250	Highâ€Entropy Enhanced Microwave Attenuation in Titanate Perovskites. Advanced Materials, 2023, 35, .	21.0	93
1251	Low temperature cofiring and its mechanism of LiF added 0.85(0.74CaTiO3–0.26SmAlO3)–0.15Ca1.15Sm0.85Al0.85Ti0.15O4 microwave dielectric ceramics. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
1252	Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance. Frontiers of Physics, 2023, 18, .	5.0	5
1253	Facile fabrication of exfoliated g-C ₃ N ₄ /MWCNTs/Fe ₃ O ₄ ternary composites with multi-component functional synergy for high-performance microwave absorption. Journal of Materials Chemistry C. 2023, 11, 2552-2564.	5.5	9
1254	Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon, 2023, 205, 112-137.	10.3	45
1255	Heterostructured Ni3B/Ni nanosheets for excellent microwave absorption and supercapacitive application. Journal of Colloid and Interface Science, 2023, 636, 627-636.	9.4	12
1256	Rational design of hierarchical yolk-double shell Fe@NCNs/MnO2 via thermal-induced phase separation toward wideband microwave absorption. Carbon, 2023, 204, 305-314.	10.3	60
1257	Bamboo shoot extract as a novel and efficient reducing agent for graphene oxide and its supercapacitor application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	2
1258	Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature. Nano Research, 0, , .	10.4	36
1259	Defect Dipole-Induced HfO ₂ -Coated Ti ₃ C ₂ T _x MXene/Nickel Ferrite Nanocomposites for Enhanced Microwave Absorption. ACS Applied Nano Materials, 2023, 6, 1839-1848.	5.0	7
1260	Top-down parametrization-design of orientation-reinforced SiOC-based perfect metamaterial microwave absorber with wide-temperature adaptability. Acta Materialia, 2023, 249, 118803.	7.9	9
1261	Electrical conductivity and electromagnetic interference shielding effectiveness of elastomer composites: Comparative study with various filler systems. Inorganic Chemistry Communication, 2023, 151, 110578.	3.9	2
1262	Multifunctional carbon nanotubes-based hybrid aerogels with high-efficiency electromagnetic wave absorption at elevated temperature. Journal of Colloid and Interface Science, 2023, 638, 843-854.	9.4	7
1263	CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon, 2023, 208, 1-9.	10.3	87

#	Article	IF	CITATIONS
1264	Morphology engineering of defective graphene for microwave absorption. Journal of Colloid and Interface Science, 2023, 640, 680-687.	9.4	16
1265	Regulating conduction and polarization losses by adjusting bonded N in N-doped Cu/CuO/C composites. Journal of Colloid and Interface Science, 2023, 639, 444-453.	9.4	14
1266	Outstanding EMI shielding properties of Al2O3 reinforced with sandwiched graphene/CNTs. Journal of the European Ceramic Society, 2023, 43, 4082-4087.	5.7	3
1267	Preparation and properties of Ti3SiC2 preform reinforced SiC ceramic matrix composites. Journal of the European Ceramic Society, 2023, 43, 3146-3157.	5.7	8
1268	Excellent microwave absorption of void@carbon@TiO2 cubes by a template sol method. Journal of Alloys and Compounds, 2023, 952, 170057.	5.5	4
1269	Fabrication and efficient electromagnetic waves attenuation of three-dimensional porous reduced graphene oxide/boron nitride/silicon carbide hierarchical structures. Journal of Materials Science and Technology, 2023, 155, 192-201.	10.7	13
1270	Electrochemically synthesized graphene/TEMPO-oxidized cellulose nanofibrils hydrogels: Highly conductive green inks for 3D printing of robust structured EMI shielding aerogels. Carbon, 2023, 210, 118037.	10.3	17
1271	Design and evaluation of a rodent-specific focal transcranial magnetic stimulation coil with the custom shielding application in rats. Frontiers in Neuroscience, 0, 17, .	2.8	1
1272	Microwave absorption theory and recent advances in microwave absorbers by polymer-based nanocomposites (carbons, oxides, sulfides, metals, and alloys). Inorganic Chemistry Communication, 2023, 149, 110407.	3.9	9
1273	Flexible spiral-like multilayer composite with Fe3O4@rGO/waterborne polyurethane-Ni@polyimide for enhancing electromagnetic shielding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 131006.	4.7	8
1274	A multifunctional carbon-base phase change composite inspired by "fruit growth". Carbon, 2023, 205, 499-509.	10.3	17
1275	Broadband electromagnetic dissipation superiority of hierarchical ZnO flakes co-decorated with CoFe/CoFe2O4 and rGO. Ceramics International, 2023, 49, 17680-17689.	4.8	2
1276	High temperature microwave absorbing materials. Journal of Materials Chemistry C, 2023, 11, 4552-4569.	5.5	8
1277	Shaped Photothermal Conversion Phaseâ€Change Materials with Excellent Electromagnetic Shielding Performance and Flame Retardancy. Advanced Engineering Materials, 2023, 25, .	3.5	1
1278	Multifunctional MXene-based composite films with simultaneous terahertz/gigahertz wave shielding performance for future 6G communication. Journal of Materials Chemistry A, 2023, 11, 5593-5605.	10.3	13
1279	Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption. Carbon, 2023, 206, 364-374.	10.3	61
1280	Lightweight MXene/carbon composite foam with hollow skeleton for air-stable, high-temperature-resistant and compressible electromagnetic interference shielding. Carbon, 2023, 206, 375-382.	10.3	16
1281	Graphene-based magnetic composite foam with hierarchically porous structure for efficient microwave absorption. Carbon, 2023, 207, 105-115.	10.3	23

