Genomic basis for the convergent evolution of electric of

Science 344, 1522-1525 DOI: 10.1126/science.1254432

Citation Report

#	Article	IF	CITATIONS
1	Neutrophils scan for activated platelets to initiate inflammation. Science, 2014, 346, 1234-1238.	6.0	516
2	The shocking predatory strike of the electric eel. Science, 2014, 346, 1231-1234.	6.0	77
3	Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4736-42.	3.3	77
4	Convergent evolution of marine mammals is associated with distinct substitutions in common genes. Scientific Reports, 2015, 5, 16550.	1.6	41
5	Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae). BMC Genomics, 2015, 16, 668.	1.2	38
6	Proximate pathways underlying social behavior. Current Opinion in Behavioral Sciences, 2015, 6, 154-159.	2.0	25
7	An Optimized Biological Taser: Electric Eels Remotely Induce or Arrest Movement in Nearby Prey. Brain, Behavior and Evolution, 2015, 86, 38-47.	0.9	16
8	The Genome 10K Project: A Way Forward. Annual Review of Animal Biosciences, 2015, 3, 57-111.	3.6	294
9	Transcriptomics exposes the uniqueness of parasitic plants. Briefings in Functional Genomics, 2015, 14, 275-282.	1.3	25
10	Genetic Changes Shaping the Human Brain. Developmental Cell, 2015, 32, 423-434.	3.1	115
11	Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates. PLoS Biology, 2015, 13, e1002123.	2.6	41
12	Unique patterns of transcript and miRNA expression in the South American strong voltage electric eel (Electrophorus electricus). BMC Genomics, 2015, 16, 243.	1.2	29
13	diArk – the database for eukaryotic genome and transcriptome assemblies in 2014. Nucleic Acids Research, 2015, 43, D1107-D1112.	6.5	7
14	Beyond fruit-flies: population genomic advances in non-Drosophila arthropods. Briefings in Functional Genomics, 2015, 14, 424-431.	1.3	14
15	Whole Genome Sequencing of the Asian Arowana (<i>Scleropages formosus</i>) Provides Insights into the Evolution of Ray-Finned Fishes. Genome Biology and Evolution, 2015, 7, 2885-2895.	1.1	43
16	Animal Behavior: Electric Eels Amp Up for an EasyÂMeal. Current Biology, 2015, 25, R1070-R1072.	1.8	4
17	Electric Eels Concentrate Their Electric Field to Induce Involuntary Fatigue in Struggling Prey. Current Biology, 2015, 25, 2889-2898.	1.8	27
18	Convergent evolution and the search for biosignatures within the solar system and beyond. Acta Astronautica, 2015, 116, 394-402.	1.7	5

TATION REPO

		CITATION REPORT	
#	Article	IF	CITATIONS
19	Transcriptomics of developing embryos and organs: A raising tool for evo–devo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 363-371.	0.6	41
20	Developmental and Regulatory Functions of Na+ Channel Non–pore-forming β Subunits. Current Topics in Membranes, 2016, 78, 315-351.	0.5	15
21	Electrochemical Capacitors with High Output Voltages that Mimic Electric Eels. Advanced Materials, 2016, 28, 2070-2076.	11.1	119
22	A morphospace for synthetic organs and organoids: the possible and the actual. Integrative Biology (United Kingdom), 2016, 8, 485-503.	0.6	48
23	GEneSTATION 1.0: a synthetic resource of diverse evolutionary and functional genomic data for studying the evolution of pregnancy-associated tissues and phenotypes. Nucleic Acids Research, 2016, 44, D908-D916.	6.5	6
24	Road Map to Study Convergent Evolution: A Proposition for Evolutionary Systems Biology Approaches. , 2016, , 3-21.		7
25	A structural bionic design: From electric organs to systematic triboelectric generators. Nano Energy, 2016, 27, 554-560.	8.2	138
26	Sternopygus macrurus electric organ transcriptome and cell size exhibit insensitivity to short-term electrical inactivity. Journal of Physiology (Paris), 2016, 110, 233-244.	2.1	2
27	<scp>TreeExp</scp> 1.0: R Package for Analyzing Expression Evolution Based on RNAâ€5eq Data. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 394-402.	0.6	19
28	Electric fish genomics: Progress, prospects, and new tools for neuroethology. Journal of Physiology (Paris), 2016, 110, 259-272.	2.1	10
29	Predicting the basis of convergent evolution. Science, 2016, 354, 289-289.	6.0	8
30	Leaping eels electrify threats, supporting Humboldt's account of a battle with horses. Proceedings of the United States of America, 2016, 113, 6979-6984.	3.3	66
31	Mitochondrial genomes of the South American electric knifefishes (Order Gymnotiformes). Mitochondrial DNA Part B: Resources, 2016, 1, 401-403.	0.2	8
32	Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes. Molecular Biology and Evolution, 2016, 33, 13-24.	3.5	37
33	Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Current Topics in Developmental Biology, 2016, 116, 331-355.	1.0	18
34	Complex Homology and the Evolution of Nervous Systems. Trends in Ecology and Evolution, 2016, 31, 127-135.	4.2	52
35	Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 2016, 76, 321-343.	5.7	1,154
36	Species diversity vs. morphological disparity in the light of evolutionary developmental biology: Table 1 Annals of Botany, 2016, 117, 781-794.	1.4	37

