Ediacaran metazoan reefs from the Nama Group, Namil

Science 344, 1504-1506 DOI: 10.1126/science.1253393

Citation Report

#	Article	IF	CITATIONS
1	Of Time and Taphonomy: Preservation in the Ediacaran. The Paleontological Society Papers, 2014, 20, 101-122.	0.8	12
2	Underneath the Pantanal Wetland: A Deep-Time History of Gondwana Assembly, Climate Change, and the Dawn of Metazoan Life. Handbook of Environmental Chemistry, 2014, , 1-21.	0.2	2
4	Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding. Geobiology, 2015, 13, 112-122.	1.1	67
5	New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China. Precambrian Research, 2015, 261, 12-24.	1.2	50
6	Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. Precambrian Research, 2015, 261, 252-271.	1.2	134
7	Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochimica Et Cosmochimica Acta, 2015, 156, 173-193.	1.6	222
8	Convergent evolution of neural systems in ctenophores. Journal of Experimental Biology, 2015, 218, 598-611.	0.8	105
9	Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature, 2015, 524, 343-346.	13.7	76
10	Late Ediacaran skeletal body fossil assemblage from the Navalpino anticline, central Spain. Precambrian Research, 2015, 267, 186-195.	1.2	27
11	Assessing the veracity of Precambrian â€~sponge' fossils using in situ nanoscale analytical techniques. Precambrian Research, 2015, 263, 142-156.	1.2	37
12	Vendian of the Fore-Yenisei sedimentary basin (southeastern West Siberia). Russian Geology and Geophysics, 2015, 56, 560-572.	0.3	13
13	Ediacaran biota in the aftermath of the Kotlinian Crisis: Asha Group of the South Urals. Precambrian Research, 2015, 263, 59-78.	1.2	44
14	Ediacaran skeletal metazoan interpreted as a lophophorate. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151860.	1.2	28
15	Forbidden phenotypes and the limits of evolution. Interface Focus, 2015, 5, 20150028.	1.5	29
16	†Stromatolites' built by sponges and microbes – a new type of Phanerozoic bioconstruction. Lethaia, 2016, 49, 555-570.	0.6	40
17	An evolutionary comparative analysis of the medusozoan (Cnidaria) exoskeleton. Zoological Journal of the Linnean Society, 2016, 178, 206-225.	1.0	21
18	Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology, 2016, 14, 344-363.	1.1	78
19	A mixed Ediacaran-metazoan assemblage from the Zaris Sub-basin, Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459, 198-208.	1.0	52