	CITATION REPORT		
Article		IF	Citations
In situ construction of complex spinel ferrimagnet in multi-elemental alloy for modulat resonance and highly efficient electromagnetic absorption. Chemical Engineering Journ 142200.	ing natural nal, 2023, 462,	12.7	7
Intercalated oligomer doubles plasticity for strong and conductive graphene papers ar Carbon, 2023, 208, 160-169.	ıd composites.	10.3	6
Multifunctional Nanocrystallineâ€Assembled Porous Hierarchical Material and Device f Microwave Absorption, Electromagnetic Interference Shielding, and Energy Storage. S		10.0	60
Enhanced electromagnetic wave absorption based on Ti3C2Tx loaded nickel nanoparti polydopamine connection. Ceramics International, 2023, 49, 20672-20681.	icles via	4.8	4
Preparation of magnetic three-dimensional porous Co-rGO aerogel for enhanced micro absorption. Carbon, 2023, 208, 111-122.	wave	10.3	20
A review on exfoliated graphite: Synthesis and applications. Inorganic Chemistry Comr 152, 110685.	nunication, 2023,	3.9	2
Design and advanced manufacturing of electromagnetic interference shielding materia Today, 2023, 66, 245-272.	als. Materials	14.2	40
A bilayer array metamaterial based on silicon carbon foam/FeSiAl for broadband electro absorption. Journal of Alloys and Compounds, 2023, 954, 170129.	omagnetic	5.5	3
Heterodimensional structure porous nanofibers embedded confining magnetic nanocr electromagnetic functional material and device. Carbon, 2023, 210, 118049.	ystals for	10.3	45
Structural Electromagnetic Absorber Based on MoS ₂ /PyCâ€Al ₂ Ceramic Metamaterials. Small, 2023, 19, .	ub>O ₃	10.0	7
Flexible and mechanically strong MXene/cellulose-lamellae sheets for electromagnetic shielding. Chemical Engineering Journal, 2023, 468, 143661.	interference	12.7	4
High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon, 2023, 213, 118208.	đ	10.3	67

1293	electromagnetic interference shielding. Carbon, 2023, 213, 118208.	10.3	67
1295	Polyvinylpyrrolidone induced uniform coating of nickel nanoparticles on carbon nanotubes for efficient microwave absorption. Journal of Colloid and Interface Science, 2023, 649, 501-509.	9.4	2
1296	Polarization genes dominated heteroatom-doped graphene aerogels toward super-efficiency microwave absorption. Journal of Materials Chemistry C, 2023, 11, 9804-9814.	5.5	7
1297	Nanocarbon-Containing Polymer Composite Foams: A Review of Systems for Applications in Electromagnetic Interference Shielding, Energy Storage, and Piezoresistive Sensors. Industrial & Engineering Chemistry Research, 2023, 62, 6807-6842.	3.7	11
1298	In Situ Grown 1D/2D Structure of Dy3Si2C2 on SiCw for Enhanced Electromagnetic Wave Absorption. Materials, 2023, 16, 3455.	2.9	2
1299	Superhydrophobic, mechanically robust and self-cleaning MXene/wood composite for high-performance electromagnetic interference shielding. Industrial Crops and Products, 2023, 199, 116744.	5.2	2
1300	Inorganic–Organic Hybrid Dielectrics for Energy Conversion: Mechanism, Strategy, and Applications. Advanced Functional Materials, 2023, 33, .	14.9	15