#	Article	IF	CITATIONS
37	Micromanaging metabolism—a role for miRNAs in teleost energy metabolism. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 199, 115-125.	0.7	31
38	Why the short face? Developmental disintegration of the neurocranium drives convergent evolution in neotropical electric fishes. Ecology and Evolution, 2017, 7, 1783-1801.	0.8	46
39	The Karyotype of <i>Microsternarchus aff. bilineatus</i> : A First Case of Y Chromosome Degeneration in Gymnotiformes. Zebrafish, 2017, 14, 244-250.	0.5	6
40	Gene duplication and neo-functionalization in the evolutionary and functional divergence of the metazoan copper transporters Ctr1 and Ctr2. Journal of Biological Chemistry, 2017, 292, 11531-11546.	1.6	28
41	A tail of two voltages: Proteomic comparison of the three electric organs of the electric eel. Science Advances, 2017, 3, e1700523.	4.7	30
42	Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation. Molecular Biology and Evolution, 2017, 34, 2870-2878.	3.5	5
43	An electric-eel-inspired soft power source from stacked hydrogels. Nature, 2017, 552, 214-218.	13.7	364
44	The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. Scientific Reports, 2017, 7, 15568.	1.6	76
45	Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 183-195.	0.7	19
46	Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance. BMC Evolutionary Biology, 2017, 17, 51.	3.2	12
48	Testing Convergent Evolution in Auditory Processing Genes between Echolocating Mammals and the Aye-Aye, a Percussive-Foraging Primate. Genome Biology and Evolution, 2017, 9, 1978-1989.	1.1	8
49	Targeted capture of complete coding regions across divergent species. Genome Biology and Evolution, 2017, 9, evx005.	1.1	15
50	The Genome and Adult Somatic Transcriptome of the Mormyrid Electric Fish Paramormyrops kingsleyae. Genome Biology and Evolution, 2017, 9, 3525-3530.	1.1	28
51	Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation. Frontiers in Physiology, 2017, 8, 684.	1.3	80
53	Weakly Electric Fish: Behavior, Neurobiology, and Neuroendocrinology. , 2017, , 69-98.		7
54	Lateral Line Systems (Including Electroreception). , 2017, , 257-276.		1
55	Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics, 2018, 17, 329-338.	1.3	59
56	Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (<i>Chaetodon austriacus</i>): current status and its characteristics. Molecular Ecology Resources, 2018, 18, 347-355.	2.2	11