		CHATION REPORT		
# 20	ARTICLE Forbidden fruits in the Garden of Ediacara. Palaontologische Zeitschrift, 2016, 90, 649-657.	IF 0.8	CITATIONS 6	
21	Low-oxygen waters limited habitable space for early animals. Nature Communications, 2016, 7, 12818.	5.8	125	
22	Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate. Precambrian Research, 2017, 290, 113-125.	1.2	38	
23	Flexible and responsive growth strategy of the Ediacaran skeletal Cloudina from the Nama Group, Namibia. Geology, 2017, 45, 259-262.	2.0	21	
24	The origin of animals: Can molecular clocks and the fossil record be reconciled?. BioEssays, 2017, 39, 1-12.	1.2	105	
25	DECAY OF THE SEA ANEMONE <i>METRIDIUM</i> (ACTINIARIA): IMPLICATIONS FOR THE PRESERVATION OF CNIDARIAN POLYPS AND OTHER SOFT-BODIED DIPLOBLAST-GRADE ANIMALS. Palaios, 2017, 32, 388-395.	0.6	16	
26	Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: Increasing ecosystem complexity and tiering at the end of the Ediacaran. Precambrian Research, 2017, 298, 79-87.	1.2	36	
27	Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China. Precambrian Research, 2017, 298, 146-156.	1.2	44	
28	Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective. Geobiology, 2017, 15, 516-551.	1.1	79	
29	First macrobiota biomineralization was environmentally triggered. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170059.	1.2	40	
30	Earth system transition during the Tonian–Cambrian interval of biological innovation: nutrients, climate, oxygen and the marine organic carbon capacitor. Geological Society Special Publication, 2017, 448, 161-177.	0.8	19	
31	Chambered structures from the Ediacaran Dengying Formation, Yunnan, China: comparison with the Cryogenian analogues and their microbial interpretation. Geological Magazine, 2017, 154, 1269-1284.	0.9	7	
32	MICROBIALITE DEVELOPMENT DURING THE PROTRACTED INHIBITION OF SKELETAL-DOMINATED REEFS IN THE ZHANGXIA FORMATION (CAMBRIAN SERIES 3) IN SHANDONG PROVINCE, NORTH CHINA. Palaios, 2017, 32, 559-571.	0.6	20	
33	Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nature Ecology and Evolution, 2017, 1, 1455-1464.	3.4	95	
34	Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization. Scientific Reports, 2017, 7, 5482.	1.6	33	
35	The Rise of Animals in a Changing Environment: Global Ecological Innovation in the Late Ediacaran. Annual Review of Earth and Planetary Sciences, 2017, 45, 593-617.	4.6	117	
36	Geobiology and palaeogenomics. Earth-Science Reviews, 2017, 164, 182-192.	4.0	6	
37	Palaeoecology of Ediacaran metazoan reefs. Geological Society Special Publication, 2017, 448, 195-210.	0.8	6	

#	Article	IF	CITATIONS
38	A Permian methane seep system as a paleoenvironmental analogue for the pre-metazoan carbonate platforms. Brazilian Journal of Geology, 2017, 47, 722-733.	0.3	5
39	Multiscale approach reveals that <i>Cloudina</i> aggregates are detritus and not in situ reef constructions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2519-E2527.	3.3	37
40	Diverse Assemblage of Ediacaran fossils from Central Iran. Scientific Reports, 2018, 8, 5060.	1.6	24
41	Reappraising the early evidence of durophagy and drilling predation in the fossil record: implications for escalation and the <scp>C</scp> ambrian <scp>E</scp> xplosion. Biological Reviews, 2018, 93, 754-784.	4.7	64
42	Environmental disturbance, resource availability, and biologic turnover at the dawn of animal life. Earth-Science Reviews, 2018, 177, 248-264.	4.0	52
43	Did anoxia terminate Ediacaran benthic communities? Evidence from early diagenesis. Precambrian Research, 2018, 313, 134-147.	1.2	23
44	The utility of height for the Ediacaran organisms of Mistaken Point. Nature Ecology and Evolution, 2018, 2, 1218-1222.	3.4	40
45	Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition. Nature Communications, 2018, 9, 2575.	5.8	65
46	Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs. Earth-Science Reviews, 2018, 181, 98-121.	4.0	70
47	Exploring the drivers of early biomineralization. Emerging Topics in Life Sciences, 2018, 2, 201-212.	1.1	28
48	Ediacaran ramp depositional model of the Tamengo Formation, Brazil. Journal of South American Earth Sciences, 2019, 96, 102348.	0.6	12
49	Calcium isotopes as a record of the marine calcium cycle versus carbonate diagenesis during the late Ediacaran. Chemical Geology, 2019, 529, 119319.	1.4	8
50	Pseudo-Biomineralization: Complex Mineral Structures Shaped by Microbes. ACS Biomaterials Science and Engineering, 2019, 5, 5088-5096.	2.6	8
51	Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic. Earth-Science Reviews, 2019, 189, 21-50.	4.0	84
52	Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China. Geological Magazine, 2019, 156, 1924-1948.	0.9	48
53	Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology, 2019, 47, 380-384.	2.0	66
54	Paleometry as a key tool to deal with paleobiological and astrobiological issues: some contributions and reflections on the Brazilian fossil record. International Journal of Astrobiology, 2019, 18, 575-589.	0.9	5
56	Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology and Evolution, 2019, 3, 528-538.	3.4	192

