CITATION REPORT List of articles citing

High-density sodium and lithium ion battery anodes from banana peels

DOI: 10.1021/nn502045y ACS Nano, 2014, 8, 7115-29.

Source: https://exaly.com/paper-pdf/59720739/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
731	A Few-Layer SnS2/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage.		
730	Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries.		
729	Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS2 Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries.		
728	Tailoring Hollow Nanostructures by Catalytic Strategy for Superior Lithium and Sodium Storage.		
727	Developing an Interpenetrated Porous and Ultrasuperior Hard-Carbon Anode via a Promising Molten-Salt Evaporation Method.		
726	Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading.		
725	Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays.		
724	Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS2 for Lithium and Sodium Storage.		
723	Revealing the Sodium Storage Mechanism in High-Temperature-Synthesized Silicon Oxycarbides.		
722	N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature. 2014 , 4, 62673-62677		46
721	Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. 2014 , 2, 19685-	19695	146
720	Nanocups-on-microtubes: a unique host towards high-performance lithium ion batteries. 2014 , 2, 1519	1-1519	9922
719	Activation with Li enables facile sodium storage in germanium. 2014 , 14, 5873-82		102
718	Sulfur Refines MoO2 Distribution Enabling Improved Lithium Ion Battery Performance. 2014 , 118, 1838	37-183	196 9
717	Possibilities of nanosheet graphenes in synthetic graphite. 2015 , 4, 90-96		1
716	Tailoring MoO2/Graphene Oxide Nanostructures for Stable, High-Density Sodium-Ion Battery Anodes. 2015 , 3, 1108-1114		50
715	Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. 2015 , 27, 7861-6		892

(2015-2015)

714	A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density. 2015 , 27, 6962-8	155
713	Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life. 2015 , 8, 3576-81	79
712	Sundew adhesive: a naturally occurring hydrogel. 2015 , 12,	22
711	Amorphous (Glassy) Carbon, a Promising Material for Sodium Ion Battery Anodes: a Combined First-Principles and Experimental Study. 2015 , 119, 13496-13501	44
710	Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. 2015 , 93, 315-324	317
709	Carbonaceous photonic crystals as ultralong cycling anodes for lithium and sodium batteries. 2015 , 3, 13786-13793	17
708	One-dimensional nanofiber architecture of an anatase TiO2Barbon composite with improved sodium storage performance. 2015 , 5, 106252-106257	12
707	Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. 2015 , 5, 97427-97434	53
706	Recent Development on Anodes for Na-Ion Batteries. 2015 , 55, 486-507	151
705	3D MoS2 L raphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties. 2015 , 25, 1780-1788	436
704	Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. 2015 , 12, 224-230	301
703	Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. 2015 , 15, 1018-24	99
702	Low-surface-area hard carbon anode for na-ion batteries via graphene oxide as a dehydration agent. 2015 , 7, 2626-31	188
701	Recent developments in electrode materials for sodium-ion batteries. 2015 , 3, 9353-9378	357
700	Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries. 2015 , 3, 6742-6746	64
699	From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. 2015 , 8, 2998-3010	64
698	Scalable and rapid Far Infrared reduction of graphene oxide for high performance lithium ion batteries. 2015 , 1, 9-16	30
697	Properties and sodium insertion behavior of Phenolic Resin-based hard carbon microspheres obtained by a hydrothermal method. 2015 , 755, 87-91	34

696	New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. 2015 , 15, 5888-92	492
695	Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. 2015 , 94, 888-894	130
694	Three-dimensional carbon foam supported tin oxide nanocrystallites with tunable size range: Sulfonate anchoring synthesis and high rate lithium storage properties. 2015 , 294, 208-215	26
693	Polystyrene-derived carbon with hierarchical macrofhesofhicroporous structure for high-rate lithium-ion batteries application. 2015 , 50, 6649-6655	19
692	Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. 2015 , 176, 533-541	186
691	Trash to Treasure: Transforming Waste Polystyrene Cups into Negative Electrode Materials for Sodium Ion Batteries. 2015 , 3, 2153-2159	46
690	Electrospun pitch/polyacrylonitrile composite carbon nanofibers as high performance anodes for lithium-ion batteries. 2015 , 159, 341-344	31
689	Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. 2015 , 51, 13205-8	113
688	VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries. 2015 , 3, 14750-14758	86
687	Hollow carbon-shell/carbon-nanorod arrays for high performance Li-ion batteries and supercapacitors. 2015 , 5, 7959-7963	14
686	Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. 2015 , 91, 88-95	161
685	Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. 2015 , 6, 6929	834
684	Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries. 2015 , 13, 537-545	73
683	2D hybrid anode based on SnS nanosheet bonded with graphene to enhance electrochemical performance for lithium-ion batteries. 2015 , 5, 46941-46946	61
682	Graphene-based nano-materials for lithiumBulfur battery and sodium-ion battery. 2015, 15, 379-405	190
681	Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. <i>ACS Nano</i> , 2015 , 9, 2556-64	1164
680	Computational chemistry for graphene-based energy applications: progress and challenges. 2015 , 7, 6883-908	49
679	Sweet potato-derived carbon nanoparticles as anode for lithium ion battery. 2015 , 5, 40737-40741	52

(2015-2015)

678	Batteries. 2015 , 8, 1856-61	76
677	Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn-air batteries. 2015 , 51, 8841-4	87
676	High-Performance Sb/Sb2 O3 Anode Materials Using a Polypyrrole Nanowire Network for Na-Ion Batteries. 2015 , 11, 2885-92	95
675	Sodium-Ion Storage in Pyroprotein-Based Carbon Nanoplates. 2015 , 27, 6914-21	107
674	Review P ractical Issues and Future Perspective for Na-Ion Batteries. 2015 , 162, A2538-A2550	479
673	A high performance sulfur-doped disordered carbon anode for sodium ion batteries. 2015 , 8, 2916-2921	429
672	Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors. 2015 , 1, 458-476	25
671	Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. 2015 , 7, 23291-6	101
670	Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. 2015 , 3, 20560-20	05 66 4
669	Encapsulating selenium into macro-/micro-porous biochar-based framework for high-performance lithium-selenium batteries. 2015 , 95, 354-363	77
668	Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery. 2015 , 180, 227-233	36
667	Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. 2015 , 51, 16045-8	92
666	Fluorine-Doped Carbon Particles Derived from Lotus Petioles as High-Performance Anode Materials for Sodium-Ion Batteries. 2015 , 119, 21336-21344	128
665	Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries. 2015 , 7, 27124-30	168
664	Trash to Treasure: From Harmful Algal Blooms to High-Performance Electrodes for Sodium-Ion Batteries. 2015 , 49, 12543-50	72
663	CNTs in situ attached to 日 203 submicron spheres for enhancing lithium storage capacity. 2015 , 7, 340-50	24
662	Sustainable synthetic route for 臣e2O3/C hybrid as anode material for lithium-ion batteries. 2015 , 44, 2150-6	13
661	Few-Layered SnS2 on Few-Layered Reduced Graphene Oxide as Na-Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability. 2015 , 25, 481-489	354

660	Multicompartmental Micro/Nanofibers Toward Fiber Based Energy Devices. 2016, 6, 49-65	1
659	Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes. 2016 , 9,	54
658	Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries. 2016 , 2, 24	38
657	Nitrogen-Doped Banana Peel-Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors. 2016 , 6,	44
656	Development and Characterization of High-Performance Sodium-Ion Cells based on Layered Oxide and Hard Carbon. 2016 , 3, 1124-1132	21
655	Self-Supported Nanotube Arrays of Sulfur-Doped TiO2 Enabling Ultrastable and Robust Sodium Storage. 2016 , 28, 2259-65	385
654	Biomass-Derived Porous Carbon with Micropores and Small Mesopores for High-Performance Lithium-Sulfur Batteries. 2016 , 22, 3239-3244	92
653	Nanoarchitectured Array Electrodes for Rechargeable Lithium- and Sodium-Ion Batteries. 2016 , 6, 1502514	140
652	Ultra-Thick, Low-Tortuosity, and Mesoporous Wood Carbon Anode for High-Performance Sodium-Ion Batteries. 2016 , 6, 1600377	205
651	Enhanced Lithium Storage in Hierarchically Porous Carbon Derived from Waste Tea Leaves. 2016 , 6, 39099	30
650	Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. 2016 , 23, 129-137	142
649	Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. 2016 , 4, 6472-6478	227
	cycling performance. 2016, 4, 6472-6478	227
648	Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries. 2016 , 316, 132-138	63
648	Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode	
	Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries. 2016 , 316, 132-138	63
647	Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries. 2016 , 316, 132-138 Wild Fungus Derived Carbon Fibers and Hybrids as Anodes for Lithium-Ion Batteries. 2016 , 4, 2624-2631 Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion	63
6 ₄ 6	Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries. 2016, 316, 132-138 Wild Fungus Derived Carbon Fibers and Hybrids as Anodes for Lithium-Ion Batteries. 2016, 4, 2624-2631 Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. 2016, 26, 346-352 Three-dimensional polymer-derived ceramic/graphene paper as a Li-ion battery and supercapacitor	63 33 225

(2016-2016)

642	Facile one-step synthesis of highly graphitized hierarchical porous carbon nanosheets with large surface area and high capacity for lithium storage. 2016 , 6, 51146-51152	2
641	Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes. 2016 , 2, 162-8	116
640	Correlation Between Microstructure and Na Storage Behavior in Hard Carbon. 2016 , 6, 1501588	261
639	Tire-derived carbon composite anodes for sodium-ion batteries. 2016 , 316, 232-238	63
638	Improving the High-Voltage Li2FeMn3O8 Cathode by Chlorine Doping. 2016 , 8, 10820-5	13
637	Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. 2016 , 4, 8630-8635	145
636	Sodium-ion nanomachining to shape microcrystals into nanostructures and tune their properties. 2016 , 6, 42223-42228	1
635	Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries. 2016 , 329, 412-421	82
634	Sustainable carbon-sheets and their MnOII hybrid for Li-ion batteries. 2016 , 6, 79066-79071	7
633	Electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers as promising anodes for sodium-ion batteries. 2016 , 334, 170-178	38
632	MOF-derived, N-doped porous carbon coated graphene sheets as high-performance anodes for lithium-ion batteries. 2016 , 40, 9679-9683	24
631	3D grapheneflarbon nanotubeflickel ensembles as anodes in sodium-ion batteries. 2016 , 6, 99914-99918	5
630	SnS2 nanoplates as stable anodes for sodium ion and lithium ion batteries. 2016 , 31, 646-652	14
629	Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. 2016 , 27, 482-491	229
628	The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries. 2016 , 27, 664-672	33
627	First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications. 2016 , 324, 758-765	33
626	Hierarchically Porous N-Doped Carbon Nanosheets Derived From Grapefruit Peels for High-Performance Supercapacitors. 2016 , 1, 1441-1447	41
625	New Paradigms on the Nature of Solid Electrolyte Interphase Formation and Capacity Fading of Hard Carbon Anodes in Na-Ion Batteries. 2016 , 3, 1600449	48