#	Article	IF	CITATIONS
57	Gene expression signatures of mating system evolution. Genome, 2018, 61, 287-297.	0.9	13
58	Whole Genome Sequencing of the Pirarucu (Arapaima gigas) Supports Independent Emergence of Major Teleost Clades. Genome Biology and Evolution, 2018, 10, 2366-2379.	1.1	33
59	A model for studying the energetics of sustained high frequency firing. PLoS ONE, 2018, 13, e0196508.	1.1	2
60	Electrostatic Tuning of a Potassium Channel in Electric Fish. Current Biology, 2018, 28, 2094-2102.e5.	1.8	26
61	Detecting the molecular basis of phenotypic convergence. Methods in Ecology and Evolution, 2018, 9, 2170-2180.	2.2	7
62	Social Behavior: How the Brain Thinks like a Mom. Current Biology, 2018, 28, R746-R749.	1.8	0
63	Insights into Electroreceptor Development and Evolution from Molecular Comparisons with Hair Cells. Integrative and Comparative Biology, 2018, 58, 329-340.	0.9	21
64	Communication: Potassium Channels Define the Dialect. Current Biology, 2018, 28, R744-R746.	1.8	2
65	Gene network variation and alternative paths to convergent evolution in turtles. Evolution & Development, 2018, 20, 172-185.	1.1	7
66	Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biology, 2018, 16, e2004892.	2.6	24
67	Comparative Transcriptome Analyses Reveal the Role of Conserved Function in Electric Organ Convergence Across Electric Fishes. Frontiers in Genetics, 2019, 10, 664.	1.1	4
68	Variation across Species and Levels: Implications for Model Species Research. Brain, Behavior and Evolution, 2019, 93, 57-69.	0.9	16
69	Genomic Basis of Convergent Island Phenotypes in Boa Constrictors. Genome Biology and Evolution, 2019, 11, 3123-3143.	1.1	14
70	Electroreception: Fundamental Insights from Comparative Approaches. Springer Handbook of Auditory Research, 2019, , .	0.3	4
71	Sulfonated Sub-Nanochannels in a Robust MOF Membrane: Harvesting Salinity Gradient Power. ACS Applied Materials & Interfaces, 2019, 11, 35496-35500.	4.0	26
72	Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nature Communications, 2019, 10, 4000.	5.8	45
73	A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10, 2695.	5.8	413
74	Expansion of vomeronasal receptor genes (OlfC) in the evolution of fright reaction in Ostariophysan fishes. Communications Biology, 2019, 2, 235.	2.0	16

#	Article	IF	CITATIONS
75	Divergence, evolution and adaptation in ray-finned fish genomes. Science China Life Sciences, 2019, 62, 1003-1018.	2.3	22
76	New Zealand Tree and Giant Wētĕ(Orthoptera) Transcriptomics Reveal Divergent Selection Patterns in Metabolic Loci. Genome Biology and Evolution, 2019, 11, 1293-1306.	1.1	6
77	Electroreception, electrogenesis and electric signal evolution. Journal of Fish Biology, 2019, 95, 92-134.	0.7	99
78	Silencing the Spark: CRISPR/Cas9 Genome Editing in Weakly Electric Fish. Journal of Visualized Experiments, 2019, , .	0.2	5
79	Tempo and mode of allopatric divergence in the weakly electric fish Sternopygus dariensis in the Isthmus of Panama. Scientific Reports, 2019, 9, 18828.	1.6	15
80	Bioartificial Organ Manufacturing Technologies. Cell Transplantation, 2019, 28, 5-17.	1.2	51
81	Resolving Deep Nodes in an Ancient Radiation of Neotropical Fishes in the Presence of Conflicting Signals from Incomplete Lineage Sorting. Systematic Biology, 2019, 68, 573-593.	2.7	54
82	Tail Weaponry in Ankylosaurs and Glyptodonts: An Example of a Rare but Strongly Convergent Phenotype. Anatomical Record, 2020, 303, 988-998.	0.8	12
83	The transcriptional correlates of divergent electric organ discharges in Paramormyrops electric fish. BMC Evolutionary Biology, 2020, 20, 6.	3.2	6
84	Electric-fish-inspired actuator with integrated energy-storage function. Nano Energy, 2020, 68, 104365.	8.2	39
85	Polymeric Nanoâ€Blueâ€Energy Generator Based on Anionâ€5elective Ionomers with 3D Pores and pHâ€Driving Gating. Advanced Energy Materials, 2020, 10, 2001552.	10.2	20
86	Giant Island Mice Exhibit Widespread Gene Expression Changes in Key Metabolic Organs. Genome Biology and Evolution, 2020, 12, 1277-1301.	1.1	1
87	Development of the electric organ in embryos and larvae of the knifefish, Brachyhypopomus gauderio. Developmental Biology, 2020, 466, 99-108.	0.9	3
88	Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish. Journal of Neuroscience, 2020, 40, 6345-6356.	1.7	4
89	Brain transcriptomics of agonistic behaviour in the weakly electric fish Gymnotus omarorum, a wild teleost model of non-breeding aggression. Scientific Reports, 2020, 10, 9496.	1.6	15
90	Genomic Survey of Tyrosine Kinases Repertoire inElectrophorus electricusWith an Emphasis on Evolutionary Conservation and Diversification. Evolutionary Bioinformatics, 2020, 16, 117693432092251.	0.6	0
91	Diversification of Neotropical Freshwater Fishes. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 27-53.	3.8	132
92	Studying convergent evolution to relate genotype to behavioral phenotype. Journal of Experimental Biology, 2020, 223, .	0.8	26