#	Article	IF	CITATIONS
57	Sedimentary evolution and tectonic setting of the Itapucumi Group, Ediacaran, northern Paraguay: From Rodinia break-up to West Gondwana amalgamation. Precambrian Research, 2019, 322, 99-121.	1.2	16
58	Ediacaran paleoenvironmental changes recorded in the mixed carbonate-siliciclastic BambuÃ-Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 517, 39-51.	1.0	44
59	Resolution of the earliest metazoan record: Differential taphonomy of Ediacaran and Paleozoic fossil molds and casts. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 513, 146-165.	1.0	28
60	lodine content of the carbonates from the Doushantuo Formation and shallow ocean redox change on the Ediacaran Yangtze Platform, South China. Precambrian Research, 2019, 322, 160-169.	1.2	36
61	Positive cerium anomaly in the Doushantuo cap carbonates from the Yangtze platform, South China: Implications for intermediate water column manganous conditions in the aftermath of the Marinoan glaciation. Precambrian Research, 2019, 320, 93-110.	1.2	19
62	Depauperate skeletonized reef-dwelling fauna of the early Cambrian: Insights from archaeocyathan reef ecosystems of western Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 206-221.	1.0	19
63	Cloudina-microbial reef resilience to substrate instability in a Cadomian retro-arc basin of the Iberian Peninsula. Precambrian Research, 2020, 336, 105479.	1.2	10
64	Rare earth elements in the terminal Ediacaran BambuÃ-Group carbonate rocks (Brazil): evidence for high seawater alkalinity during rise of early animals. Precambrian Research, 2020, 336, 105506.	1.2	20
65	Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period. Nature Communications, 2020, 11, 205.	5.8	44
66	The longest delay: Re-emergence of coral reef ecosystems after the Late Devonian extinctions. Earth-Science Reviews, 2020, 203, 103060.	4.0	25
67	Hybrid Carbonates: in situ abiotic, microbial and skeletal co-precipitates. Earth-Science Reviews, 2020, 208, 103300.	4.0	36
68	Seaweeds through time: Morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae. Precambrian Research, 2020, 350, 105875.	1.2	53
69	Three-dimensional reconstructions of the putative metazoan <i>Namapoikia</i> show that it was a microbial construction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19760-19766.	3.3	8
70	Ediacaran sponges, animal biomineralization, and skeletal reefs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20997-20999.	3.3	3
71	The rise and early evolution of animals: where do we stand from a trace-fossil perspective?. Interface Focus, 2020, 10, 20190103.	1.5	40
72	The terminal Ediacaran tubular fossil Cloudina in the Yangtze Gorges area of South China. Precambrian Research, 2020, 351, 105931.	1.2	13
73	<i>Cochleatina</i> : an enigmatic Ediacaran–Cambrian survivor among small carbonaceous fossils (SCF <scp>s</scp>). Palaeontology, 2020, 63, 733-752.	1.0	14
74	Transient shallow-ocean oxidation associated with the late Ediacaran Nama skeletal fauna: Evidence from iodine contents of the Lower Nama Group, southern Namibia. Precambrian Research, 2020, 343, 105732.	1.2	12

