Gut microbiota and GLP-1

Reviews in Endocrine and Metabolic Disorders 15, 189-196

DOI: 10.1007/s11154-014-9288-6

Citation Report

#	Article	IF	CITATIONS
1	In vitro characterisation of the fermentation profile and prebiotic capacity of gold-fleshed kiwifruit. Beneficial Microbes, 2015, 6, 829-839.	1.0	10
2	Does Whole Grain Consumption Alter Gut Microbiota and Satiety?. Healthcare (Switzerland), 2015, 3, 364-392.	1.0	29
3	Insights on the human microbiome and its xenobiotic metabolism: what is known about its effects on human physiology?. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 411-425.	1.5	47
4	Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1. Open Heart, 2015, 2, e000205.	0.9	33
5	The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases. Annual Review of Medicine, 2015, 66, 343-359.	5.0	350
6	Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats. British Journal of Nutrition, 2015, 114, 34-42.	1.2	27
7	The gut microbiota in human energy homeostasis and obesity. Trends in Endocrinology and Metabolism, 2015, 26, 493-501.	3.1	350
8	Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia, 2015, 58, 2206-2217.	2.9	220
9	Urinary 1H-NMR-based metabolic profiling of children with NAFLD undergoing VSL#3 treatment. International Journal of Obesity, 2015, 39, 1118-1125.	1.6	54
10	Neuroimmune pharmacological approaches. Current Opinion in Pharmacology, 2015, 25, 13-22.	1.7	40
11	Gut Microbiota and Metabolism. , 2016, , 391-401.		5
12	The incretin hormone GLPâ€1 and mechanisms underlying its secretion. Journal of Diabetes, 2016, 8, 753-765.	0.8	72
13	Modulation of Microbiota-Gut-Brain Axis by Berberine Resulting in Improved Metabolic Status in High-Fat Diet-Fed Rats. Obesity Facts, 2016, 9, 365-378.	1.6	68
14	Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine, 2016, 8, 67.	3.6	260
16	The interplay between intestinal bacteria and host metabolism in health and disease: lessons from <i>Drosophila melanogaster</i> . DMM Disease Models and Mechanisms, 2016, 9, 271-281.	1.2	84
17	Connections Between the Gut Microbiome and Metabolic Hormones in Early Pregnancy in Overweight and Obese Women. Diabetes, 2016, 65, 2214-2223.	0.3	223
18	Gut Microbiota as a Target in the Pathogenesis of Metabolic Disorders: A New Approach to Novel Therapeutic Agents. Hormone and Metabolic Research, 2016, 48, 349-358.	0.7	104
19	The Macronutrients, Appetite, and Energy Intake. Annual Review of Nutrition, 2016, 36, 73-103.	4.3	105