624	Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. 2016 , 28, 216-223	76
623	In Situ Transmission Electron Microscopy Observation of Sodiation Desodiation in a Long Cycle, High-Capacity Reduced Graphene Oxide Sodium-Ion Battery Anode. 2016 , 28, 6528-6535	59
622	MetalBrganic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co3V2O8 microsphere anode for high energy lithium ion batteries. 2016 , 4, 14605-14613	56
621	Nitrogen-Doped Carbon Foams Synthesized from Banana Peel and Zinc Complex Template for Adsorption of CO2, CH4, and N2. 2016 , 30, 7298-7309	38
620	Novel Metal Chalcogenide SnSSe as a High-Capacity Anode for Sodium-Ion Batteries. 2016 , 28, 8645-8650	97
619	Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries. 2016 , 68, 2579-2584	19
618	Sodium ion storage in reduced graphene oxide. 2016 , 214, 319-325	42
617	Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. 2016 , 116, 9305-74	802
616	Superior Lithium-Ion Storage at Room and Elevated Temperature in an Industrial Woodchip Derived Porous Carbon. 2016 , 55, 8706-8712	15
615	Half and full sodium-ion batteries based on maize with high-loading density and long-cycle life. 2016 , 8, 15497-504	27
614	Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage. 2016 , 4, 12591-12601	70
613	Recent Progress in Electrode Materials for Sodium-Ion Batteries. 2016 , 6, 1600943	686
612	Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers. 2016 , 4, 12370-12386	134
611	High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by POx Doping. 2016 , 1, 395-401	136
610	Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. 2016 , 335, 20-30	71
609	High lithium and sodium anodic performance of nitrogen-rich ordered mesoporous carbon derived from alfalfa leaves by a ball-milling assisted template method. 2016 , 4, 17491-17502	24
608	High-performance supercapacitors and batteries derived from activated banana-peel with porous structures. 2016 , 222, 1257-1266	121
607	Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance. 2016 , 6, 26195	39

(2016-2016)

606	From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Roomand Elevated-Temperature Li-ion Storage. 2016 , 6, 20290	30
605	Enhanced Performance by Enlarged Nano-pores of Holly Leaf-derived Lamellar Carbon for Sodium-ion Battery Anode. 2016 , 6, 26246	28
604	Apple-Biowaste-Derived Hard Carbon as a Powerful Anode Material for Na-Ion Batteries. 2016 , 3, 292-298	162
603	Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. 2016 , 26, 513-523	505
602	Valorization of banana peel: a biorefinery approach. 2016 , 32,	16
601	Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries. 2016 , 8, 15991-6001	52
600	Activated Microporous Carbon Derived from Almond Shells for High Energy Density Asymmetric Supercapacitors. 2016 , 8, 15288-96	68
599	Pyro-synthesis of a nanostructured NaTi2(PO4)3/C with a novel lower voltage plateau for rechargeable sodium-ion batteries. 2016 , 474, 88-92	19
598	Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries. 2016 , 8, 18860-6	77
597	Citrus-Peel-Derived, Nanoporous Carbon Nanosheets Containing Redox-Active Heteroatoms for Sodium-Ion Storage. 2016 , 8, 3175-81	68
596	A new sodium storage mechanism of TiO2 for sodium ion batteries. 2016 , 3, 464-468	29
595	Air-expansion induced hierarchically porous carbonaceous aerogels from biomass materials with superior lithium storage properties. 2016 , 6, 7591-7598	17
594	Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries. 2016 , 302, 202-209	97
593	Activated carbon aerogels with developed mesoporosity as high-rate anodes in lithium-ion batteries. 2016 , 51, 5565-5571	33
592	Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Electrolyte Interface. 2016 , 28, 1625-1635	199
591	Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery. 2016 , 227, 1-8	30
590	Excellent energypower characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. 2016 , 4, 5149-5158	144
589	Cube-shaped Porous Carbon Derived from MOF-5 as Advanced Material for Sodium-Ion Batteries. 2016 , 196, 413-421	92

588	Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. 2016 , 8, 1337-43	59
587	Recycling of graphite anodes for the next generation of lithium ion batteries. 2016 , 46, 123-148	117
586	Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. 2016 , 99, 556-563	189
585	Integration of inorganic nanostructures with polydopamine-derived carbon: tunable morphologies and versatile applications. 2016 , 8, 1770-88	54
584	Expanded graphitic materials prepared from micro- and nanometric precursors as anodes for sodium-ion batteries. 2016 , 187, 496-507	28
583	Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery. 2016 , 8, 2204-10	124
582	Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. 2016 , 188, 103-110	171
581	Catalytic Effects of B/N-co-Doped Porous Carbon Incorporated with Ketjenblack Nanoparticles for All-Vanadium Redox Flow Batteries. 2016 , 163, A5144-A5149	45
580	Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes. 2016 , 18, 2106-2114	104
579	Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors. 2016 , 4, 372-378	102
578	Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. 2016 , 2, 107-138	314
577	Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage. 2017 , 29, 1605361	221
576	Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. 2017 , 17, 1296-1301	177
575	Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. 2017 , 33, 37-44	130
574	Insights into the Distinct Lithiation/Sodiation of Porous Cobalt Oxide by in Operando Synchrotron X-ray Techniques and Ab Initio Molecular Dynamics Simulations. 2017 , 17, 953-962	21
573	In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. 2017 , 228, 436-446	83
572	Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. 2017 , 701, 870-874	88
571	Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. 2017 , 5, 5761-5769	112

(2017-2017)

570	Effect of pyrolysis temperature of 3D graphene/carbon nanotubes anode materials on yield of carbon nanotubes and their electrochemical properties for Na-ion batteries. 2017 , 317, 793-799	18
569	Hard carbon anodes of sodium-ion batteries: undervalued rate capability. 2017 , 53, 2610-2613	126
568	MoO2@MoS2 Nanoarchitectures for High-Loading Advanced Lithium-Ion Battery Anodes. 2017 , 34, 1600223	44
567	A Few-Layer SnS2/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage. 2017 , 121, 3261-3269	99
566	Coordination of Surface-Induced Reaction and Intercalation: Toward a High-Performance Carbon Anode for Sodium-Ion Batteries. 2017 , 4, 1600500	64
565	Graphene-Based Phosphorus-Doped Carbon as Anode Material for High-Performance Sodium-Ion Batteries. 2017 , 34, 1600315	23
564	Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon. 2017 , 29, 1606860	119
563	Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials. 2017 , 13, 1604181	88
562	Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries. 2017 , 10, 2668-2676	97
561	Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. 2017 , 36, 322-330	348
560	Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries. 2017 , 9, 15484-15491	84
559	Sn B iBb alloys as anode materials for sodium ion batteries. 2017 , 5, 9661-9670	91
558	Synthesis of hard carbon from argan shells for Na-ion batteries. 2017 , 5, 9917-9928	151
557	Manipulating AdsorptionInsertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage. 2017 , 7, 1700403	486
556	An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. 2017 , 325, 14-24	174
555	Evaluating the Storage Behavior of Superior Low-Cost Anode Material from Biomass for High-Rate Sodium-Ion Batteries. 2017 , 164, A1431-A1437	16
554	Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries. 2017 , 2, 1687-1695	98
553	High-rate sodium ion anodes assisted by N-doped carbon sheets. 2017 , 1, 1130-1136	19

552	Research and application progress on key materials for sodium-ion batteries. 2017, 1, 986-1006	55
551	Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries. 2017 , 1, 1090-1097	39
550	Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. 2017 , 5, 9528-9532	105
549	Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. 2017 , 37, 108-117	128
548	Solvation behavior of carbonate-based electrolytes in sodium ion batteries. 2016 , 19, 574-586	108
547	Free-standing, binder-free polyacrylonitrile/asphalt derived porous carbon fiber 🖪 high capacity anode material for sodium-ion batteries. 2017 , 189, 206-209	15
546	Biomass-derived porous carbon electrode modified with nanostructured nickel-cobalt hydroxide for high-performance supercapacitors. 2017 , 21, 2975-2984	16
545	Biomass-derived carbon electrode materials for supercapacitors. 2017 , 1, 1265-1281	198
544	Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. 2017 , 359, 17-26	104
543	Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage. 2017 , 358, 85-92	70
542	Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping. 2017 , 7, 1602894	240
541	Engineering biorefinery residues from loblolly pine for supercapacitor applications. 2017 , 120, 304-312	42
540	Facile fabrication of N/S-doped carbon nanotubes with Fe3O4 nanocrystals enchased for lasting synergy as efficient oxygen reduction catalysts. 2017 , 5, 13189-13195	44
539	Controlled synthesis of macroscopic three-dimensional hollow reticulate hard carbon as long-life anode materials for Na-ion batteries. 2017 , 716, 210-219	36
538	Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading. 2017 , 10, 1767-1783	88
537	An All-Stretchable-Component Sodium-Ion Full Battery. 2017 , 29, 1700898	114
536	Sodium-ion batteries: present and future. 2017 , 46, 3529-3614	2356
535	A controlled red phosphorus@NiP core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. 2017 , 10, 1222-1233	146

(2017-2017)

534	NaV(PO)@nitrogen,sulfur-codoped 3D porous carbon enabling ultra-long cycle life sodium-ion batteries. 2017 , 9, 6048-6055	35
533	The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes. 2017 , 46, 1628-1636	7
532	Carbon Anode Materials for Advanced Sodium-Ion Batteries. 2017 , 7, 1602898	649
531	Scalable synthesis of TiO2 crystallites embedded in bread-derived carbon matrix with enhanced lithium storage performance. 2017 , 28, 9206-9220	12
530	Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor. 2017, 411, 170-176	80
529	Large-scale synthesis of ternary Sn5SbP3/C composite by ball milling for superior stable sodium-ion battery anode. 2017 , 235, 107-113	43
528	High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode. 2017 , 9, 391-397	94
527	Natural biomass-derived carbons for electrochemical energy storage. 2017 , 88, 234-241	103
526	Recent progress in rational design of anode materials for high-performance Na-ion batteries. 2017 , 7, 64-114	180
525	Nature-Inspired Electrochemical Energy-Storage Materials and Devices. 2017 , 7, 1601709	91
524	Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. 2017 , 7, 130-151	351
523	Laser Synthesis of Hard Carbon for Anodes in Na-Ion Battery. 2017 , 2, 1600227	15
522	A sustainable synthesis of biomass carbon sheets as excellent performance sodium ion batteries anode. 2017 , 21, 1305-1312	29
521	The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors. 2017 , 366, 270-277	43
520	Tremella-like N,O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. 2017 , 41, 285-292	124
519	Ni P@Carbon Core-Shell Nanoparticle-Arched 3D Interconnected Graphene Aerogel Architectures as Anodes for High-Performance Sodium-Ion Batteries. 2017 , 13, 1702138	96
518	Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. 2017 , 5, 22186-22192	59
517	Self-assembly synthesis of nitrogen-doped mesoporous carbons used as high-performance electrode materials in lithium-ion batteries and supercapacitors. 2017 , 41, 12901-12909	16

Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. **2017**, 7, 41504-415 $\frac{1}{17}$ 8