#	Article	IF	CITATIONS
94	A History of Corollary Discharge: Contributions of Mormyrid Weakly Electric Fish. Frontiers in Integrative Neuroscience, 2020, 14, 42.	1.0	26
95	Insights into the Evolution of Neoteny from the Genome of the Asian Icefish Protosalanx chinensis. IScience, 2020, 23, 101267.	1.9	7
96	Aspiration-assisted bioprinting for precise positioning of biologics. Science Advances, 2020, 6, eaaw5111.	4.7	170
97	Population transcriptomics reveals weak parallel genetic basis in repeated marine and freshwater divergence in nineâ€spined sticklebacks. Molecular Ecology, 2020, 29, 1642-1656.	2.0	17
98	Modes of genetic adaptations underlying functional innovations in the rumen. Science China Life Sciences, 2021, 64, 1-21.	2.3	19
99	Two-dimensional materials as solid-state nanopores for chemical sensing. Dalton Transactions, 2021, 50, 13608-13619.	1.6	12
100	Genomic Evidence for Convergent Molecular Adaptation in Electric Fishes. Genome Biology and Evolution, 2021, 13, .	1.1	12
101	The population genomics of repeated freshwater colonizations by Gulf pipefish. Molecular Ecology, 2021, 30, 1672-1687.	2.0	4
103	Biomimetic Salinity Power Generation Based on Silk Fibroin Ion-Exchange Membranes. ACS Nano, 2021, 15, 5649-5660.	7.3	36
104	Comparative Assessment of Familiarity/Novelty Preferences in Rodents. Frontiers in Behavioral Neuroscience, 2021, 15, 648830.	1.0	22
105	Nowe idee w biologii ewolucyjnej: od NDMS do EES. Filozoficzne Aspekty Genezy, 0, 15, 415-440.	0.0	0
106	The critical importance of vouchers in genomics. ELife, 2021, 10, .	2.8	39
107	Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy, 2021, 84, 105865.	8.2	53
108	Advancing human disease research with fish evolutionary mutant models. Trends in Genetics, 2022, 38, 22-44.	2.9	23
109	Vocal and Electric Fish: Revisiting a Comparison of Two Teleost Models in the Neuroethology of Social Behavior. Frontiers in Neural Circuits, 2021, 15, 713105.	1.4	5
110	De Novo Genome Assembly of the Electric Fish <i>Brachyhypopomus occidentalis</i> (Hypopomidae,) Tj ETQq1	0.78431	4 rgBT /Ove
111	Comparative genomics provides insights into the aquatic adaptations of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
112	Approaches to deformable physical sensors: Electronic versus iontronic. Materials Science and Engineering Reports, 2021, 146, 100640.	14.8	29