#	Article	IF	CITATIONS
20	A Mechanistic Study on Nanoparticle-Mediated Glucagon-Like Peptide-1 (GLP-1) Secretion from Enteroendocrine L Cells. Molecular Pharmaceutics, 2016, 13, 4222-4230.	2.3	24
21	Intestinal SGLT1 in metabolic health and disease. American Journal of Physiology - Renal Physiology, 2016, 310, G887-G898.	1.6	63
22	Endocannabinoids $\hat{a}\in$ " at the crossroads between the gut microbiota and host metabolism. Nature Reviews Endocrinology, 2016, 12, 133-143.	4.3	275
23	Daily Eating Patterns and Their Impact on Health and Disease. Trends in Endocrinology and Metabolism, 2016, 27, 69-83.	3.1	195
24	The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes and Endocrinology, the, 2016, 4, 525-536.	5 . 5	310
25	Apelin targets gut contraction to control glucose metabolism via the brain. Gut, 2017, 66, 258-269.	6.1	73
26	Functional Transcriptomics in Diverse Intestinal Epithelial Cell Types Reveals Robust MicroRNA Sensitivity in Intestinal Stem Cells to Microbial Status. Journal of Biological Chemistry, 2017, 292, 2586-2600.	1.6	105
27	Charting the Maternal and Infant Microbiome: What Is the Role of Diabetes and Obesity in Pregnancy?. Current Diabetes Reports, 2017, 17, 11.	1.7	26
28	Examining the gut bacteriome, virome, and mycobiome in glucose metabolism disorders: Are we on the right track?. Metabolism: Clinical and Experimental, 2017, 73, 52-66.	1.5	36
29	Surgically Induced Changes in Gut Microbiome and Hedonic Eating as Related to Weight Loss: Preliminary Findings in Obese Women Undergoing Bariatric Surgery. Psychosomatic Medicine, 2017, 79, 880-887.	1.3	105
30	Effects of obesity, energy restriction and neutering on the faecal microbiota of cats. British Journal of Nutrition, 2017, 118, 513-524.	1.2	27
31	Type 2 Diabetes and Bacteremia. Annals of Nutrition and Metabolism, 2017, 71, 17-22.	1.0	22
32	Stenotrophomonas-Like Bacteria Are Widespread Symbionts in Cone Snail Venom Ducts. Applied and Environmental Microbiology, 2017, 83, .	1.4	10
33	The microbiota–gut–brain axis in obesity. The Lancet Gastroenterology and Hepatology, 2017, 2, 747-756.	3.7	408
34	Dietary fiber in irritable bowel syndrome (Review). International Journal of Molecular Medicine, 2017, 40, 607-613.	1.8	103
35	Cardiovascular and Antiobesity Effects of Resveratrol Mediated through the Gut Microbiota. Advances in Nutrition, 2017, 8, 839-849.	2.9	104
36	Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cellular and Molecular Life Sciences, 2017, 74, 3769-3787.	2.4	362
37	Dietary Resistant Starch Supplementation Increases High-Density Lipoprotein Particle Number in Pigs Fed a Western Diet. Journal of Dietary Supplements, 2017, 14, 334-345.	1.4	8

#	Article	IF	CITATIONS
38	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	2.6	155
39	Gut microbiota–derived short-chain fatty acids and kidney diseases. Drug Design, Development and Therapy, 2017, Volume 11, 3531-3542.	2.0	108
40	The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota. Nutrients, 2017, 9, 173.	1.7	40
41	Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes, 2017, 8, 250.	1.0	104
42	Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiology, 2017, 17, 151.	1.3	128
43	Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World Journal of Gastroenterology, 2017, 23, 5068.	1.4	46
44	Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359, 1151-1156.	6.0	1,521
45	Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food and Function, 2018, 9, 1672-1682.	2.1	87
46	Dietary Patterns and Fiber in Body Weight and Composition Regulation., 2018,, 195-232.		0
47	Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity, 2018, 26, 792-800.	1.5	141
48	Effects of infant formula composition on long-term metabolic health. Journal of Developmental Origins of Health and Disease, 2018, 9, 573-589.	0.7	35
49	Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease?. Pharmacological Research, 2018, 130, 152-163.	3.1	66
50	Gut microbiota in cardiovascular disease and heart failure. Clinical Science, 2018, 132, 85-91.	1.8	63
51	Microbiota and metabolic diseases. Endocrine, 2018, 61, 357-371.	1.1	280
52	Dietary Fiber in Health and Disease. , 2018, , .		6
53	Fiber and Healthy Dietary Patterns in Weight Regulation. , 2018, , 163-200.		1
54	Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics, 2018, 15, 36-59.	2.1	358
55	Contributions of the intestinal microbiome in lung immunity. European Journal of Immunology, 2018, 48, 39-49.	1.6	155