515	Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. 2017 , 251, 396-406	74
514	Carbonized Enteromorpha prolifera with porous architecture and its polyaniline composites as high-performance electrode materials for supercapacitors. 2017 , 802, 15-21	19
513	Tailored Carbon Anodes Derived from Biomass for Sodium-Ion Storage. 2017 , 5, 8720-8728	61
512	Nanotubular Hard Carbon Derived from Renewable Natural Seed Gel for High Performance Sodium-Ion Battery Anode. 2017 , 2, 6909-6915	6
511	High-yield humic acid-based hard carbons as promising anode materials for sodium-ion batteries. 2017 , 123, 727-734	47
510	Heteroatom facilitated preparation of electrodes for sodium ion batteries. 2017 , 7, 12659-12662	3
509	Densely-stacked N-doped porous carbon monolith derived from sucrose for high-volumetric energy storages. 2017 , 251, 263-269	3
508	Advanced Nanostructured Anode Materials for Sodium-Ion Batteries. 2017, 13, 1701835	149
507	Graphdiyne Nanowalls as Anode for Lithium l bn Batteries and Capacitors Exhibit Superior Cyclic Stability. 2017 , 253, 506-516	56
506	A Catalytic Microwave Process for Superfast Preparation of High-Quality Reduced Graphene Oxide. 2017 , 129, 15883-15888	13
505	A Catalytic Microwave Process for Superfast Preparation of High-Quality Reduced Graphene Oxide. 2017 , 56, 15677-15682	60
504	Ultra-High Pyridinic N-Doped Porous Carbon Monolith Enabling High-Capacity K-Ion Battery Anodes for Both Half-Cell and Full-Cell Applications. 2017 , 29, 1702268	281
503	Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage. 2017 , 29, 1702410	465
502	Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. 2017, 78, 351-358	39
501	P2-type transition metal oxides for high performance Na-ion battery cathodes. 2017 , 5, 18214-18220	66
500	High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. 2017 , 5, 19237-19244	159
499	Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. 2017 , 10, 4351-4359	38

(2018-2017)

498	High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries. 2017 , 363, 404-412	41
497	Hard Carbon Wrapped NaV(PO)@C Porous Composite Extending Cycling Lifespan for Sodium-Ion Batteries. 2017 , 9, 44485-44493	66
496	Buffer layer enhanced stability of sodium-ion storage. 2017 , 369, 138-145	23
495	A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. 2017 , 2, 310-315	42
494	3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. 2017 , 7, 4886	64
493	Nutty Carbon: Morphology Replicating Hard Carbon from Walnut Shell for Na Ion Battery Anode. 2017 , 2, 3601-3609	29
492	Sodium Carboxymethylcellulose Derived Oxygen-Rich Porous Carbon Anodes for High-Performance Lithium/Sodium-Ion Batteries. 2017 , 4, 500-507	11
491	Nitrogen-self-doped mesoporous carbons synthesized by the direct carbonization of ferric ammonium citrate for high-performance supercapacitors. 2017 , 21, 515-524	4
490	Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries. 2017 , 4, 1600243	356
489	Exceptional energy and new insight with a sodiumBelenium battery based on a carbon nanosheet cathode and a pseudographite anode. 2017 , 10, 153-165	155
488	Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries. 2017, 695, 632-637	55
487	The mechanism of the sodiation and desodiation in Super P carbon electrode for sodium-ion battery. 2017 , 340, 14-21	29
486	Ultrathin Surface Coating Enables the Stable Sodium Metal Anode. 2017 , 7, 1601526	238
485	Insights into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes. 2018 , 8, 1702781	124
484	A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode. 2018 , 382, 116-121	30
483	Carbon nanoparticle-based three-dimensional binder-free anode for rechargeable alkali-ion batteries. 2018 , 8, 29-36	12
482	Effects of CeO2 nanoparticles on electrochemical properties of carbon/CeO2 composites. 2018 , 446, 36-46	21
481	Constructing graphene-like nanosheets on porous carbon framework for promoted rate performance of Li-ion and Na-ion storage. 2018 , 271, 92-102	31

480	A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. 2018 , 8, 37-44	44
479	Room and elevated temperature lithium-ion storage in structurally submicron carbon spheres with mechanistic. 2018 , 134, 334-344	6
478	Tailoring graphitic nanostructures in hard carbons as anode materials achieving efficient and ultrafast sodium storage. 2018 , 53, 10313-10326	3
477	N-rich carbon coated CoSnO3 derived from in situ construction of a CoMOF with enhanced sodium storage performance. 2018 , 6, 4839-4847	70
476	Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. 2018 , 131, 79-85	111
475	Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. 2018 , 13, 274-282	93
474	Scalable synthesis of NiMoO4 microspheres with numerous empty nanovoids as an advanced anode material for Li-ion batteries. 2018 , 379, 278-287	54
473	Green and facile fabrication of hierarchical N-doped porous carbon from water hyacinths for high performance lithium/sodium ion batteries. 2018 , 2, 855-861	28
472	Silicon oxycarbide produced from silicone oil for high-performance anode material in sodium ion batteries. 2018 , 338, 126-136	42
471	Porous Ti3C2Tx MXene for Ultrahigh-Rate Sodium-Ion Storage with Long Cycle Life. 2018 , 1, 505-511	88
470	Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium-Ion Batteries. 2018 , 8, 1702403	164
469	Elucidation of the Sodium-Storage Mechanism in Hard Carbons. 2018, 8, 1703217	138
468	Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries. 2018, 13, 1248-1265	28
467	Readiness Level of Sodium-Ion Battery Technology: A Materials Review. 2018 , 2, 1700153	103
466	Pore-size-tunable nitrogen-doped polymeric frameworks for high performance sodium ion storage and supercapacitors. 2018 , 25, 1407-1416	3
465	Self-Powered Low-Platinum Nanorod Alloy Monoelectrodes for Rain Energy Harvest. 2018 , 6, 1606-1609	1
464	Electrochemical performances of lithium and sodium ion batteries based on carbon materials. 2018 , 61, 368-380	36
463	Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries. 2018 , 376, 184-190	30

(2018-2018)

462	Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. 2018 , 45, 220-228	134
461	A porous biomass-derived anode for high-performance sodium-ion batteries. 2018 , 129, 695-701	102
460	Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. 2018 , 316, 214-222	21
459	Tuning lattice spacing in titanate nanowire arrays for enhanced sodium storage and long-term stability. 2018 , 45, 337-345	26
458	Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen. 2018 , 259, 50-58	42
457	High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. 2018 , 378, 331-337	104
456	Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries. 2018 , 451, 298-305	41
455	Multidimensional Evolution of Carbon Structures Underpinned by Temperature-Induced Intermediate of Chloride for Sodium-Ion Batteries. 2018 , 5, 1800080	86
454	Self-assembled Mn-doped MoS2 hollow nanotubes with significantly enhanced sodium storage for high-performance sodium-ion batteries. 2018 , 5, 1587-1593	29
453	Carbon/Li4Ti5O12 Composite Spheres Prepared Using Chinese Yam as Carbon Source with Ultrahigh Capacity as Anode Materials for Lithium Ion Batteries. 2018 , 6, 2036-2044	7
452	Internal structure [Na storage mechanisms Œlectrochemical performance relations in carbons. 2018 , 97, 170-203	72
451	Self-heating-induced healing of lithium dendrites. 2018 , 359, 1513-1516	286
450	Silicon-Based Composite Negative Electrode Prepared from Recycled Silicon-Slicing Slurries and Lignin/Lignocellulose for Li-Ion Cells. 2018 , 6, 4759-4766	30
449	Synergic antimonyfilobium pentoxide nanomeshes for high-rate sodium storage. 2018 , 6, 6225-6232	16
448	Sodium-Ion Batteries (a Review). 2018 , 54, 113-152	57
447	Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. 2018 , 8, 1703238	262
446	Facile synthesis and excellent catalytic performance of nitrogen-doped porous carbons derived from banana peel towards oxygen reduction reaction. 2018 , 103, 63-69	8
445	Orderly meso-perforated spherical and apple-shaped 3D carbon microstructures for high-energy supercapacitors and high-capacity Li-ion battery anodes. 2018 , 6, 6422-6434	11

444	Design of pomegranate-like clusters with NiS2 nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance. 2018 , 6, 6595-6605	110
443	Walnut-Like MulticoreBhell MnO Encapsulated Nitrogen-Rich Carbon Nanocapsules as Anode Material for Long-Cycling and Soft-Packed Lithium-Ion Batteries. 2018 , 28, 1800003	148
442	From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium-Ion Batteries through Carbon Anode Optimization. 2018 , 8, 1703268	244
441	Sn-MOF derived bimodal-distributed SnO2 nanosphere as a high performance anode of sodium ion batteries with high gravimetric and volumetric capacities. 2018 , 99, 45-51	40
440	Sodium-Ion Battery Anodes Comprising Carbon Sheets: Stable Cycling in Half- and Full-Pouch Cell Configuration. 2018 , 6, 213-220	12
439	Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing. 2018 , 11, 2256-2264	21
438	Hard carbon derived from corn straw piths as anode materials for sodium ion batteries. 2018 , 24, 1075-1081	30
437	Sodium storage mechanism of N, S co-doped nanoporous carbon: Experimental design and theoretical evaluation. 2018 , 11, 274-281	83
436	Baby Diaper-Inspired Construction of 3D Porous Composites for Long-Term Lithium-Ion Batteries. 2018 , 28, 1704440	60
435	Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. 2018 , 128, 147-163	113
434	Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects. 2018 , 44, 327-335	154
433	Carbon with Expanded and Well-Developed Graphene Planes Derived Directly from Condensed Lignin as a High-Performance Anode for Sodium-Ion Batteries. 2018 , 10, 569-581	48
432	Space-confinement of MnO nanosheets in densely stacked graphene: Ultra-high volumetric capacity and rate performance for lithium-ion batteries. 2018 , 12, 94-102	58
431	Process optimization for producing hierarchical porous bamboo-derived carbon materials with ultrahigh specific surface area for lithium-sulfur batteries. 2018 , 738, 16-24	45
430	Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. 2018 , 6, 1513-1522	130
429	Enhanced Capacity and Rate Capability of Nitrogen/Oxygen Dual-Doped Hard Carbon in Capacitive Potassium-Ion Storage. 2018 , 30, 1700104	499
428	Auto-generated iron chalcogenide microcapsules ensure high-rate and high-capacity sodium-ion storage. 2018 , 10, 800-806	24
427	Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. 2018 , 129, 85-94	49

(2018-2018)