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
75	Multiple branching and attachment structures in cloudinomorphs, Nama Group, Namibia. Geology, 2020, 48, 877-881.	2.0	10
76	Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids. Scientific Reports, 2020, 10, 535.	1.6	24
77	Characteristics of a Tonian reef rimmed shelf before the onset of Cryogenian: Insights from Neoproterozoic Kunihar Formation, Simla Group, Lesser Himalaya. Marine and Petroleum Geology, 2020, 117, 104393.	1.5	5
78	Sedimentary facies, fossil distribution and depositional setting of the late Ediacaran Tamengo Formation (Brazil). Sedimentology, 2020, 67, 3422-3450.	1.6	15
79	A forgotten class of efficient marine fluorophores. Structural and photophysical properties of parazoanthoxanthins. Dyes and Pigments, 2021, 186, 108980.	2.0	0
80	Modelling Ediacaran metazoan–microbial reef growth. Sedimentology, 2021, 68, 1877-1892.	1.6	8
81	The trace fossil record of the Nama Group, Namibia: Exploring the terminal Ediacaran roots of the Cambrian explosion. Earth-Science Reviews, 2021, 212, 103435.	4.0	43
83	Ediacaran metazoan fossils with siliceous skeletons from the Digermulen Peninsula of Arctic Norway. Journal of Paleontology, 2021, 95, 440-475.	0.5	4
84	Pentaradial eukaryote suggests expansion of suspension feeding in White Sea-aged Ediacaran communities. Scientific Reports, 2021, 11, 4121.	1.6	15
86	Environmental and diagenetic controls on the morphology and calcification of the Ediacaran metazoan Cloudina. Scientific Reports, 2021, 11, 12341.	1.6	8
88	Late Ediacaran organic microfossils from Finland. Geological Magazine, 2021, 158, 2231-2244.	0.9	11
89	Development and collapse of the early Cambrian shallow-water carbonate factories in the Hannan-Micangshan area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583, 110665.	1.0	8
90	The â€~biomineralization toolkit' and the origin of animal skeletons. Biological Reviews, 2020, 95, 1372-1392.	4.7	76
91	Cryptic Disc Structures Resembling Ediacaran Discoidal Fossils from the Lower Silurian Hellefjord Schist, Arctic Norway. PLoS ONE, 2016, 11, e0164071.	1.1	7
92	Taxonomic revision of Ediacaran tubular fossils: <i>Cloudina</i> , <i>Sinotubulites</i> and <i>Conotubus</i> . Journal of Paleontology, 2022, 96, 256-273.	0.5	9
93	Earliest skeletal animals were reef builders. Nature, 0, , .	13.7	0
94	A Review on Microbialites: a Korean Perspective. The Journal of the Petrological Society of Korea, 2015, 24, 291-305.	0.2	0
95	Enduring evolutionary embellishment of cloudinids in the Cambrian. Royal Society Open Science, 2021, 8, 210829.	1.1	9

#	Article	IF	CITATIONS
96	Chromium isotope evidence for oxygenation events in the Ediacaran ocean. Geochimica Et Cosmochimica Acta, 2022, 323, 258-275.	1.6	8
97	Paleontology and ichnology of the late Ediacaran Nasep–Huns transition (Nama Group, southern) Tj ETQq1 1 0.	.784314 rg	gBT /Overloo
98	Metacommunity analyses show an increase in ecological specialisation throughout the Ediacaran period. PLoS Biology, 2022, 20, e3001289.	2.6	8
99	The life and times of <i>Pteridinium simplex</i> . Paleobiology, 2022, 48, 527-556.	1.3	3
100	New Facies Model and Carbon Isotope Stratigraphy for an Ediacaran Carbonate Platform From South America (Tamengo Formation—Corumbá Group, SW Brazil). Frontiers in Earth Science, 0, 10, .	0.8	5
101	Branching archaeocyaths as ecosystem engineers during the Cambrian radiation. Geobiology, 2023, 21, 66-85.	1.1	1
102	å‰å ̈æ¦-å-̈æ¦çªé‡å§è¼¬æŠ~期生物çæ~å¦,伕演化的?. Diqiu Kexue - Zhongguo Dizhi Daxue Geosciences, 2022, 47, 3853.	Xuebao/E	arth Science

CITATION REPORT

103	Mesoproterozoic biomineralization: Cyanobacterium-like filamentous siderite sheaths â^1⁄41.4ÂGa. Journal of Palaeogeography, 2023, 12, 384-400.	0.9	0	
-----	---	-----	---	--