#	Article	IF	CITATIONS
56	Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Frontiers in Pharmacology, 2018, 9, 1382.	1.6	78
57	The Effect of White Rice and White Bread as Staple Foods on Gut Microbiota and Host Metabolism. Nutrients, 2018, 10, 1323.	1.7	15
58	Microbiome and diabetes: Where are we now?. Diabetes Research and Clinical Practice, 2018, 146, 111-118.	1.1	93
59	Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 671-682.	8.2	257
60	The Relationship between Frequently Used Glucose-Lowering Agents and Gut Microbiota in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2018, 2018, 1-7.	1.0	18
61	<i>Clostridium butyricum</i> Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior in Mice via the Gut-Brain Axis. Journal of Agricultural and Food Chemistry, 2018, 66, 8415-8421.	2.4	117
62	Galactomannan More than Pectin Exacerbates Liver Injury in Mice Fed with Highâ€Fat, Highâ€Cholesterol Diet. Molecular Nutrition and Food Research, 2018, 62, e1800331.	1.5	8
63	A Randomized Placebo Controlled Clinical Trial to Determine the Impact of Digestion Resistant Starch MSPrebiotic® on Glucose, Insulin, and Insulin Resistance in Elderly and Mid-Age Adults. Frontiers in Medicine, 2017, 4, 260.	1.2	30
64	Gut Microbiota Play an Essential Role in the Antidiabetic Effects of Rhein. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-8.	0.5	17
65	Combining Short-Term Interval Training with Caloric Restriction Improves ß-Cell Function in Obese Adults. Nutrients, 2018, 10, 717.	1.7	20
66	TNF signaling impacts glucagon-like peptide-1 expression and secretion. Journal of Molecular Endocrinology, 2018, 61, 153-161.	1.1	6
67	The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. International Urology and Nephrology, 2018, 50, 1453-1466.	0.6	105
68	Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. Journal of Nutritional Biochemistry, 2018, 62, 143-154.	1.9	109
69	The Potential Role of the Dipeptidyl Peptidase-4-Like Activity From the Gut Microbiota on the Host Health. Frontiers in Microbiology, 2018, 9, 1900.	1.5	47
70	Changes in Ileal Microbial Composition and Microbial Metabolism by an Early-Life Galacto-Oligosaccharides Intervention in a Neonatal Porcine Model. Nutrients, 2019, 11, 1753.	1.7	37
71	Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms, 2019, 7, 456.	1.6	56
72	Probiotics for glycemic control in patients with type 2 diabetes mellitus: protocol for a systematic review. Systematic Reviews, 2019, 8, 227.	2.5	15
73	The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. Experimental Biology and Medicine, 2019, 244, 514-525.	1.1	18

#	Article	IF	Citations
74	Neuromodulatory effect of microbiome on gut-brain axis; new target for obesity drugs. Journal of Diabetes and Metabolic Disorders, 2019, 18, 263-265.	0.8	14
75	Prebiotics from Seaweeds: An Ocean of Opportunity?. Marine Drugs, 2019, 17, 327.	2.2	77
76	Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Frontiers in Endocrinology, 2019, 10, 82.	1.5	66
77	Gut Dysbiosis in Arterial Hypertension. , 2019, , 243-249.		O
78	Using herbal medicine to target the "microbiota-metabolism-immunity―axis as possible therapy for cardiovascular disease. Pharmacological Research, 2019, 142, 205-222.	3.1	27
79	Fluoxetine ameliorates dysbiosis in a depression model induced by chronic unpredicted mild stress in mice. International Journal of Medical Sciences, 2019, 16, 1260-1270.	1.1	75
80	Diet in Parkinson's Disease: Critical Role for the Microbiome. Frontiers in Neurology, 2019, 10, 1245.	1.1	83
81	The Gut Microbiota: A Clinically Impactful Factor in Patient Health and Disease. SN Comprehensive Clinical Medicine, 2019, 1, 188-199.	0.3	14
82	Importance of gut microbiota in obesity. European Journal of Clinical Nutrition, 2019, 72, 26-37.	1.3	88
83	Gut Microbiota; Its Importance in Obesity. , 2019, , 353-362.		1
84	Ferulic Acid Produced by Lactobacillus fermentum Influences Developmental Growth Through a dTOR-Mediated Mechanism. Molecular Biotechnology, 2019, 61, 1-11.	1,3	21
85	Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease. Hypertension Research, 2019, 42, 123-140.	1.5	72
86	Gut microbiota alterations and dietary modulation in childhood malnutrition â€" The role of short chain fatty acids. Clinical Nutrition, 2019, 38, 615-630.	2.3	65
87	Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 2020, 1461, 37-52.	1.8	186
88	Targeting the Enteric Nervous System to Treat Metabolic Disorders? "Enterosynes―as Therapeutic Gut Factors. Neuroendocrinology, 2020, 110, 139-146.	1,2	30
89	Evaluation of probiotics for improving and regulation metabolism relevant to type 2 diabetes in vitro. Journal of Functional Foods, 2020, 64, 103664.	1.6	16
90	Cortex Phellodendri extract's anti-diarrhea effect in mice related to its modification of gut microbiota. Biomedicine and Pharmacotherapy, 2020, 123, 109720.	2.5	30
91	Interplay Between Gut Microbiota and Gastrointestinal Peptides:ÂPotential Outcomes on the Regulation of Glucose Control. Canadian Journal of Diabetes, 2020, 44, 359-367.	0.4	14