426	2018 , 2, 61-75		74
425	Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. 2018 , 127, 658-666		204
424	Organic materials for rechargeable sodium-ion batteries. 2018 , 21, 60-78		152
423	Sodium-Ion Battery Materials and Electrochemical Properties Reviewed. 2018 , 8, 1800079		280
422	Self-assembled 3D flower-like Fe3O4/C architecture with superior lithium ion storage performance. 2018 , 6, 24940-24948		62
421	Bioresource derived porous carbon from cottonseed hull for removal of triclosan and electrochemical application 2018 , 8, 42405-42414		11
420	Iron-Containing Carbon Nanocomposites Based on Cellulose. 2018 , 50, 154-160		3
419	Tailoring Hollow Nanostructures by Catalytic Strategy for Superior Lithium and Sodium Storage. 2018 , 10, 43953-43961		8
418	Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. 2018 , 10, 42796-42803		80
	Directional Flow-Aided Sonochemistry Yields Graphene with Tunable Defects to Provide		
417	Fundamental Insight on Sodium Metal Plating Behavior. ACS Nano, 2018 , 12, 12255-12268	16.7	39
417		16.7	3944
	Fundamental Insight on Sodium Metal Plating Behavior. <i>ACS Nano</i> , 2018 , 12, 12255-12268 Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion	16.7	
416	Fundamental Insight on Sodium Metal Plating Behavior. <i>ACS Nano</i> , 2018 , 12, 12255-12268 Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading. 2018 , 10, 41380-41388 Network Carbon with Macropores from Apple Pomace for Stable and High Areal Capacity of	16.7	44
416 415	Fundamental Insight on Sodium Metal Plating Behavior. <i>ACS Nano</i> , 2018 , 12, 12255-12268 Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading. 2018 , 10, 41380-41388 Network Carbon with Macropores from Apple Pomace for Stable and High Areal Capacity of Sodium Storage. 2018 , 6, 14751-14758 C-Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na-Ion	16.7	44
416 415 414	Fundamental Insight on Sodium Metal Plating Behavior. <i>ACS Nano</i> , 2018 , 12, 12255-12268 Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading. 2018 , 10, 41380-41388 Network Carbon with Macropores from Apple Pomace for Stable and High Areal Capacity of Sodium Storage. 2018 , 6, 14751-14758 C-Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na-Ion Storage. 2018 , 30, e1804833 Heteroatoms (O, N)-doped porous carbon derived from bamboo shoots shells for high performance	16.7	44 29 98
416 415 414 413	Fundamental Insight on Sodium Metal Plating Behavior. <i>ACS Nano</i> , 2018 , 12, 12255-12268 Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading. 2018 , 10, 41380-41388 Network Carbon with Macropores from Apple Pomace for Stable and High Areal Capacity of Sodium Storage. 2018 , 6, 14751-14758 C-Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na-Ion Storage. 2018 , 30, e1804833 Heteroatoms (O, N)-doped porous carbon derived from bamboo shoots shells for high performance supercapacitors. 2018 , 29, 20991-21001 Hollow Ni-CoSe Embedded in Nitrogen-Doped Carbon Nanocomposites Derived from	16.7	44299816
416 415 414 413 412	Fundamental Insight on Sodium Metal Plating Behavior. <i>ACS Nano</i> , 2018 , 12, 12255-12268 Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading. 2018 , 10, 41380-41388 Network Carbon with Macropores from Apple Pomace for Stable and High Areal Capacity of Sodium Storage. 2018 , 6, 14751-14758 C-Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na-Ion Storage. 2018 , 30, e1804833 Heteroatoms (O, N)-doped porous carbon derived from bamboo shoots shells for high performance supercapacitors. 2018 , 29, 20991-21001 Hollow Ni-CoSe Embedded in Nitrogen-Doped Carbon Nanocomposites Derived from Metal-Organic Frameworks for High-Rate Anodes. 2018 , 10, 38845-38852 Complete Utilization of Waste Pomegranate Peels To Produce a Hydrocolloid, Punicalagin Rich	16.7	4429981634

408	An Attempt to Improve Electrochemical Performances of Lignin-Based Hard Carbon Microspheres Anodes in Sodium-Ion Batteries by Using Hexamethylenetetramine. 2018 , 3, 9518-9525	8
407	Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method. 2018 , 14, e1802694	74
406	Self-Nitrogen-Doped Carbon from Plant Waste as an Oxygen Electrode Material with Exceptional Capacity and Cycling Stability for Lithium-Oxygen Batteries. 2018 , 10, 32212-32219	27
405	Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries. 2018 , 53, 12334-12351	34
404	Mesoporous MoSe2/C composite as anode material for sodium/lithium ion batteries. 2018, 823, 67-72	30
403	Surface Functionalization of Carbon Architecture with Nano-MnO for Effective Polysulfide Confinement in Lithium-Sulfur Batteries. 2018 , 11, 2375-2381	31
402	Bean dregs-derived hierarchical porous carbons as metal-free catalysts for efficient dehydrogenation of propane to propylene. 2018 , 93, 3410-3417	8
401	Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder. 2018 , 137, 475-483	37
400	Superior lithium/potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke. 2018 , 6, 12551-12558	64
399	Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. 2018 , 137, 165-173	70
398	Activated porous carbons derived from the Indonesian snake fruit peel as anode materials for sodium ion batteries. 2018 , 217, 254-261	32
397	Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. 2018 , 118, 6457-6498	504
396	Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes. 2018 , 11, 3276-3285	31
395	Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. 2018 , 6, 14742-14751	56
394	High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries. 2018 , 11,	23
393	Edge-Rich Quasi-Mesoporous Nitrogen-Doped Carbon Framework Derived from Palm Tree Bark Hair for Electrochemical Applications. 2018 , 10, 27047-27055	31
392	Three-dimensional carbon framework as a promising anode material for high performance sodium ion storage devices. 2018 , 353, 453-459	41
391	Designing MOFs-Derived FeS@Carbon Composites for High-Rate Sodium Ion Storage with Capacitive Contributions. 2018 , 10, 33097-33104	94

390	Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries. 2018 , 8,	17
389	Expanding Interlayer Spacing of Hard Carbon by Natural K Doping to Boost Na-Ion Storage. 2018 , 10, 27030-27038	64
388	Temperature effect on the synthesis of lignin-derived carbons for electrochemical energy storage applications. 2018 , 397, 296-306	24
387	Nitrogen-doped carbon-coated MnO nanoparticles anchored on interconnected graphene ribbons for high-performance lithium-ion batteries. 2018 , 397, 325-333	34
386	N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries. 2018 , 6, 78	22
385	Biowaste Lignin-Based Carbonaceous Materials as Anodes for Na-Ion Batteries. 2018 , 165, A1400-A1408	18
384	Complete hollow ZnFe2O4 nanospheres with huge internal space synthesized by a simple solvothermal method as anode for lithium ion batteries. 2018 , 462, 955-962	24
383	Biomass-derived nitrogen/oxygen co-doped hierarchical porous carbon with a large specific surface area for ultrafast and long-life sodium-ion batteries. 2018 , 462, 713-719	27
382	Production of high surface area activated carbons for energy storage applications using agricultural biomass residue from a C5-biorefinery. 2018 ,	2
381	Simple method to construct three-dimensional porous carbon for electrochemical energy storage. 2018 , 10, 15842-15853	8
380	Recent Advances in Sodium-Ion Battery Materials. 2018, 1, 294-323	154
379	Nitrogen-doped hierarchically porous carbonaceous nanotubes for lithium ion batteries. 2018 , 352, 964-971	20
378	A novel oxygen vacancy introduced microstructural reconstruction of SnO2-graphene nanocomposite: Demonstration of enhanced electrochemical performance for sodium storage. 2018 , 282, 351-361	18
377	Stable CarbonBelenium Bonds for Enhanced Performance in Tremella-Like 2D Chalcogenide Battery Anode. 2018 , 8, 1800927	52
376	Hard carbons derived from green phenolic resins for Na-ion batteries. 2018 , 139, 248-257	80
375	Reduced Graphene Oxide Using an Environmentally Friendly Banana Extracts. 2019 , 4, 2143-2151	0
374	Defective Carbon Nanosheets Derived from Syzygium cumini Leaves for Electrochemical Energy-Storage. 2019 , 4, 9079-9083	33
373	Carbon Anodes for Nonaqueous Alkali Metal-Ion Batteries and Their Thermal Safety Aspects. 2019 , 9, 1900550	68

372	P-Doped Hive-like Carbon Derived from Pinecone Biomass as Efficient Catalyst for LiD2 Battery. 2019 , 7, 14161-14169	22
371	N, P dual-doped carbon nanotube with superior high-rate sodium storage performance for sodium ion batteries. 2019 , 850, 113392	17
370	Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: Impact of lignin grade. 2019 , 153, 634-647	37
369	Extended AdsorptionInsertionIModel: A New Insight into the Sodium Storage Mechanism of Hard Carbons. 2019 , 9, 1901351	165
368	Rapid Sodium-Ion Storage in Hard Carbon Anode Material Derived from Ganoderma lucidum Residue with Inherent Open Channels. 2019 , 7, 14841-14847	16
367	An effective route for manufacturing a mushroom-derived carbon/SnO2/C functional composite. 2019 , 43, 12503-12510	2
366	Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. 2019 , 64, 103937	57
365	Chitosan derived N-doped carbon coated SnO2 nanocomposite anodes for Na-ion batteries. 2019 , 341, 115035	6
364	Fast Redox Kinetics in Bi-Heteroatom Doped 3D Porous Carbon Nanosheets for High-Performance Hybrid Potassium-Ion Battery Capacitors. 2019 , 9, 1901533	119
363	Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. 2019 , 444, 227310	29
362	Oxygen Functional Group Modification of Cellulose-Derived Hard Carbon for Enhanced Sodium Ion Storage. 2019 , 7, 18554-18565	31
361	Regulating Pore Structure of Hierarchical Porous Waste Cork-Derived Hard Carbon Anode for Enhanced Na Storage Performance. 2019 , 9, 1902852	102
360	A Green and Low-Cost Approach to Synthesize Bamboo Charcoal@Si@C Composites as Anode for High-Performance Li-Ion Batteries. 2019 , 166, A3631-A3638	3
359	Quinone-Based Redox Supercapacitor Using Highly Conductive Hard Carbon Derived from Oak Wood. 2019 , 3, 1900083	9
358	Revealing the sodium storage of surface C O structure in high performance Na-ion battery. 2019 , 854, 113554	3
357	Regulation of MMP9 expression by human arylamine N-acetyltransferase (NAT1) via Hif-1a. 2019 , 30, iii58	
356	Hard carbon derived from sepals of Palmyra palm fruit calyx as an anode for sodium-ion batteries. 2019 , 438, 227008	26
355	Graphene as Vehicle for Ultrafast Lithium Ion Capacitor Development Based on Recycled Olive Pit Derived Carbons. 2019 , 166, A2840-A2848	4

354	Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries. 2019 , 31, 7288-7299	43
353	Biomorphic carbon derived from corn husk as a promising anode materials for potassium ion battery. 2019 , 324, 134902	31
352	Metal-Organic Framework/Polythiophene Derivative: Neuronlike S-Doped Carbon 3D Structure with Outstanding Sodium Storage Performance. 2019 , 11, 37850-37858	12
351	Surface functionalization to abate the irreversible capacity of hard carbons derived from grapefruit peels for sodium-ion batteries. 2019 , 326, 134973	16
350	N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries. 2019 , 3, 717-722	27
349	Low-Temperature Growth of Hard Carbon with Graphite Crystal for Sodium-Ion Storage with High Initial Coulombic Efficiency: A General Method. 2019 , 9, 1803648	74
348	Title Confined Sn Nanoparticles into 3D Porous Carbon Skeleton for High Performance Lithium Storage. 2019 , 4, 1285-1291	3
347	Sodium storage in hard carbon with curved graphene platelets as the basic structural units. 2019 , 7, 3327-3	33576
346	Exploring room- and low-temperature performance of hard carbon material in half and full Na-ion batteries. 2019 , 316, 60-68	15
345	Electrode Materials for High-Performance Sodium-Ion Batteries. 2019 , 12,	27
344	Microtubular carbon fibers derived from bamboo and wood as sustainable anodes for lithium and sodium ion batteries. 2019 , 26, 1821-1830	19
343	Ternary Anode Design for Sustainable Battery Technology: An Off-Stoichiometric Sn/SnSiOx+2@C Composite Recycled from Biomass. 2019 ,	2
342	Facile and large-scalable synthesis of low cost hard carbon anode for sodium-ion batteries. 2019 , 14, 102404	35
341	Advanced Carbon Materials for Electrochemical Energy Storage. 2019 , 385-418	1
340	Carbon Nanosheet Frameworks Derived from Pine Cone Shells as Sodium-Ion Battery Anodes. 2019 , 956, 3-11	3
339	Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. 2019 , 430, 157-168	28
338	Ion- and air-tailored micro-honeycomb structures for superior Na-ion storage in coir-derived hard carbon. 2019 , 43, 10449-10457	4
337	Carbon-Dots-Derived 3D Highly Nitrogen-Doped Porous Carbon Framework for High-Performance Lithium Ion Storage. 2019 , 7, 9848-9856	25