#

1282

1284

1286

1288

1290

1291

1292

#	Article	IF	CITATIONS
1301	Pushing electromagnetic interference shielding self-enhanced based on smart Ti3C2Tx-WVO2 thermal management composite. Carbon, 2023, 210, 118081.	10.3	7
1302	Expanded graphite and thermally reduced graphene oxide filled with NiCo2O4 for improve microwave absorption. Materials Chemistry and Physics, 2023, 305, 127898.	4.0	3
1303	Design of Bi-Layered Strong Microwave Absorber Based on Polymer-Fly Ash Cenosphere Composite With A Data-Driven Approach. , 2022, , .		0
1305	Smart Wood Dualâ€Action Off/On Versatile Switches Based On Highly Sensitive Electrical And Electromagnetic Mechanosensing Performances. Advanced Sustainable Systems, 2023, 7, .	5.3	1
1306	Multifunctional Hierarchical Metamaterial for Thermal Insulation and Electromagnetic Interference Shielding at Elevated Temperatures. ACS Nano, 2023, 17, 12673-12683.	14.6	12
1307	Electromagnetic properties of 3D-printed carbon–BaTiO3 composites. Applied Physics Letters, 2023, 123,	3.3	0
1308	Direct-write shielded cables for improved signal integrity. , 2023, , 1-1.		0
1309	Commonly Neglected Ester Groups Enhanced Microwave Absorption. Small, 2023, 19, .	10.0	4
1310	Microwave absorbing characteristics of porphyrin derivates: a loop of conjugated structure. RSC Advances, 2023, 13, 22205-22215.	3.6	11
1311	Synthesis and characterization of novel PVA/MF-PC/RGO nanocomposites. Diamond and Related Materials, 2023, 138, 110244.	3.9	4
1314	Structure–Activity Relationship in Microstructure Design for Electromagnetic Wave Absorption Applications. Small Structures, 2023, 4, .	12.0	7
1315	One-step method for the fabrication of pure and metal-decorated densified CNT films for effective electromagnetic interference shielding. Carbon, 2023, 214, 118370.	10.3	2
1316	Electromagnetic Property Modulation of Flaky Ferromagnetic 304 Stainless-Steel Powders for Microwave Absorption at Elevated Temperatures. Magnetochemistry, 2023, 9, 208.	2.4	0
1317	SiC/Co composite fibers with enhanced conductivity and magnetic coupling developed for reinforcing and high-efficiency electromagnetic absorbing (EMA) materials. Composites Part B: Engineering, 2023, 266, 111010.	12.0	2
1318	Fabrication and electromagnetic wave absorbing properties of the (Hf0.25Zr0.25Nb0.25Ta0.25)C high-entropy ceramics. Journal of Alloys and Compounds, 2023, 969, 172403.	5.5	1
1319	Study on FDM preparation and properties of RGO/Ni/PLA/TPU composite materials. Journal of Alloys and Compounds, 2023, 968, 172119.	5.5	1
1320	Graphenization of graphene oxide films for strongly anisotropic thermal conduction and high electromagnetic interference shielding. Carbon, 2023, 215, 118496.	10.3	3
1321	Thin, Flexible, and High-Strength Graphene Films Modified with CoFe ₂ O ₄ Nanoparticle–Carbon Nanotubes Composites for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2023, 6, 17031-17039.	5.0	0