#	Article	IF	Citations
92	Probiotics and prebiotics, including fibers and medicinal foods., 2020,, 587-600.		3
93	The Role of Gut Microbiota in Host Lipid Metabolism: An Eye on Causation and Connection. Small Methods, 2020, 4, 1900604.	4.6	3
94	The antidiabetic effect and potential mechanisms of natural polysaccharides based on the regulation of gut microbiota. Journal of Functional Foods, 2020, 75, 104222.	1.6	32
95	Microbiota and Obesity: Where Are We Now?. Biology, 2020, 9, 415.	1.3	45
96	The impact of antibiotics on the metabolic status of obese adults without bacterial infection: a systematic review and meta-analysis. Annals of Translational Medicine, 2020, 8, 1059-1059.	0.7	4
97	Short-Chain Fatty Acids: A Soldier Fighting Against Inflammation and Protecting From Tumorigenesis in People With Diabetes. Frontiers in Immunology, 2020, 11, 590685.	2.2	41
98	The role of gut microbiome in chemical-induced metabolic and toxicological murine disease models. Life Sciences, 2020, 258, 118172.	2.0	21
99	Corni Fructus as a Natural Resource Can Treat Type 2 Diabetes by Regulating Gut Microbiota. The American Journal of Chinese Medicine, 2020, 48, 1385-1407.	1.5	18
100	The Emerging Role of Gut Dysbiosis in Cardio-metabolic Risk Factors for Heart Failure. Current Hypertension Reports, 2020, 22, 38.	1.5	19
101	The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert Review of Neurotherapeutics, 2020, 20, 673-686.	1.4	26
102	Discovery of a bacterial peptide as a modulator of GLP-1 and metabolic disease. Scientific Reports, 2020, 10, 4922.	1.6	22
103	The gut microbiome in Parkinson's disease: A culprit or a bystander?. Progress in Brain Research, 2020, 252, 357-450.	0.9	70
104	Modulation of Gut Microbial Community and Metabolism by Dietary Glycyl-Glutamine Supplementation May Favor Weaning Transition in Piglets. Frontiers in Microbiology, 2019, 10, 3125.	1.5	20
105	Exploration of the Relationship Between Gut Microbiota and Polycystic Ovary Syndrome (PCOS): a Review. Geburtshilfe Und Frauenheilkunde, 2020, 80, 161-171.	0.8	61
106	Diets naturally rich in polyphenols and/or long-chain n-3 polyunsaturated fatty acids differently affect microbiota composition in high-cardiometabolic-risk individuals. Acta Diabetologica, 2020, 57, 853-860.	1,2	40
107	Bifidobacterium longum counters the effects of obesity: Partial successful translation from rodent to human. EBioMedicine, 2021, 63, 103176.	2.7	64
108	The distribution and chemical coding of enteroendocrine cells in Trypanosoma cruzi-infected individuals with chagasic megacolon. Histochemistry and Cell Biology, 2021, 155, 451-462.	0.8	1
109	Specific alterations in gut microbiota in patients with chronic kidney disease: an updated systematic review. Renal Failure, 2021, 43, 102-112.	0.8	57