336	Nanostructures and Nanomaterials for Sodium Batteries. 2019 , 265-312	1
335	Honeycomb-like Porous Carbon with Nanographitic Domains, Supported on Graphene Layers: Applicability for Lithium/Sodium Storage. 2019 , 7, 10986-10994	17
334	Facile synthesis of phosphorus-doped carbon under tuned temperature with high lithium and sodium anodic performances. 2019 , 551, 61-71	8
333	Nanostructures and Nanomaterials for Batteries. 2019,	9
332	Heteroatoms (N-, Si-) self-doped spongy carbon derived from wild fungus sharia bambusicola as electrode materials for supercapacitors. 2019 , 525, 110383	2
331	Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture. 2019 , 31, e1803444	74
330	Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method. 2019 , 481, 473-483	10
329	Hydrophilic binder interface interactions inducing inadhesion and capacity collapse in sodium-ion battery. 2019 , 427, 62-69	7
328	Emerging applications of biochar-based materials for energy storage and conversion. 2019 , 12, 1751-1779	265
327	Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. 2019 , 12, 2422-2432	171
326	Controlling carbon-oxygen double bond and pseudographic structure in shaddock peel derived hard carbon for enhanced sodium storage properties. 2019 , 313, 109-115	22
325	Microporous and hollow carbon spheres derived from soft drinks: Promising CO2 separation materials. 2019 , 286, 199-206	9
324	Materials by Design: Tailored Morphology and Structures of Carbon Anodes for Enhanced Battery Safety. 2019 , 11, 13334-13342	13
323	Carbon Anode Materials for Sodium-Ion Batteries. 2019 , 1-86	
322	Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors. 2019 , 304, 437-446	22
321	Hard carbons derived from waste tea bag powder as anodes for sodium ion battery. 2019 , 34, 515-524	14
320	Synthesis of novel hard mesoporous carbons and their applications as anodes for Li and Na ion batteries. 2019 , 147, 214-226	26
319	Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries. 2019 , 788, 1093-1102	21

318	Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodium-Ion Batteries. 2019, 12, 2302-2309	27
317	Large-scale synthesis of nitrogen-rich hierarchically porous carbon as anode for lithium-ion batteries with high capacity and rate capability. 2019 , 306, 339-349	18
316	Catalytic Synthesis of Hard/Soft Carbon Hybrids with Heteroatom Doping for Enhanced Sodium Storage. 2019 , 4, 3551-3558	3
315	Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. 2019 , 11, 12554-12561	84
314	Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. 2019 , 30, 9877-9887	11
313	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. 2019 , 119, 5416-5460	309
312	Catalytic Pyroprotein Seed Layers for Sodium Metal Anodes. 2019 , 11, 12401-12407	18
311	MoSe2 nanosheets embedded in mesoporous carbon as anode materials for sodium ion batteries. 2019 , 25, 3143-3152	5
310	Large-Scale Fabrication of Egg-Carton-Inspired Bi/C Composite toward High Volumetric Capacity and Long-Life Lithium Ion Batteries. 2019 , 7, 6033-6042	22
309	Coffee grounds-derived carbon as high performance anode materials for energy storage applications. 2019 , 97, 178-188	19
308	A N/S-codoped disordered carbon with enlarged interlayer distance derived from cirsium setosum as high-performance anode for sodium ion batteries. 2019 , 30, 21323-21331	O
307	Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. 2019 , 7, 26954-26965	24
306	High-performance sodium-ion batteries with a hard carbon anode: transition from the half-cell to full-cell perspective. 2019 , 11, 22196-22205	44
305	A graphite-modified natural stibnite mineral as a high-performance anode material for sodium-ion storage 2019 , 9, 28953-28960	11
304	Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode. 2019 , 18, 269-279	56
303	Fe2O3 anchored on porous N doped carbon derived from green microalgae via spray pyrolysis as anode materials for lithium ion batteries. 2019 , 69, 39-47	19
302	Enhanced Interfacial Kinetics of Carbon Monolith Boosting Ultrafast Na-Storage. 2019 , 15, e1804158	14
301	Lithium Ion Capacitor with Identical Carbon Electrodes Yields 6 s Charging and 100 000 Cycles Stability with 1% Capacity Fade. 2019 , 7, 2867-2877	28

300	Electrochemical Properties and Theoretical Capacity for Sodium Storage in Hard Carbon: Insights from First Principles Calculations. 2019 , 31, 658-677	33
299	Revealing sodium ion storage mechanism in hard carbon. 2019 , 145, 67-81	100
298	Human-Hair-Derived N, S-Doped Porous Carbon: An Enrichment and Degradation System for Wastewater Remediation in the Presence of Peroxymonosulfate. 2019 , 7, 2718-2727	81
297	A Ternary Fe1IIS@Porous Carbon Nanowires/Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries. 2019 , 9, 1803052	137
296	Pristine or Highly Defective? Understanding the Role of Graphene Structure for Stable Lithium Metal Plating. 2019 , 9, 1802918	79
295	Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. 2019 , 297, 250-257	48
294	Ultrafast Sodium/Potassium-Ion Intercalation into Hierarchically Porous Thin Carbon Shells. 2019 , 31, e1805430	148
293	Biomass-derived nanostructured porous carbons for sodium ion batteries: a review. 2019 , 34, 232-245	28
292	The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode. 2019 , 73, 1237-1246	13
291	Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. 2019 , 23, 87-104	276
290	Hard Carbon as Sodium-Ion Battery Anodes: Progress and Challenges. 2019 , 12, 133-144	152
289	Correlation between the microstructure of carbon materials and their potassium ion storage performance. 2019 , 143, 138-146	61
288	Defect-Rich Soft Carbon Porous Nanosheets for Fast and High-Capacity Sodium-Ion Storage. 2019 , 9, 1803260	143
287	Graphene Network Scaffolded Flexible Electrodes E rom Lithium to Sodium Ion Batteries. 2019 ,	
286	Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. 2019 , 56, 828-839	169
285	Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. 2019 , 538, 267-276	51
284	Mussel-Inspired Nitrogen-Doped Porous Carbon as Anode Materials for Sodium-Ion Batteries. 2019 , 7, 1800763	7
283	Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries. 2019 , 29, 17-22	70

(2020-2020)

282	with improved initial Coulombic efficiency. 2020 , 817, 152703	12
281	Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries. 2020 , 25, 324-333	44
280	Porous shiitake mushroom carbon composite with NiCo2O4 nanorod electrochemical characteristics for efficient supercapacitor applications. 2020 , 26, 345-354	12
279	Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. 2020 , 24, 439-449	66
278	Selective etching of C-N bonds for preparation of porous carbon with ultrahigh specific surface area and superior capacitive performance. 2020 , 24, 486-494	21
277	A sandwich-like porous hard carbon/graphene hybrid derived from rapeseed shuck for high-performance lithium-ion batteries. 2020 , 818, 152849	10
276	A composite of ultra-fine few-layer MoS2 structures embedded on N,P-co-doped bio-carbon for high-performance sodium-ion batteries. 2020 , 44, 2046-2052	4
275	Nonignorable Influence of Oxygen in Hard Carbon for Sodium Ion Storage. 2020 , 8, 1497-1506	77
274	Lignin-Derived Hard Carbon Microspheres Synthesized via Emulsion-Solvent Evaporation as Anode for Sodium Storage. 2020 , 8, 1901423	6
273	Micro versus nanochannels: carbon micro-sieve tubes from biological phloem tissues for lithiumBxygen batteries. 2020 , 22, 388-396	11
272	Recent advances in nanostructured carbon for sodium-ion batteries. 2020 , 8, 1604-1630	60
271	A controllable strategy for the self-assembly of WM nanocrystals/nitrogen-doped porous carbon superstructures (M = O, C, P, S, and Se) for sodium and potassium storage. 2020 , 8, 2047-2065	11
270	Impact of hydrolysis on surface area and energy storage applications of activated carbons produced from corn fiber and soy hulls. 2020 , 3, 19-28	10
269	A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. 2020 , 7, 402-410	70
268	ZnMn2O4/milk-derived Carbon hybrids with enhanced Lithium storage capability. 2020 , 45, 6874-6884	8
267	Ultrafast and durable lithium ion storage enabled by intertwined carbon nanofiber/Ti2Nb10O29 core-shell arrays. 2020 , 332, 135433	20
266	Nitrogen-Doped Hard Carbon on Nickel Foam as Free-Standing Anodes for High-Performance Sodium-Ion Batteries. 2020 , 7, 604-613	6
265	Revealing the Sodium Storage Mechanism in High-Temperature-Synthesized Silicon Oxycarbides. 2020 , 32, 410-423	7

264	Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization. 2020 , 26, 577-584	25
263	Extended plateau capacity of phosphorus-doped hard carbon used as an anode in Na- and K-ion batteries. 2020 , 391, 123576	46
262	Three-dimensional aerogel based on in-situ growth of 1T-MoS2 on functionalized hierarchical porous carbon/reduced graphene oxide for energy storage. 2020 , 506, 144811	9
261	Revealing the Effect of Nanopores in Biomass-Derived Carbon on its Sodium-Ion Storage Behavior. 2020 , 7, 201-211	13
260	Rapid deposition of WS2 platelet thin films as additive-free anode for sodium ion batteries with superior volumetric capacity. 2020 , 26, 534-542	13
259	Self-supported carbon nanofibers as negative electrodes for K-ion batteries: Performance and mechanism. 2020 , 362, 137125	10
258	Electrochemical energy storage electrodes from fruit biochar. 2020 , 284, 102263	13
257	Zinc Oxide Quantum Dots Embedded Porous Carbon Nanosheets for High-Capacity and Ultrastable Lithium-Ion Battery Anodes. 2020 , 1, 100186	4
256	Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries. 2020 , 26, e00227	9
255	Unraveling the Properties of Biomass-Derived Hard Carbons upon Thermal Treatment for a Practical Application in Na-Ion Batteries. 2020 , 13, 3513	15
254	Hard carbons for sodium-ion batteries and beyond. 2020 , 2, 042002	38
253	Sustainable Anodes for Lithium- and Sodium-Ion Batteries Based on Coffee Ground-Derived Hard Carbon and Green Binders. 2020 , 13, 6216	7
252	Gas expansion-assisted preparation of 3D porous carbon nanosheet for high-performance sodium ion hybrid capacitor. 2020 , 475, 228679	16
251	Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries. 2020 , 26, 5535-5542	9
250	Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy. 2020 , 3, 7474-7484	23
249	Reversible Insertion of Mg-Cl Superhalides in Graphite as a Cathode for Aqueous Dual-Ion Batteries. 2020 , 59, 19924-19928	15
248	Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors-A Mini-Review. 2020 , 10,	36
247	Effective synthesis route of renewable nanoporous carbon adsorbent for high energy gas storage and CO2/N2 selectivity. 2020 , 161, 30-42	14