#	Article	IF	CITATIONS
1322	Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities. Nano Research, 2024, 17, 1952-1983.	10.4	11
1323	In-situ construction of CNTs/laterite composites for enhanced microwave absorption. Diamond and Related Materials, 2023, 140, 110490.	3.9	0
1324	MOF@wood Derived Ultrathin Carbon Composite Film for Electromagnetic Interference Shielding with Effective Absorption and Electrothermal Management. Advanced Functional Materials, 2024, 34, .	14.9	4
1325	Growth mechanism of Ni on the graphite particles regulated by the OHâ^' ionic concentration. Materials Characterization, 2023, 206, 113379.	4.4	0
1326	Niâ€Carbon Microtube/Polytetrafluoroethylene as Flexible Electrothermal Microwave Absorbers. Advanced Science, 2023, 10, .	11.2	2
1327	Multicolored microwave absorbers with dynamic frequency modulation. Nano Energy, 2023, 118, 108938.	16.0	8
1328	Research status and future perspectives of low dimensional electromagnetic wave absorption materials. Journal of Materials Chemistry C, 2023, 11, 14481-14494.	5.5	1
1329	Preparation of Graphite/Ferrite/Resinâ€Based Composite Highâ€Efficiency Waveâ€Absorbing Materials by Selective Laser Sintering. Advanced Engineering Materials, 2023, 25, .	3.5	0
1330	Magnetic-dielectric synergistic construction of Ni-doped Ti3AlC2 achieving efficient microwave absorption. Ceramics International, 2023, 49, 40570-40580.	4.8	1
1331	Temperature-stimulated composite foams for reversibly switching microwave absorption towards electromagnetic interference shielding capability. Diamond and Related Materials, 2023, 140, 110499.	3.9	0
1332	Novel and efficient electromagnetic wave absorption of SiBCN(Fe) nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 679, 132605.	4.7	0
1334	Sustainable synthesis of tunable 2D porous carbon nanosheets toward remarkable electromagnetic wave absorption performance. Chemical Engineering Journal, 2023, 476, 146912.	12.7	4
1335	Dielectric loss compensation induced by hydroxyl surface grafting protects against microwave absorption attenuation. Carbon, 2024, 216, 118571.	10.3	2
1336	NiSe integrated with polymerized reduced carbon sheet: As an effective electrocatalyst for methanol oxidation reaction. International Journal of Hydrogen Energy, 2024, 51, 1050-1059.	7.1	2
1337	From 2D graphene and MXene nanolayers to 3D biomimetic porous composite aerogels for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2024, 177, 107939.	7.6	0
1338	Review on polymer/MXene composites for electromagnetic interference shielding applications. , 2024, 1, 52-76.		7
1339	Achieving broadband electromagnetic absorption at a wide temperature range up to 1273ÂK by metamaterial design on polymer-derived SiC-BN@CNT ceramic composites. Chemical Engineering Journal, 2023, 478, 147251.	12.7	2
1340	Modification and Application of Bamboo-Based Materials: A Review—Part II: Application of Bamboo-Based Materials. Forests, 2023, 14, 2266.	2.1	3

#	Article	IF	CITATIONS
1341	Fabrication of multiple core-shell structures MnO@HsGDY@NC@HsGDY hybrid nanofibers for enhanced microwave absorption. Carbon, 2024, 216, 118588.	10.3	2
1342	Metal–Organic Gel Leading to Customized Magnetic-Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances. Nano-Micro Letters, 2024, 16, .	27.0	4
1343	MXenes for electromagnetic interference shielding: Insights from structural design. Carbon, 2024, 218, 118716.	10.3	1
1344	Recent progress in caron-based stimulus-responsive electromagnetic interference shielding materials. Nanocomposites, 2024, 10, 41-58.	4.2	0
1345	Constructing 3D heterogeneous flower-like spherical MoS2/CNTs composites with worm-like surface as a superior electromagnetic wave absorber. Solid State Sciences, 2024, 147, 107388.	3.2	0
1346	Electron irradiation modified point defects of SiC nanoparticles with tunable high electromagnetic wave absorption. Carbon, 2024, 218, 118727.	10.3	0
1347	Interfacial effect on the microwave absorption properties in Y3Fe5O12/Fe2O3. Journal of Magnetism and Magnetic Materials, 2024, 590, 171636.	2.3	0
1348	Achieving ultralow friction under high pressure through operando formation of PbS QDs/graphene heterojunction with 0D/1D nanostructure. Carbon, 2024, 218, 118748.	10.3	0
1349	Organosilane waste-derived SiCnws/SiOC composites with enhanced electromagnetic wave absorption performance. Ceramics International, 2024, 50, 8269-8276.	4.8	0
1350	Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption. Nano-Micro Letters, 2024, 16, .	27.0	1
1351	Production of Lignin-Derived Functional Material for Efficient Electromagnetic Wave Absorption with an Ultralow Filler Ratio. Polymers, 2024, 16, 201.	4.5	0
1352	Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption. Carbon, 2024, 219, 118834.	10.3	2
1353	Enhanced microwave absorption properties of conducting polymer@graphene composite to counteract electromagnetic radiation pollution: green EMI shielding. RSC Advances, 2024, 14, 662-676.	3.6	0
1354	Efficient electromagnetic wave absorption of polypyrrole/low-reduction graphene oxide composites through dielectric properties modulation. Composites Science and Technology, 2024, 248, 110436.	7.8	0
1355	Study of the relaxation time for the polarization mechanism in SiO2–SiC/B4C nanowires with broadband absorption of microwave. Ceramics International, 2024, 50, 12763-12770.	4.8	0
1356	Graphene-based optically transparent metasurface for microwave and terahertz cross-band stealth utilizing multiple stealth strategies. Carbon, 2024, 219, 118833.	10.3	0
1357	<scp>MXene</scp> / <scp>PDMS</scp> composite foam with regulatable cell structures for improved <scp>EMI</scp> shielding performance. Journal of Applied Polymer Science, 2024, 141, .	2.6	0
1358	Modulating microwave attributes of Ba1â^xSrxTiO3 nanoparticles: Insights into strontium concentration, structural intricacies and electromagnetic dynamics. Nano Structures Nano Objects, 2024, 37, 101096.	3.5	1

