A primitive fish from the Cambrian of North America

Nature 512, 419-422 DOI: 10.1038/nature13414

Citation Report

#	Article	IF	Citations
1	Experimental Decay of Soft Tissues. The Paleontological Society Papers, 2014, 20, 259-274.	0.6	18
2	Geochemistry Articles – August 2014. Organic Geochemistry, 2014, 76, e1-e37.	1.8	0
3	A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group. BMC Evolutionary Biology, 2014, 14, 214.	3.2	25
4	Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition. EvoDevo, 2014, 5, 36.	3.2	27
5	Early vertebrate evolution. Palaeontology, 2014, 57, 879-893.	2.2	56
6	Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton. Journal of Morphology, 2015, 276, 657-680.	1.2	35
7	Ciderius cooperi gen. nov., sp. nov., the earliest known euphaneropid from the Lower Silurian of Scotland. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2015, 94, 279-288.	0.9	2
8	Preservational Pathways of Corresponding Brains of a Cambrian Euarthropod. Current Biology, 2015, 25, 2969-2975.	3.9	51
10	Cephalic and Limb Anatomy of a New Isoxyid from the Burgess Shale and the Role of "Stem Bivalved Arthropods―in the Disparity of the Frontalmost Appendage. PLoS ONE, 2015, 10, e0124979.	2.5	43
12	Rare primitive deuterostomes from the Cambrian (Series 3) of Utah. Journal of Paleontology, 2015, 89, 631-636.	0.8	11
13	Phylostratigraphic Profiles in Zebrafish Uncover Chordate Origins of the Vertebrate Brain. Molecular Biology and Evolution, 2015, 32, 299-312.	8.9	32
14	The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician. Journal of the Geological Society, 2015, 172, 541-549.	2.1	121
15	Facts and fancies about early fossil chordates and vertebrates. Nature, 2015, 520, 483-489.	27.8	80
16	Extraordinary fossils reveal the nature of Cambrian life: a commentary on Whittington (1975) †The enigmatic animal (i>Opabinia regalis, Middle Cambrian, Burgess Shale, British Columbia'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140313.	4.0	23
17	The origin and evolution of chordate nervous systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150048.	4.0	38
18	Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	15
20	Vertebrate Eye Evolution. , 2016, , 275-298.		2
21	Vertebrates, the Origin of. , 2016, , 333-343.		0

TITATION REDOD

#	Article	IF	CITATIONS
22	Preservation and phylogeny of Cambrian ecdysozoans tested by experimental decay of Priapulus. Scientific Reports, 2016, 6, 32817.	3.3	46
23	Palaeospondylus as a primitive hagfish. Zoological Letters, 2016, 2, 20.	1.3	15
24	Convergent evolution of hemoglobin switching in jawed and jawless vertebrates. BMC Evolutionary Biology, 2016, 16, 30.	3.2	16
25	The †Tully monster' is a vertebrate. Nature, 2016, 532, 496-499.	27.8	35
26	The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25Âyears of new techniques, new discoveries, and new ideas. Organisms Diversity and Evolution, 2016, 16, 401-418.	1.6	30
27	Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152917.	2.6	44
28	Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biological Reviews, 2016, 91, 611-657.	10.4	53
29	Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). Nature, 2017, 542, 228-231.	27.8	58
30	The †Tully Monster' is not a vertebrate: characters, convergence and taphonomy in Palaeozoic problematic animals. Palaeontology, 2017, 60, 149-157.	2.2	17
31	The Origin of Vertebrate Brain Centers. Diversity and Commonality in Animals, 2017, , 215-252.	0.7	5
32	The Origin of Vertebrate Gills. Current Biology, 2017, 27, 729-732.	3.9	40
34	Reconstructing the ancestral vertebrate brain. Development Growth and Differentiation, 2017, 59, 163-174.	1.5	51
35	Fin modules: an evolutionary perspective on appendage disparity in basal vertebrates. BMC Biology, 2017, 15, 32.	3.8	42
36	A threeâ€dimensional placoderm (stemâ€group gnathostome) pharyngeal skeleton and its implications for primitive gnathostome pharyngeal architecture. Journal of Morphology, 2017, 278, 1220-1228.	1.2	10
37	Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8835-8840.	7.1	27
38	The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Developmental Biology, 2017, 427, 219-229.	2.0	32
39	Metamerism in cephalochordates and the problem of the vertebrate head. International Journal of Developmental Biology, 2017, 61, 621-632.	0.6	11
40	The evolutionary origin of chordate segmentation: revisiting the enterocoel theory. Theory in Biosciences, 2018, 137, 1-16.	1.4	10