(2020-2020)

246	Reversible Insertion of Mg-Cl Superhalides in Graphite as a Cathode for Aqueous Dual-Ion Batteries. 2020 , 132, 20096-20100	8
245	Analysis of Tortuosity in Compacts of Ternary Mixtures of Spherical Particles. 2020 , 13,	3
244	Toward high-performance hard carbon as an anode for sodium-ion batteries: Demineralization of biomass as a critical step. 2020 , 91, 317-329	12
243	Hierarchical Self-Supported Carbon Nanostructure Enables Superior Stability of Highly Nitrogen-Doped anodes. 2020 , 7, 3883-3888	1
242	Stabilizing Tin Anodes in Sodium-Ion Batteries by Alloying with Silicon. 2020 , 3, 9950-9962	3
241	Rational Route for Increasing Intercalation Capacity of Hard Carbons as Sodium-Ion Battery Anodes. 2020 , 13, 5762-5768	9
240	Insights into the Plateau Capacity Dependence on the Rate Performance and Cycling Stability of a Superior Hard Carbon Microsphere Anode for Sodium-Ion Batteries. 2020 , 3, 10045-10052	5
239	Interface-Induced Pseudocapacitance in Nonporous Heterogeneous Particles for High Volumetric Sodium Storage. 2020 , 30, 2002019	31
238	Assessment on the Use of High Capacity B n4P3 / NHC Composite Electrodes for Sodium-Ion Batteries with Ether and Carbonate Electrolytes. 2020 , 30, 2004798	27
237	Biochar as a Sustainable Resource to Drive Innovative Green Technologies. 2020 , 1-33	1
236	Construction of nitrogen-sulfur co-doped porous carbon to boost, integrate Li/Na/K ion storage. 2020 , 356, 115451	3
235	Hierarchical Multicavity Nitrogen-Doped Carbon Nanospheres as Efficient Polyselenide Reservoir for Fast and Long-Life Sodium-Selenium Batteries. 2020 , 16, e2005534	14
234	Encapsulated Sb and Sb2O3 particles in waste-tire derived carbon as stable composite anodes for sodium-ion batteries. 2020 , 4, 3613-3622	9
233	Na-lon batteries. 2020 , 1-64	1
232	Hard carbon anode derived from camellia seed shell with superior cycling performance for sodium-ion batteries. 2020 , 53, 414002	6
231	Biomass-Derived P/N-Co-Doped Carbon Nanosheets Encapsulate CuP Nanoparticles as High-Performance Anode Materials for Sodium-Ion Batteries. 2020 , 8, 316	5
230	Hard carbon microspheres derived from resorcinol formaldehyde resin as high-performance anode materials for sodium-ion battery. 2020 , 26, 4523-4532	17
229	Dual-Templating Approaches to Soybeans Milk-Derived Hierarchically Porous Heteroatom-Doped Carbon Materials for Lithium-Ion Batteries. 2020 , 9, 582-587	7

228	Optimization of the Carbon Content in Copper Phosphide Larbon Composites for High Performance Sodium Secondary Batteries Using Ionic Liquids. 2020 , 7, 2477-2484	3
227	Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage. 2020 , 30, 287-295	35
226	Peat-derived hard carbon electrodes with superior capacity for sodium-ion batteries 2020 , 10, 20145-20154	11
225	Carbon nano-beads collected from candle soot as an anode material with a highly pseudocapacitive Na+ storage capability for dual-ion batteries. 2020 , 26, 4533-4542	5
224	Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. 2020 , 39, 1019-1033	60
223	Hierarchical porous oviform carbon capsules with double-layer shells derived from mushroom spores for efficient sodium ion storage. 2020 , 871, 114310	6
222	Overcoming the Unfavorable Kinetics of Na3V2(PO4)2F3//SnPx Full-Cell Sodium-Ion Batteries for High Specific Energy and Energy Efficiency. 2020 , 30, 2003086	15
221	Coffee-Ground-Derived Nanoporous Carbon Anodes for Sodium-Ion Batteries with High Rate Performance and Cyclic Stability. 2020 , 34, 7666-7675	4
220	Fast Charging Materials for High Power Applications. 2020 , 10, 2001128	48
219	Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries. 2020 , 5, 895-903	22
218	Graphene-induced three-dimensional network structure to MoS2/graphene composite as an excellent anode for sodium ion batteries. 2020 , 13, 1951006	3
217	Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. 2020 , 163, 288-296	19
216	N-doped porous carbon nanofibers fabricated by bacterial cellulose-directed templating growth of MOF crystals for efficient oxygen reduction reaction and sodium-ion storage. 2020 , 168, 12-21	31
215	Preparation of Activated Carbon Derived from Water Hyacinth as Electrode Active Material for Li-Ion Supercapacitor. 2020 , 1000, 50-57	
214	Bio-inspired 3D porous carbon nanosheets composite materials for high-performance lithium-ion batteries. 2020 , 22, 1	0
213	Self-supported binder-free hard carbon electrodes for sodium-ion batteries: insights into their sodium storage mechanisms. 2020 , 8, 5558-5571	28
212	Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors. 2020 , 13, 1275-1295	51
211	Agaric-assisted synthesis of core-shell MnO@C microcubes as super-high-volumetric-capacity anode for lithium-ion batteries. 2020 , 162, 36-45	28

(2021-2020)

210	Exposing inner defects of porous carbon sheets to enhance rate performance of sodium-ion batteries. 2020 , 860, 113924	8
209	Porous Carbons: Structure-Oriented Design and Versatile Applications. 2020 , 30, 1909265	119
208	High Capacity Adsorption D ominated Potassium and Sodium Ion Storage in Activated Crumpled Graphene. 2020 , 10, 1903280	44
207	A carboxylate group-based organic anode for sustainable and stable sodium ion batteries. 2020 , 453, 227904	21
206	Structural Analysis of Sucrose-Derived Hard Carbon and Correlation with the Electrochemical Properties for Lithium, Sodium, and Potassium Insertion. 2020 , 32, 2961-2977	65
205	Hyperaccumulation Route to Ca-Rich Hard Carbon Materials with Cation Self-Incorporation and Interlayer Spacing Optimization for High-Performance Sodium-Ion Batteries. 2020 , 12, 10544-10553	37
204	Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage. 2020 , 566, 257-264	23
203	Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. 2020 , 161, 359-372	97
202	Construction of a multi-dimensional flexible MnS based paper electrode with ultra-stable and high-rate capability towards efficient sodium storage. 2020 , 12, 4119-4127	7
201	Hollow carbon microbox from acetylacetone as anode material for sodium-ion batteries. 2020 , 51, 293-302	12
200	Toward Green Battery Cells: Perspective on Materials and Technologies. 2020 , 4, 2000039	73
199	Synthesis of Vanadium Nitride⊞ard Carbon Composites from Cellulose and Their Performance for Sodium-Ion Batteries. 2020 , 3, 4286-4294	11
198	Anodes and Sodium-Free Cathodes in Sodium Ion Batteries. 2020 , 10, 2000288	51
197	Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon. 2020 , 10, 2000283	79
196	Carbon spheres with rational designed surface and secondary particle-piled structures for fast and stable sodium storage. 2021 , 54, 368-376	5
195	Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: Toward high-energy and high-power applications. 2021 , 55, 361-390	28
194	Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries. 2021 , 58, 207-218	23
193	Maximizing the rate capability of carbon-based anode materials for sodium-ion batteries. 2021 , 481, 228973	6

192	Monitoring the thermally induced transition from sp3-hybridized into sp2-hybridized carbons. 2021 , 172, 214-227	11
191	High performance sodium-ion battery anode using biomass derived hard carbon with engineered defective sites. 2021 , 368, 137574	19
190	Large-Scale Synthesis of [email[protected] Porous Carbon/Cobalt Nanofiber for Environmental Remediation by Advanced Oxidation Processes. 2021 , 1, 249-260	20
189	Divergent thinking and its application in biomass carbon electrode preparation. 2021 , 138, 110564	5
188	Green energy application technology of litchi pericarp-derived carbon material with high performance. 2021 , 286, 124960	9
187	Structural orientation effect of cellulose nanocrystals (CNC) films on electrochemical kinetics and stability in lithium-ion batteries. 2021 , 417, 128128	4
186	Understanding Excess Li Storage beyond LiC in Reduced Dimensional Scale Graphene. <i>ACS Nano</i> , 2021 , 15, 797-808	23
185	Titanium niobate (TiNbO) anchored on nitrogen-doped carbon foams as flexible and self-supported anode for high-performance lithium ion batteries. 2021 , 587, 622-632	11
184	Carbon materials for ion-intercalation involved rechargeable battery technologies. 2021, 50, 2388-2443	79
183	Self-templated synthesis of hollow hierarchical porous olive-like carbon toward universal high-performance alkali (Li, Na, K)-ion storage. 2021 , 174, 317-324	12
182	Graphene and graphene-like structure from biomass for Electrochemical Energy Storage application- A Review. 2021 , 1, e2000028	2
181	Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices. 2021 , 137, 110464	35
180	A Stable Biomass-Derived Hard Carbon Anode for High-Performance Sodium-Ion Full Battery. 2021 , 9, 2000730	4
179	Recent Advances in Functionalized Nanoporous Carbons Derived from Waste Resources and Their Applications in Energy and Environment. 2021 , 5, 2000169	19
178	In situ dual growth of graphitic structures in biomass carbon to yield a potassium-ion battery anode with high initial coulombic efficiency. 2021 , 9, 9191-9202	12
177	Heterostructures of titanium-based MXenes in energy conversion and storage devices. 2021 , 9, 8395-8465	10
176	Efficient energy storage in mustard husk derived porous spherical carbon nanostructures.	3
175	A review on biomass-derived hard carbon materials for sodium-ion batteries. 2021 , 2, 5881-5905	7

174	Air activation of charcoal monoliths for capacitive energy storage 2021, 11, 15118-15130	1
173	Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries. 2021 , 9, 19083-19	9185
172	Probe on hard carbon electrode derived from orange peel for energy storage application. 2021 , 31, 1033-103	393
171	Carbon Anode Materials: A Detailed Comparison between Na-ion and K-ion Batteries. 2021 , 11, 2003640	52
170	Green large-scale production of N/O-dual doping hard carbon derived from bagasse as high-performance anodes for sodium-ion batteries. 2021 , 28, 361-369	8
169	Self-standing hard carbon anode derived from hyper-linked nanocellulose with high cycling stability for lithium-ion batteries. 2021 , 3, e12091	19
168	Comprehensive Understanding of Sodium-Ion Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments. 2021 , 11, 2003804	46
167	Maximized pseudo-graphitic content in self-supported hollow interconnected carbon foam boosting ultrastable Na-ion storage. 2021 , 371, 137776	2
166	Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. 2021 , 14, 3690	10
165	Engineered Carbon Electrodes for High Performance Capacitive and Hybrid Energy Storage. 2021 , 35, 102340	О
164	From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage. 2021 , 13, 98	11
163	Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism. 2021 , 101-146	Ο
162	Facile Approach To Prepare Multiple Heteroatom-Doped Carbon Material from Bagasse and Its Applications toward Lithium-Ion and LithiumBulfur Batteries. 2021 , 35, 8286-8294	10
161	The novel N-rich hard carbon nanofiber as high-performance electrode materials for sodium-ion batteries. 2021 , 47, 9118-9124	3
160	Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries. 2021 , 492, 229656	12
159	Ionic liquid-induced low temperature graphitization of cellulose-derived biochar for high performance sodium storage. 2021 , 412, 127034	6
158	Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode. 2021 , 82, 105738	36
157	Oxygen-vacancy-rich TiO2-coated carbon nanofibers for fast sodium storage in high-performance sodium-ion hybrid capacitors. 2021 , 493, 229678	9