#	Article	IF	CITATIONS
113	Produktion elektrischer Energie (elektrische Organe). , 2021, , 933-941.		0
117	Electrical Potential of Leaping Eels. Brain, Behavior and Evolution, 2017, 89, 262-273.	0.9	10
118	Voltage-Gated Na+ Channel Isoforms and Their mRNA Expression Levels and Protein Abundance in Three Electric Organs and the Skeletal Muscle of the Electric Eel Electrophorus electricus. PLoS ONE, 2016, 11, e0167589.	1.1	7
119	Genomic Insights into the Adaptive Convergent Evolution. Current Genomics, 2019, 20, 81-89.	0.7	16
120	Intrinsic cooperativity potentiates parallel cis-regulatory evolution. ELife, 2018, 7, .	2.8	19
121	The myogenic electric organ of <i>Sternopygus macrurus</i> : a non-contractile tissue with a skeletal muscle transcriptome. PeerJ, 2016, 4, e1828.	0.9	10
127	Biophysical Basis of Electric Signal Diversity. Springer Handbook of Auditory Research, 2019, , 125-161.	0.3	1
128	Electrosensory Transduction: Comparisons Across Structure, Afferent Response Properties, and Cellular Physiology. Springer Handbook of Auditory Research, 2019, , 63-90.	0.3	5
129	The Evolution and Development of Electric Organs. Springer Handbook of Auditory Research, 2019, , 91-123.	0.3	5
130	Evolutionary Drivers of Electric Signal Diversity. Springer Handbook of Auditory Research, 2019, , 191-226.	0.3	2
132	Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death. ELife, 2019, 8, .	2.8	4
133	Nature inspired emerging sensing technology: Recent progress and perspectives. Materials Science and Engineering Reports, 2021, 146, 100647.	14.8	18
134	Electric eels galore: microsatellite markers for population studies. Neotropical Ichthyology, 2020, 18,	0.5	0
135	Active Control of Sensing Through Movements in Active Electrolocation. , 2020, , 369-384.		0
138	Phylogenomics of Bony-Tongue Fishes (Osteoglossomorpha) Shed Light on the Craniofacial Evolution and Biogeography of the Weakly Electric Clade (Mormyridae). Systematic Biology, 2022, 71, 1032-1044.	2.7	10
139	Distinguishing Evolutionary Conservation from Derivedness. Life, 2022, 12, 440.	1.1	1
140	Is the Medium the Message? Functional Diversity Across Abiotic Gradients in Freshwater Electric Fishes. Integrative and Comparative Biology, 2022, 62, 945-957.	0.9	3
141	Different Genes are Recruited During Convergent Evolution of Pregnancy and the Placenta. Molecular Biology and Evolution, 2022, 39, .	3.5	9

	CITATION REF	PORT	
#	Article	IF	CITATIONS
142	The diversity and evolution of electric organs in Neotropical knifefishes. EvoDevo, 2022, 13, 9.	1.3	3
154	Mosaic Evolution of Craniofacial Morphologies in Ghost Electric Fishes (Gymnotiformes:) Tj ETQq1 1 0.784314 rgl	BT /Overlo	c뵪 10 Tf 50
155	Divergent cis-regulatory evolution underlies the convergent loss of sodium channel expression in electric fish. Science Advances, 2022, 8, .	4.7	6
156	Convergence is Only Skin Deep: Craniofacial Evolution in Electric Fishes from South America and Africa (Apteronotidae and Mormyridae). Integrative Organismal Biology, 2022, 4, .	0.9	2
157	Bioâ€inspirierte Ti ₃ C ₂ T _{<i>x</i>} MXeneâ€basierte Ionenâ€Diodenmembrar Für die Hocheffiziente Wandlung Osmotischer in Elektrische Energie. Angewandte Chemie, 2022, 134, .	¹ 1.6	3
158	Bioinspired Ti ₃ C ₂ T _{<i>x</i>} MXeneâ€Based Ionic Diode Membrane for Highâ€Efficient Osmotic Energy Conversion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
159	Polymer based electricity generation inspired by eel electrocytes. International Journal of Energy Research, 0, , .	2.2	0
160	Fitness of evolving bacterial populations is contingent on deep and shallow history but only shallow history creates predictable patterns. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	2
161	Perspectives on the fundamental principles and manufacturing of stretchable ionotronics. Applied Physics Letters, 2023, 122, .	1.5	4
162	Conclusion and Perspectives: What Convergent Evolution of Animal Forms and Functions Says About the Predictability of Evolution. Fascinating Life Sciences, 2023, , 581-594.	0.5	0
163	A new genome assembly of an African weakly electric fish (Campylomormyrus compressirostris,) Tj ETQq0 0 0 rgB	T /Overloc 1.2	ck ₃ 10 Tf 50 3

171	Insights into the biophysical properties of electrogenesis and electroreception. Fish Physiology, 2023,	0.2	0

0

172 Silent signals in the dark: Electric communication in fishes. , 2023, , .