#	Article	IF	CITATIONS
41	The stepwise development of the lamprey visual system and its evolutionary implications. Biological Reviews, 2018, 93, 1461-1477.	10.4	28
42	Measuring inferential importance of taxa using taxon influence indices. Ecology and Evolution, 2018, 8, 4484-4494.	1.9	5
43	Inference of the ancestral vertebrate phenotype through vestiges of the whole-genome duplications. Briefings in Functional Genomics, 2018, 17, 352-361.	2.7	14
44	The neural crest and evolution of the head/trunk interface in vertebrates. Developmental Biology, 2018, 444, S60-S66.	2.0	18
45	Electroreception in early vertebrates: survey, evidence and new information. Palaeontology, 2018, 61, 325-358.	2.2	12
46	Three explanations for extraterrestrials: sensible, unlikely, mad. International Journal of Astrobiology, 2018, 17, 287-293.	1.6	5
47	Softâ€Bodied Fossils Are Not Simply Rotten Carcasses – Toward a Holistic Understanding of Exceptional Fossil Preservation. BioEssays, 2018, 40, 1700167.	2.5	84
48	Evolution of Vertebrate Reproduction. , 2018, , 207-226.		4
49	The Evolution of Fishes through Geological Time. , 2018, , 3-29.		3
50	Comparative Development of Cyclostomes. , 2018, , 30-58.		2
51	Origin, Development and Evolution of the Fish Skull. , 2018, , 144-159.		0
52	Pharyngeal Remodelling in Vertebrate Evolution. , 2018, , 241-251.		0
53	Evolution of the muscular system in tetrapod limbs. Zoological Letters, 2018, 4, 27.	1.3	11
54	New applications of spectroscopy techniques reveal phylogenetically significant soft tissue residue in Paleozoic conodonts. Journal of Analytical Atomic Spectrometry, 2018, 33, 992-1002.	3.0	11
55	Early fossil record of Euarthropoda and the Cambrian Explosion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5323-5331.	7.1	88
56	The embryonic and evolutionary boundaries between notochord and cartilage: a new look at nucleus pulposus-specific markers. Osteoarthritis and Cartilage, 2018, 26, 1274-1282.	1.3	14
57	Phagocytic intracellular digestion in amphioxus (<i>Branchiostoma</i>). Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180438.	2.6	11
58	Recent Advances in Hagfish Developmental Biology in a Historical Context: Implications for Understanding the Evolution of the Vertebral Elements. Diversity and Commonality in Animals, 2018, , 615-634.	0.7	15

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
59	Cambrian Chordates and Vetulicolians. Geosciences (Switzerland), 2019, 9, 354.	2.2	7
60	A critical appraisal of appendage disparity and homology in fishes. Fish and Fisheries, 2019, 20, 1138-1175.	5.3	10
61	Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2146-2151.	7.1	97
63	THE LIMITS OF BURGESS SHALE-TYPE PRESERVATION: ASSESSING THE EVIDENCE FOR PRESERVATION OF THE BLOOD PROTEIN HEMOCYANIN IN THE BURGESS SHALE. Palaios, 2019, 34, 291-299.	1.3	6
64	The circulatory system of Galeaspida (Vertebrata; stem-Gnathostomata) revealed by synchrotron X-ray tomographic microscopy. Palaeoworld, 2019, 28, 441-460.	1.1	11
65	A poorly preserved fish-like animal from the Chengjiang LagerstÃ़te (Cambrian Series 2, Stage 3). Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 520, 163-172.	2.3	3
66	Resolution of the earliest metazoan record: Differential taphonomy of Ediacaran and Paleozoic fossil molds and casts. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 513, 146-165.	2.3	28
67	Evolvability of the vertebrate craniofacial skeleton. Seminars in Cell and Developmental Biology, 2019, 91, 13-22.	5.0	18
68	Hamptonia jianhensis sp. nov. from the Cambrian (Stage 4) Balang Fauna of Guizhou, China. Historical Biology, 2020, 32, 1206-1214.	1.4	2
69	Understanding the retinal basis of vision across species. Nature Reviews Neuroscience, 2020, 21, 5-20.	10.2	191
70	People of the Water: El RÃo, The Shape of Water, and the Rights of Nature1. ISLE Interdisciplinary Studies in Literature and Environment, 2020, 27, 596-612.	0.1	0
71	Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cisâ€regulatory modules. Development Growth and Differentiation, 2020, 62, 279-300.	1.5	4
72	On the origin of vertebrate body plan: Insights from the endoderm using the hourglass model. Gene Expression Patterns, 2020, 37, 119125.	0.8	2
73	The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology, 2020, 46, 58-81.	2.0	47
74	The origin and evolution of vertebrate neural crest cells. Open Biology, 2020, 10, 190285.	3.6	48
75	The vertebrate-specific VENTX/NANOG gene empowers neural crest with ectomesenchyme potential. Science Advances, 2020, 6, eaaz1469.	10.3	36
76	Evolution of new cell types at the lateral neural border. Current Topics in Developmental Biology, 2021, 141, 173-205.	2.2	11
77	Cephalochordates: A window into vertebrate origins. Current Topics in Developmental Biology, 2021, 141, 119-147.	2.2	8

CITATION REPORT ARTICLE IF CITATIONS Fish without Tail Finsâ
 "Exploring the Function of Tail Morphology of the First Vertebrates. Integrative and Comparative Biology, 2021, 61, 37-49. 2.0 3 79 The Parker Quarry LagerstÃ़te of Vermont—The first reported Burgess Shale–type fauna rediscovered. Geology, 0, , . 4.4 Documentation by citizen scientists/naturalists of the â€~Cambrian explosion' inÂPennsylvania. Geology 81 0.9 1 Today, 2021, 37, 57-62. Homology thinking reconciles the conceptual conflict between typological and population thinking. Biology and Philosophy, 2021, 36, 1.