156	Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review. 2021 , 14, 2649	8
155	Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries. 2021 , 3, 541-553	13
154	Sodium-ion battery anodes from carbon depositions. 2021 , 379, 138109	1
153	Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. 2021 , 411, 128490	21
152	Nitrogen-Doped Porous Carbon Framework Supports Ultrafine FeS2 Nanoparticles as Advanced Performance Anode Materials for Sodium-Ion Batteries. 2021 , 4, 6874-6882	3
151	Biomass-derived Carbon Quantum Dots 🖪 Review. Part 2: Application in Batteries. 2021 , 8, 302	6
150	Biomass Feedstock of Waste Mango-Peel-Derived Porous Hard Carbon for Sustainable High-Performance Lithium-Ion Energy Storage Devices. 2021 , 35, 10878-10889	8
149	Understanding acid pretreatment of lotus leaves to prepare hard carbons as anodes for sodium ion batteries. 2021 , 415, 127125	3
148	N-doped egg-box-like porous carbons with superior rate capacities for lithium/sodium ions storage. 2021 , 619, 126402	0
147	Advanced Graphene Materials for Sodium/Potassium/Aluminum-Ion Batteries. 2021 , 3, 1221-1237	4
146	Development of environment friendly water-based self-rechargeable battery. 2021 , 172, 1184-1193	1
145	Fabrication of a Sustainable Closed Loop for Waste-Derived Materials in Electrochemical Applications. 2021 , 60, 11637-11648	3
144	Pyrolysed coffee grounds as a conductive host agent for sulfur composite electrodes in LiB batteries. 2021 , 4, 100053	2
143	Algae-derived hard carbon anodes for Na-ion batteries. 2021 , 51, 1665	3
142	In Situ (Operando) Electrochemical Dilatometry as a Method to Distinguish Charge Storage Mechanisms and Metal Plating Processes for Sodium and Lithium Ions in Hard Carbon Battery Electrodes. 2100596	2
141	One-pot fabrication of pitch-derived soft carbon with hierarchical porous structure and rich sp2 carbon for sodium-ion battery. 2021 , 32, 21944-21956	
140	Synthesis of High-Performance Hard Carbon from Waste Coffee Ground as Sodium Ion Battery Anode Material: A Review. 1044, 25-39	
139	Regulating microstructures of soft carbon anodes by terminations of Ti3C2T MXene toward fast and stable sodium storage. 2021 , 87, 106097	8

	Biomimetic Wood-Inspired Batteries: Fabrication, Electrochemical Performance, and Sustainability within a Circular Perspective. 2100236	1
137	Spruce Hard Carbon Anodes for Lithium-Ion Batteries.	4
136	A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage. 2021 , 60, 572-590	21
135	Porous nanocomposites by cotton-derived carbon/NiO with high performance for lithium-ion storage. 2021 , 874, 159788	6
134	Synthesis and Characterization of Activated Carbon from Water Hyacinth. 2021, 2013, 012025	
133	Corn stalks derived hierarchical porous carbon as ultra-efficient anode materials for sodium-ion batteries. 2021 , 120, 108626	3
132	Carbon in lithium-ion and post-lithium-ion batteries: Recent features. 2021 , 280, 116864	3
131	Recent advancements in development of different cathode materials for rechargeable lithium ion batteries. 2021 , 43, 103112	6
130	Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. 2021 , 42, 78-87	7
129	Now incidety into control bound and Myon and de San No and Microstones A conjunt 2024 (2) (60 (0))	
129	New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. 2021 , 62, 660-691	10
128	Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li storage of TiO. 2021 , 794, 148688	7
	Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li storage of TiO.	
128	Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li storage of TiO. 2021 , 794, 148688 Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries.	7
128	Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li storage of TiO. 2021, 794, 148688 Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. 2021, 87, 100929 Ultra-stable Sb/hard carbon composite anodes with synergistic alkali-ion storage performances.	7
128 127 126	Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li storage of TiO. 2021, 794, 148688 Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. 2021, 87, 100929 Ultra-stable Sb/hard carbon composite anodes with synergistic alkali-ion storage performances. 2021, 144, 111491 State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical	7 8
128 127 126	Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li storage of TiO. 2021, 794, 148688 Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. 2021, 87, 100929 Ultra-stable Sb/hard carbon composite anodes with synergistic alkali-ion storage performances. 2021, 144, 111491 State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical applications. 2021, 23, 5272-5301 Nitrogen, Sulfur, and Phosphorus Codoped Hollow Carbon Microtubes Derived from Silver Willow	7 8 2 7
128 127 126 125	Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li storage of TiO. 2021, 794, 148688 Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. 2021, 87, 100929 Ultra-stable Sb/hard carbon composite anodes with synergistic alkali-ion storage performances. 2021, 144, 111491 State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical applications. 2021, 23, 5272-5301 Nitrogen, Sulfur, and Phosphorus Codoped Hollow Carbon Microtubes Derived from Silver Willow Blossoms as a High-Performance Anode for Sodium-Ion Batteries. 2021, 35, 2795-2804 Outstanding Low-Temperature Performance of Structure-Controlled Graphene Anode Based on	7 8 2 7 8

120	Performance of carbon based on chicken feather with KOH activation as an anode for Li-ion batteries. 2021 , 44, 3183-3187	2
119	Sulfur-doped shaddock peelderived hard carbons for enhanced surface capacity and kinetics of lithium-ion storage. 2020 , 44, 4026-4037	4
118	Activated carbon from the waste water purifier for supercapacitor application. 2017, 21, 3169-3177	7
117	Ionic liquid-induced graphitization of biochar: N/P dual-doped carbon nanosheets for high-performance lithium/sodium storage. 2021 , 56, 8186-8201	7
116	High-performance lithium battery driven by hybrid lithium storage mechanism in 3D architectured carbonized eggshell membrane anode. 2020 , 166, 26-35	7
115	Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism. 2020 , 31, 274-309	17
114	First Atomic-Scale Insight into Degradation in Lithium Iron Phosphate Cathodes by Transmission Electron Microscopy. 2020 , 11, 4608-4617	4
113	A review of hard carbon anode materials for sodium-ion batteries and their environmental assessment. 2019 , 107, 503	7
112	High Capacity and Superior Rate Performances Coexisting in Carbon-Based Sodium-Ion Battery Anode. 2019 , 2019, 6930294	7
111	Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage. 2020 , 2020, 8685436	26
110	Enhancing the performance of hard carbon for sodium-ion batteries by coating with silicon nitride/oxycarbide nanoparticles.	1
109	One-pot synthesis of SnS2 Nanosheets supported on g-C3N4 as high capacity and stable cycling anode for sodium-ion batteries.	1
108	Biomass Porous Carbons Derived from Banana Peel Waste as Sustainable Anodes for Lithium-Ion Batteries. 2021 , 14,	1
107	Waste tire-derived porous nitrogen-doped carbon black as an electrode material for supercapacitors. 2021 , 24, 100535	O
106	Spent asphalt-derived mesoporous carbon for high-performance Li/Na/K-ion storage. 2021 , 514, 230593	1
105	General Introduction. 2019 , 1-28	
104	Surface Chemistry and Mesopore Dual Regulation by Sulfur-Promised High Volumetric Capacity of Ti C T Films for Sodium-Ion Storage. 2021 , 17, e2103626	5
103	Pre-doping iodine to restrain formation of low-active graphitic-N in hard carbon for significantly boosting sodium storage performance. 2022 , 186, 193-204	3

102	Insights into the diverse precursor-based micro-spherical hard carbons as anode materials for sodiumIbn and potassiumIbn batteries.	1
101	Enhancing the tribological properties and corrosion resistance of graphene-based lubricating grease via ultrasonic-assisted ball milling. 2022 , 633, 127889	2
100	Laser Irradiation of a Bio-Waste Derived Carbon Unlocks Performance Enhancement in Secondary Lithium Batteries 2021 , 11,	1
99	Wood for Application in Electrochemical Energy Storage Devices. 2021 , 2, 100654	1
98	Fabrication and testing of sodium-ion full cell with P2-Na0.67 Ni0.167Co0.167 Mn0.67O2 (Na-NCM) and hard carbon in coin cell and 2 Ah prismatic cell configuration. 2021 ,	
97	A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. 2021 , 9, 27140-27169	1
96	Plasma-Promoted Surface Regulation of a Novel Integrative Carbon Network for Boosting the Long-Cycle Capability of Sodium-Ion Storage.	
95	Quantum dot synthesis from waste biomass and its applications in energy and bioremediation 2022 , 293, 133564	4
94	Bio-crude oil production and valorization of hydrochar as anode material from hydrothermal liquefaction of algae grown on brackish dairy wastewater. 2022 , 227, 107119	1
93	One-step sonochemical fabrication of biomass-derived porous hard carbons; towards tuned-surface anodes of sodium-ion batteries 2021 , 611, 578-587	6
92	Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries. 1	1
91	Progress and Trends in Nonaqueous Rechargeable Aluminum Batteries. 2100418	1
90	Porous carbons for energy storage and conversion. 2022 , 239-540	
89	Bichannel design inspired by membrane pump: a rate booster for the conversion-type anode of sodium-ion battery.	
88	Mixing, Domains, and Fast Li-Ion Dynamics in Ternary LiBbBi Battery Anode Alloys. 2022 , 126, 2394-2402	2
87	Two C-S bonds derived from carbons with different IG/ID values promote high sulfur loads and stable capacity storage. 2022 , 584, 152620	1
86	Plasma-promoted surface regulation of a novel integrative carbon network for boosting the long-cycle capability of sodium-ion storage. 2022 , 191, 112-121	1
85	Advanced applications of biomass for energy storage. 2022 , 171-209	