#	Article	IF	CITATIONS
110	PET evaluation of light-induced modulation of microglial activation and GLP-1R expression in depressive rats. Translational Psychiatry, 2021, 11, 26.	2.4	8
111	Gut Microbiota in Bone Health and Diabetes. Current Osteoporosis Reports, 2021, 19, 462-479.	1.5	21
113	Enhancing bile tolerance of <i>Lactobacilli</i> is involved in the hypolipidemic effects of liraglutide. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1395-1404.	0.6	1
114	Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 632335.	1.5	63
115	Citrus polymethoxyflavones as regulators of metabolic homoeostasis: Recent advances for possible mechanisms. Trends in Food Science and Technology, 2021, 110, 743-753.	7.8	22
116	Reversal of Functional Brain Activity Related to Gut Microbiome and Hormones After VSG Surgery in Patients With Obesity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3619-e3633.	1.8	7
117	Obesity-related gut hormones and cancer: novel insight into the pathophysiology. International Journal of Obesity, 2021, 45, 1886-1898.	1.6	8
118	Cardiometabolic impacts of saturated fatty acids: are they all comparable?. International Journal of Food Sciences and Nutrition, 2022, 73, 1-14.	1.3	12
119	Effect of different HbA1c levels on the gut microbiota in patients with typeÂ2 diabetes mellitus. World Academy of Sciences Journal, 2021, 3, .	0.4	0
120	Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Archives of Microbiology, 2021, 203, 5281-5308.	1.0	56
121	Simple Energy Balance or Microbiome for Childhood Obesity Prevention?. Nutrients, 2021, 13, 2730.	1.7	3
122	Combination therapy of curcumin and fecal microbiota transplant: Potential treatment of polycystic ovarian syndrome. Medical Hypotheses, 2021, 154, 110644.	0.8	21
123	The Glymphatic System: A Novel Component of Fundamental Neurobiology. Journal of Neuroscience, 2021, 41, 7698-7711.	1.7	105
124	Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology, 2021, 197, 108721.	2.0	27
125	Microbiome reduction prevents lipid accumulation during early diapause in the northern house mosquito, Culex pipiens pipiens. Journal of Insect Physiology, 2021, 134, 104295.	0.9	12
126	Gut Microbiota and Aging: A Broad Perspective. , 2021, , 1543-1563.		O
127	Insulinorésistance., 2021,, 203-207.		0
128	Gut Microbiota and Aging: A Broad Perspective. , 2020, , 1-21.		2

#	ARTICLE	IF	CITATIONS
131	Role of Fiber and Healthy Dietary Patterns in Body Weight Regulation and Weight Loss. Advances in Obesity Weight Management $\&$ Control, 2015, 3, .	0.4	4
132	Disentangling dysbiosis in chronic kidney disease. Journal of Renal Nutrition and Metabolism, 2021, 7, 26.	0.1	0
133	The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist – from fundamentals to future challenges. Free Radical Biology and Medicine, 2021, 176, 265-285.	1.3	27
135	Relationship of clinical efficacy of glucose lowering agents, gut microbiota, diet, and patient's genotype in diabetes mellitus type 2. Reviews on Clinical Pharmacology and Drug Therapy, 2018, 16, 11-18.	0.2	0
136	Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxidants and Redox Signaling, 2022, 37, 394-415.	2.5	18
137	Association between gut dysbiosis and chronic kidney disease: a narrative review of the literature. Journal of International Medical Research, 2021, 49, 030006052110532.	0.4	23
138	Gut Microbiota and Health. , 2020, , 31-79.		0
139	Gut microbiota and autoimmune diseases (Literature review). Ukrains Kyi Visnyk Psykhonevrolohii, 2020, , 63-69.	0.0	0
140	Microbial metabolites beneficial in regulation of obesity., 2022,, 355-375.		1
141	How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Frontiers in Neuroendocrinology, 2022, 65, 100972.	2.5	15
142	As inter-relações entre a depressão e a disbiose intestinal: uma revisão integrativa. Research, Society and Development, 2020, 9, e149108063.	0.0	0
143	Effect of probiotics and incretine mimeticss on the levels of glucagon-like peptide-1 in blood serum of patients with type 2 diabetes mellitus. Mìžnarodnij EndokrinologìÄnij Žzurnal, 2021, 17, 604-612.	0.1	0
144	Crosstalk between adipose tissue and the microbiota-gut-brain axis in metabolic diseases. International Journal of Biological Sciences, 2022, 18, 1706-1723.	2.6	5
145	1,2,3,4,6-Penta-O-galloyl-d-glucose Interrupts the Early Adipocyte Lifecycle and Attenuates Adiposity and Hepatic Steatosis in Mice with Diet-Induced Obesity. International Journal of Molecular Sciences, 2022, 23, 4052.	1.8	6
146	Non-alcoholic fatty liver disease in irritable bowel syndrome: More than a coincidence?. World Journal of Hepatology, 2021, 13, 1816-1827.	0.8	6
149	Implications of microbe-mediated crosstalk in the gut: Impact on metabolic diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, , 159180.	1.2	2
150	Eugenol alleviated nonalcoholic fatty liver disease in rat via a gut-brain-liver axis involving glucagon-like Peptide-1. Archives of Biochemistry and Biophysics, 2022, 725, 109269.	1.4	4
151	The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier. Carbohydrate Polymers, 2022, 291, 119626.	5.1	41