Conserved and unique transcriptional features of pharyngeal arches in the skate (<i>Leucoraja) Tj ETQq0 0 0 rgBT /Qxerlock 10 Tf 50 58 83

84	LEAP2 has antagonized the ghrelin receptor GHSR1a since its emergence in ancient fish. Amino Acids, 2021, 53, 939-949.	2.7	15
85	Empirical distributions of homoplasy in morphological data. Palaeontology, 2021, 64, 505-518.	2.2	9
86	Genome Duplications as the Basis of Vertebrates' Evolutionary Success. Russian Journal of Developmental Biology, 2021, 52, 141-163.	0.5	7
87	Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nature Communications, 2021, 12, 4489.	12.8	88
88	Panderodus from the Waukesha Lagerstäte of Wisconsin, USA: a primitive macrophagous vertebrate predator. Papers in Palaeontology, 2021, 7, 1977.	1.5	7
90	Forebrain Architecture and Development in Cyclostomes, with Reference to the Early Morphology and Evolution of the Vertebrate Head. Brain, Behavior and Evolution, 2021, , 1-13.	1.7	3
91	The evolutionary origins of the vertebrate olfactory system. Open Biology, 2020, 10, 200330.	3.6	34
92	Fossil hagfishes, fossil cyclostomes, and the lost world of "ostracoderms― Marine Biology, 2015, , 73-94.	0.1	5
93	A Cambrian origin for vertebrate rods. ELife, 2015, 4, .	6.0	39
95	Evolution and Biostratigraphy. , 2020, , 35-137.		15
96	Palaeocolour: A History and State of the Art. Fascinating Life Sciences, 2020, , 185-211.	0.9	1
97	Evolutionary and Developmental Perspectives on the Origin and Diversification of the Vertebrate Cerebellum. Contemporary Clinical Neuroscience, 2021, , 3-24.	0.3	0
98	The invertebrate chordate amphioxus gives clues to vertebrate origins. Current Topics in Developmental Biology, 2022, 147, 563-594.	2.2	3

#

#	Article	IF	Citations
99	The soft-bodied biota of the Cambrian Series 2 Parker Quarry Lagerstäte of northwestern Vermont, USA. Journal of Paleontology, 2022, 96, 770-790.	0.8	7
100	Possibly the oldest fish-made resting traces. Ichnos, 0, , 1-10.	0.5	0
102	Neural architectures in the light of comparative connectomics. Current Opinion in Neurobiology, 2021, 71, 139-149.	4.2	12
104	Biomechanics of the spine. , 2022, , 35-46.		0
105	Gill developmental program in the teleost mandibular arch. ELife, 0, 11, .	6.0	3
106	"Arch―etyping vertebrates. Science, 2022, 377, 154-155.	12.6	1
107	The pseudobranch of jawed vertebrates is a mandibular arch-derived gill. Development (Cambridge), 2022, 149, .	2.5	8
108	Ultrastructure reveals ancestral vertebrate pharyngeal skeleton in yunnanozoans. Science, 2022, 377, 218-222.	12.6	16
110	Ion regulation at gills precedes gas exchange and the origin of vertebrates. Nature, 2022, 610, 699-703.	27.8	9
111	Vertebrate cranial evolution: Contributions and conflict from the fossil record. Evolution & Development, 0, , .	2.0	1
112	Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biological Reviews, 2023, 98, 316-351.	10.4	12
113	Vertebrate origins are informed by larval lampreys (ammocoetes): a response to Miyashita <i>et al.</i> , 2021. Zoological Journal of the Linnean Society, 2023, 197, 287-321.	2.3	2
114	<i>Lasanius</i> , an exceptionally preserved Silurian jawless fish from Scotland. Palaeontology, 2023, 66, .	2.2	3
115	Cranial cartilages: Players in the evolution of the cranium during evolution of the chordates in general and of the vertebrates in particular. Evolution & Development, 2023, 25, 197-208.	2.0	0
116	Threeâ€dimensional anatomy of the Tully monster casts doubt on its presumed vertebrate affinities. Palaeontology, 2023, 66, .	2.2	0
117	Biblical Perspectives as a Guide to Research on Life's Origin and History. Religions, 2023, 14, 547.	0.6	0
118	Multivariate mapping of ontogeny, taphonomy and phylogeny to reconstruct problematic fossil taxa. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	2
119	The oldest three-dimensionally preserved vertebrate neurocranium. Nature, 2023, 621, 782-787.	27.8	1

#	Article	IF	CITATIONS
121	Getting inside the oldest known vertebrate skull. Nature, 2023, 621, 696-698.	27.8	0
122	Protein signaling and morphological development of the tail fluke in the embryonic beluga whale (<i>Delphinapterus leucas</i>). Developmental Dynamics, 0, , .	1.8	Ο