84	Nitrogen enriched mesoporous carbon spheres as efficient anode material for long cycle Li/Na ion batteries.	O
83	Ultralong Cycle Life and High Rate Sodium-Ion Batteries Enabled by Surface-Dominated Storage of 3d Hollow Carbon Spheres.	
82	Using machine learning to screen non-graphite carbon materials based on Na-ion storage properties. 2022 , 10, 8031-8046	4
81	A review on the development of synthesis method for biomass-derived hard carbon for sodium ion batteries. 2022 ,	
80	CO 2 Utilization by Electrolytic Splitting to Carbon Nanotubes in Non-Lithiated, Cost-Effective, Molten Carbonate Electrolytes. 2100481	2
79	Electrode E lectrolyte Interfacial Chemistry Modulation for Ultra-High Rate Sodium-Ion Batteries.	2
78	Create Rich Oxygen Defects of Unique Tubular Hierarchical Molybdenum Dioxide to Modulate Electron Transfer Rate for Superior High-Energy Metal-ion Hybrid Capacitor.	1
77	Sodium Storage Mechanism of Nongraphitic Carbons: A General Model and the Function of Accessible Closed Pores.	1
76	Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. 2022, 2022, 1-11	6
75	Electrode-Electrolyte Interfacial Chemistry Modulation for Ultra-High Rate Sodium-Ion Battery 2022 ,	3
74	Biomass-derived porous carbon and colour-tunable graphene quantum dots for high-performance supercapacitor and selective probe for metal ion detection.	2
73	Nitrogen and phosphorus co-doped porous carbon prepared by direct carbonization method as potential anode material for Li-ion batteries. 2022 , 124, 108931	1
72	Biomass-Derived Carbon for High-Performance Batteries: From Structure to Properties. 2201584	9
71	Conversion of Biowastes into Carbon-based Electrodes. 2022 , 73-103	
70	Superior cycling stability of saturated graphitic carbon nitride in hydrogel reduced graphene oxide anode for Sodium-ion battery. 2022 , 33, 100351	O
69	Impact of the biomass precursor composition in the hard carbon properties and performance for application in a Na-ion battery. 2022 , 231, 107223	1
68	Towards eco-friendly redox flow batteries with all bio-sourced cell components. 2022, 50, 104352	1
67	Low-temperature synthesis of graphite flakes and carbon-based nanomaterials from banana peels using hydrothermal process for photoelectrochemical water-splitting. 2022 , 141, 115231	O

66	Facile synthesis of porous carbon monolith by solvothermal process. 2022 , 318, 132236	
65	Ultrathin Artificial Solid Electrolyte Interface Layer-Coated Biomass-Derived Hard Carbon as an Anode for Sodium-Ion Batteries. 2022 , 5, 1052-1064	O
64	Structural Evolution of Graphitic Carbon Derived from Ionic Liquids-Dissolved Cellulose and Its Application as Lithium-Ion Battery Anodes 2021 ,	4
63	Mesoporous Weaved Turbostratic Nanodomains Enable Stable Na Ion Storage and Micropore Filling is Revealed to be More Unsafe than Adsorption and Deintercalation 2021 ,	O
62	A Comparative Techno-Economic and Lifecycle Analysis of Biomass-Derived Anode Materials for Lithium- and Sodium-Ion Batteries. 2200047	О
61	Inhibiting the cyclization of PAN by carboxyl groups for carbon nanofibers with balanced Na+ storage performance and ICE. 2022 , 153447	
60	Presentation 1.PDF. 2018 ,	
59	Data_Sheet_1.docx. 2020 ,	
58	Molybdenum Carbide Electrocatalyst in-situ Embedded in Porous Nitrogen-rich Carbon Nanotubes Promotes Rapid Kinetics in Sodium Metal - Sulfur Batteries 2022 , e2106572	3
57	Sodium-Ion Batteries: Chemistry of Biomass Derived Disordered Carbon in Carbonate and Ether-Based Electrolytes.	
56	Sustainable lithium-ion batteries based on metal-free tannery waste biochar.	1
55	Microcrystalline Hybridization Enhanced Coal-Based Carbon Anode for Advanced Sodium-Ion Batteries 2022 , e2200023	4
54	Active material and interphase structures governing performance in sodium and potassium ion batteries.	2
53	Dual carbon Li-ion capacitor with high energy density and ultralong cycling life at a wide voltage window.	Ο
52	Understanding of the sodium storage mechanism in hard carbon anodes.	12
51	Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries. 2022 , e00446	O
50	A green route N, S-doped hard carbon derived from fruit-peel biomass waste as an anode material for rechargeable sodium-ion storage applications. 2022 , 424, 140573	0
49	Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage.	6

48	Sustainable Free-Standing Electrode from Biomass Waste for Sodium-Ion Batteries.	О
47	Supercapacitor performance based on nitrogen and sulfur co-doped hierarchically porous carbons: Superior rate capability and cycle stability.	O
46	One dimensional amorphous carbon nanotubes derived from palygorskite as template for high performance lithium ions batteries.	1
45	Hard carbon derived for lignin with robust and low-potential sodium ion storage. 2022, 116526	2
44	Understanding of Sodium Storage Mechanism in Hard Carbons: Ongoing Development under Debate. 2200715	10
43	Activated carbon derived from cherry flower biowaste with a self-doped heteroatom and large specific surface area for supercapacitor and sodium-ion battery applications. 2022 , 303, 135290	5
42	Sodium-ion batteries: Chemistry of biomass derived disordered carbon in carbonate and ether-based electrolytes. 2022 , 425, 140744	1
41	Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. 2022 , 447, 137468	3
40	Nanostructuring versus microstructuring in battery electrodes.	6
39	Brewers&pent grains derived carbon as anode for alkali metal ion batteries.	O
39	Brewers pent grains derived carbon as anode for alkali metal ion batteries. An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O Nanoparticle-Embedded B, N, Co-doped Porous Carbon.	O
	An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O	O
38	An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O Nanoparticle-Embedded B, N, Co-doped Porous Carbon. Review: Two-Dimensional Layered Material Based Electrodes for Lithium Ion and Sodium Ion	O
38	An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O Nanoparticle-Embedded B, N, Co-doped Porous Carbon. Review: Two-Dimensional Layered Material Based Electrodes for Lithium Ion and Sodium Ion Batteries. 2023, 399-418 Pine-Fiber-Derived Carbon@MnO@rGO as Advanced Anodes for Improving Lithium Storage	O
38 37 36	An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O Nanoparticle-Embedded B, N, Co-doped Porous Carbon. Review: Two-Dimensional Layered Material Based Electrodes for Lithium Ion and Sodium Ion Batteries. 2023, 399-418 Pine-Fiber-Derived Carbon@MnO@rGO as Advanced Anodes for Improving Lithium Storage Properties. 2022, 12, 1139	
38 37 36 35	An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O Nanoparticle-Embedded B, N, Co-doped Porous Carbon. Review: Two-Dimensional Layered Material Based Electrodes for Lithium Ion and Sodium Ion Batteries. 2023, 399-418 Pine-Fiber-Derived Carbon@MnO@rGO as Advanced Anodes for Improving Lithium Storage Properties. 2022, 12, 1139 Facile synthesis of high quality hard carbon anode from Eucalyptus wood for sodium-ion batteries. Correlating Structural Properties with Electrochemical Behavior of Non-graphitizable Carbons in	
38 37 36 35 34	An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O Nanoparticle-Embedded B, N, Co-doped Porous Carbon. Review: Two-Dimensional Layered Material Based Electrodes for Lithium Ion and Sodium Ion Batteries. 2023, 399-418 Pine-Fiber-Derived Carbon@MnO@rGO as Advanced Anodes for Improving Lithium Storage Properties. 2022, 12, 1139 Facile synthesis of high quality hard carbon anode from Eucalyptus wood for sodium-ion batteries. Correlating Structural Properties with Electrochemical Behavior of Non-graphitizable Carbons in Na-Ion Batteries.	0

30	Graphene-mediated dense integration of Ti3C2Tx MXene monoliths for compact energy storage: Balancing kinetics and packing density. 2022 , 604, 154565	O
29	Assembly and electrochemical testing of renewable carbon-based anodes in SIBs: A practical guide. 2022 , 75, 457-477	o
28	Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance. 2023 , 452, 139514	1
27	Hollow Tubular Biomass-Derived Carbon Loaded NiS/C for High Performance Lithium Storage. 2022 , 169, 090511	o
26	Multifunctional hydrophobic fabric-based strain sensor for human motion detection and personal thermal management. 2022 ,	1
25	Halogenated Carboxylates as Organic Anodes for Stable and Sustainable Sodium-Ion Batteries. 2022 , 14, 40784-40792	O
24	Biomass Waste-Derived Solar Evaporator for Efficient and Low-Cost Water Evaporation. 2200900	O
23	Controlled Nitrogen Doping in Crumpled Graphene for Improved Alkali Metal-Ion Storage under Low-Temperature Conditions. 2209775	O
22	Bio-waste-derived-hard carbon anodes through a sustainable and cost-effective synthesis process for Sodium-ion batteries.	0
21	Hard Carbon Reprising Porous Morphology Derived from Coconut Sheath for Sodium-Ion Battery. 2022 , 15, 8086	O
20	Cellulose Nanocrystals (CNC) Liquid Crystalline State in Suspension: An Overview. 2022 , 1, 244-278	0
19	Electrochemistry in the Wild. 2022 , 1-28	O
18	Synthesis, Characterization and Applications of Plain and Non-Metal Doped, Biomass-Derived Carbon Quantum Dots: A Short Review. 2022 , 34, 3048-3058	0
17	Ionothermal synthesis of activated carbon from waste PET bottles as anode materials for lithium-ion batteries. 2022 , 12, 34670-34684	2
16	Utilization of Spent Coffee Grounds with Hydrochloric Acid (HCl) as Electrolyte for Bio-Battery Applications. 421, 121-131	O
15	Utilization of Spent Coffee Grounds with Sodium Hydroxide (NaOH) as Electrolyte for Applications Bio-Battery. 421, 111-120	O
14	Application of HTS in Rechargeable Battery. 2023 , 55-95	0
13	Preparation and Characterization of Sisal Fibre Carbon Catalyst for Propane Oxidative Dehydrogenation.	O

12	From waste to resources: Transforming olive leaves to hard carbon as sustainable and versatile electrode material for Li/Na-ion batteries and supercapacitors 2023 , 100313	1
11	High content of nitrogen doped porous carbon prepared by one-step calcination for enviable rate lithium ion batteries. 2023 , 109696	O
10	Structural and Electrochemical Properties of Musa acuminata Fiber Derived Hard Carbon as Anodes of Sodium-Ion Batteries. 2023 , 16, 979	0
9	Mechanically flexible reduced graphene oxide/carbon composite films for high-performance quasi-solid-state lithium-ion capacitors. 2023 , 80, 68-76	O
8	Utilizing the capacity below 0 v to maximize lithium storage of hard carbon anodes. 2023, 83, 169-177	0
7	Bagasse-Derived Hard Carbon Anode with an AdsorptionIntercalation Mechanism for High-Rate Potassium Storage. 2023 , 6, 2370-2377	0
6	Recent Progress in Biomass-Derived Carbon Materials for Li-Ion and Na-Ion Batteries A Review. 2023 , 9, 116	1
5	Electrochemical Characterization of Charge Storage at Anodes for Sodium-Ion Batteries Based on Corncob Waste-Derived Hard Carbon and Binder. 2023 , 10,	O
4	Growing curly graphene layer boosts hard carbon with superior sodium-ion storage.	O
3	Optimization of Electrochemical Presodiation Parameters of Na-Ion Full Cells for Stable SolidElectrolyte Interface Formation: Hard Carbon Rods from Waste Firefighter Suits.	O
2	Porous carbon derived from cherry blossom leaves treatment with Fe3O4 enhanced the electrochemical performance of a lithium storage anode. 2023 , 455, 142426	0
1	Graphene and Graphene-Like Materials Derived from Biomass for Supercapacitor Applications. 2023 , 223-243	O