#	Article	IF	CITATIONS
1359	Functional integrated electromagnetic interference shielding in supercapacitors based on aligned SiC nanowires decorated vertical graphene nanosheets. Carbon, 2024, 220, 118864.	10.3	0
1360	Multifunctional heterostructured composite foam with tunable electromagnetic interference shielding. Composites Science and Technology, 2024, 248, 110482.	7.8	0
1361	Heterogeneous interface construction of P-doped MoS2 based on the N-doped graphene oxide aerogels for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2024, 58, 1596-1607.	7.1	0
1362	Flexible MXene Hybrid Films with a Tuned Silver Nanowire Framework for Electromagnetic Interference Shielding and Ultralow Voltage-Driven Joule Heating. ACS Applied Nano Materials, 2024, 7, 3748-3760.	5.0	0
1363	Surface morphology modulation and wave-absorbing properties of C@TiO2 composite microspheres. Journal of Materials Science: Materials in Electronics, 2024, 35, .	2.2	0
1364	High performance polymer-based nanocomposite foams for electromagnetic interference shielding. , 2024, , 363-388.		0
1365	High-Precision Printing of Flexible MXene Patterns for Dynamically Tunable Electromagnetic Interference Shielding Performance. ACS Applied Materials & Interfaces, 2024, 16, 13082-13090.	8.0	0
1366	Construction of three-dimensional porous network Fe-rGO aerogels with monocrystal magnetic Fe3O4@C core-shell structure nanospheres for enhanced microwave absorption. Materials Today Physics, 2024, 42, 101383.	6.0	0
1367	Enhancing electromagnetic wave absorption performance through construction of three-dimensional multilayered SiCw/Y3Si2C2/Ni0.5Zn0.5Fe2O4 composites. Ceramics International, 2024, 50, 20973-20981.	4.8	0
1369	Two birds with one stone: High electromagnetic interference shielding effectiveness and high thermal conductivity of ternary polyvinyl alcohol/graphene/ carbonyl iron nanocomposite films. Synthetic Metals, 2024, 305, 117591.	3.9	0
1370	Construction of brick/mortar-like graphene/thermoset composites with highly anisotropic thermal conductivity and strong electromagnetic interference shielding performance. Journal of Materials Chemistry A, 2024, 12, 9113-9123.	10.3	0
1371	MXene/BC@CoFe2O4 aerogel with excellent electromagnetic interference shielding and enhanced mechanical property. Journal of Alloys and Compounds, 2024, 985, 174117.	5.5	0
1372	Microwave absorbing performance of reduced graphene oxide @ alumina fabricated by atomic layer deposition method. Ceramics International, 2024, 50, 21334-21341.	4.8	0
1373	High-Compressive, Elastic, and Wearable Cellulose Nanofiber-Based Carbon Aerogels for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2024, 16, 16612-16621.	8.0	0
1374	MXeneâ€Based Ultrathin Electromagnetic Wave Absorber with Hydrophobicity, Anticorrosion, and Quantitively Classified Electrical Losses by Intercalation Growth Nucleation Engineering. Advanced Functional Materials, 0, , .	14.9	0