#	Article	IF	CITATIONS
152	Nutritional Treatment of Patients with Colorectal Cancer. International Journal of Environmental Research and Public Health, 2022, 19, 6881.	1.2	12
154	Bile acid metabolism and signaling, the microbiota, and metabolic disease., 2022, 237, 108238.		62
155	5:2 intermittent fasting tapers food intake in the refeeding state and ameliorates metabolic disturbances in mice exposed to olanzapine. Frontiers in Psychiatry, $0, 13, .$	1.3	2
156	Probiotic (protexin) modulates glucose level in sucrose-induced hyperglycaemia in Harwich strain Drosophila melanogaster. Bulletin of the National Research Centre, 2022, 46, .	0.7	0
157	Riboflavin Supplementation Promotes Butyrate Production in the Absence of Gross Compositional Changes in the Gut Microbiota. Antioxidants and Redox Signaling, 0, , .	2.5	4
158	Gut microbiota: A new target for T2DM prevention and treatment. Frontiers in Endocrinology, 0, 13 , .	1.5	29
159	Intestinal phages interact with bacteria and are involved in human diseases. Gut Microbes, 2022, 14, .	4.3	26
160	Alterations in Fecal Short-Chain Fatty Acids after Bariatric Surgery: Relationship with Dietary Intake and Weight Loss. Nutrients, 2022, 14, 4243.	1.7	8
161	Gene-diet interaction in response to defatted flaxseed flour supplementation on obesity-related traits in Chinese over-weight/obese subjects: a randomized controlled trial. Nutrition, 2022, , 111870.	1.1	0
162	Deciphering the gut microbiome in neurodegenerative diseases and metagenomic approaches for characterization of gut microbes. Biomedicine and Pharmacotherapy, 2022, 156, 113958.	2.5	20
163	Multi-target regulation of intestinal microbiota by berberine to improve type 2 diabetes mellitus. Frontiers in Endocrinology, 0, 13 , .	1.5	5
164	Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion. Gut Microbes, 2022, 14, .	4.3	19
165	The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Frontiers in Immunology, $0, 13, \ldots$	2.2	5
166	Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway. International Journal of Biological Macromolecules, 2023, 230, 123241.	3.6	14
167	Gut Microbiota–MicroRNA Interactions in Intestinal Homeostasis and Cancer Development. Microorganisms, 2023, 11, 107.	1.6	9
168	Kynurenine Pathway in Diabetes Mellitus—Novel Pharmacological Target?. Cells, 2023, 12, 460.	1.8	23
169	Disease mechanisms as subtypes: Microbiome. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 107-131.	1.0	2
171	Alterations of the gut microbiota in type 2 diabetics with or without subclinical hypothyroidism. PeerJ, 0, 11, e15193.	0.9	2

#	Article	IF	CITATIONS
172	Effects of the synbiotic composed of mangiferin and Lactobacillus reuteri $1\hat{a}\in$ "12 on type 2 diabetes mellitus rats. Frontiers in Microbiology, 0, 14, .	1.5	1
174	Metabolism of Dietary Substrates by Intestinal Bacteria and Consequences for the Host Intestine. , 2023, , 45-144.		0
180	Probiotics as Potential Remedy for Restoration of Gut Microbiome and Mitigation of Polycystic Ovarian Syndrome., 2023, , 1-33.		0