Hippocampal subregion-specific microRNA expression experimental temporal lobe epilepsy

Neurobiology of Disease 62, 508-520 DOI: 10.1016/j.nbd.2013.10.026

Citation Report

#	Article	IF	Citations
1	From Treatment to Cure. International Review of Neurobiology, 2014, 114, 279-299.	0.9	2
2	MicroRNA and epilepsy. Current Opinion in Neurology, 2014, 27, 199-205.	1.8	109
3	Aberrant expression of miRâ€218 and miRâ€204 in human mesial temporal lobe epilepsy and hippocampal sclerosis—Convergence on axonal guidance. Epilepsia, 2014, 55, 2017-2027.	2.6	71
4	Role of blood–brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience, 2014, 277, 455-473.	1.1	80
5	MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy – comparison with human epileptic samples. Scientific Reports, 2015, 5, 14143.	1.6	101
6	MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells. Scientific Reports, 2015, 5, 12448.	1.6	63
8	Genome-wide microRNA expression profiles in hippocampus of rats with chronic temporal lobe epilepsy. Scientific Reports, 2014, 4, 4734.	1.6	52
9	Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas. Journal of Neuroinflammation, 2015, 12, 97.	3.1	31
10	Correlation Between IL-10 and microRNA-187 Expression in Epileptic Rat Hippocampus and Patients with Temporal Lobe Epilepsy. Frontiers in Cellular Neuroscience, 2015, 9, 466.	1.8	29
11	miRNAs: biological and clinical determinants in epilepsy. Frontiers in Molecular Neuroscience, 2015, 8, 59.	1.4	42
12	Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Scientific Reports, 2015, 5, 9522.	1.6	126
13	An evaluation of the links between microRNA, autophagy, and epilepsy. Reviews in the Neurosciences, 2015, 26, 225-37.	1.4	30
14	The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target?. Neurochemical Research, 2015, 40, 1319-1332.	1.6	41
15	Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy. Scientific Reports, 2015, 5, 10201.	1.6	126
16	microRNA and Epilepsy. Advances in Experimental Medicine and Biology, 2015, 888, 41-70.	0.8	52
17	Direct, non-amplified detection of microRNA-134 in plasma from epilepsy patients. RSC Advances, 2015, 5, 90071-90078.	1.7	15
18	Blood–brain barrier dysfunction, seizures and epilepsy. Seminars in Cell and Developmental Biology, 2015, 38, 26-34.	2.3	166
19	Concordant dysregulation of miR-5p and miR-3p arms of the same precursor microRNA may be a mechanism in inducing cell proliferation and tumorigenesis: a lung cancer study. Rna, 2015, 21, 1055-1065.	1.6	36

TATION PEDO

#	Article	IF	CITATIONS
20	Axon guidance proteins in neurological disorders. Lancet Neurology, The, 2015, 14, 532-546.	4.9	222
21	Epileptogenesis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a022822.	2.9	227
22	2014 Epilepsy Benchmarks Area II: Prevent Epilepsy and Its Progression. Epilepsy Currents, 2016, 16, 187-191.	0.4	11
23	MicroRNA-132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture Model of Acquired Epilepsy and Associated with Epileptogenesis Process. Neural Plasticity, 2016, 2016, 1-14.	1.0	35
24	Identification of microRNAs with Dysregulated Expression in Status Epilepticus Induced Epileptogenesis. PLoS ONE, 2016, 11, e0163855.	1.1	13
25	Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGAâ€derived cell cultures. Glia, 2016, 64, 1066-1082.	2.5	51
26	Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Scientific Reports, 2016, 6, 20969.	1.6	14
27	Modulation of <i>miR-146a</i> /complement factor H-mediated inflammatory responses in a rat model of temporal lobe epilepsy. Bioscience Reports, 2016, 36, .	1.1	34
28	mTOR and MAPK: from localized translation control to epilepsy. BMC Neuroscience, 2016, 17, 73.	0.8	60
29	Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation. Experimental Neurology, 2016, 286, 137-146.	2.0	11
30	Micro <scp>RNA</scp> â€139â€5p negatively regulates <scp>NR</scp> 2Aâ€containing <scp>NMDA</scp> receptor in the rat pilocarpine model and patients with temporal lobe epilepsy. Epilepsia, 2016, 57, 1931-1940.	2.6	33
31	Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy. Epilepsy Research, 2016, 127, 311-316.	0.8	58
32	Pharmacological modulation in mesial temporal lobe epilepsy: Current status and future perspectives. Pharmacological Research, 2016, 113, 421-425.	3.1	20
33	miRNA-187-3p-Mediated Regulation of the KCNK10/TREK-2 Potassium Channel in a Rat Epilepsy Model. ACS Chemical Neuroscience, 2016, 7, 1585-1594.	1.7	21
35	Multi-omics profile of the mouse dentate gyrus after kainic acid-induced status epilepticus. Scientific Data, 2016, 3, 160068.	2.4	24
36	MicroRNAs as biomarkers in molecular diagnosis of refractory epilepsy. Chinese Neurosurgical Journal, 2016, 2, .	0.3	6
37	Advances in the development of biomarkers for epilepsy. Lancet Neurology, The, 2016, 15, 843-856.	4.9	283
38	Specific pattern of maturation and differentiation in the formation of cortical tubers in tuberous sclerosis complex (TSC): evidence from layer-specific marker expression. Journal of Neurodevelopmental Disorders, 2016, 8, 9.	1.5	23

#	ARTICLE	IF	Citations
39	Involvement of micro <scp>RNA</scp> s in epileptogenesis. Epilepsia, 2016, 57, 1015-1026.	2.6	47
40	Serum MicroRNA-4521 is a Potential Biomarker for Focal Cortical Dysplasia with Refractory Epilepsy. Neurochemical Research, 2016, 41, 905-912.	1.6	39
41	Current understanding and neurobiology of epileptic encephalopathies. Neurobiology of Disease, 2016, 92, 72-89.	2.1	71
42	Dual and Opposing Roles of MicroRNA-124 in Epilepsy Are Mediated through Inflammatory and NRSF-Dependent Gene Networks. Cell Reports, 2016, 14, 2402-2412.	2.9	88
43	Immunity and Inflammation in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022699.	2.9	162
44	EpimiRBase: a comprehensive database of microRNA-epilepsy associations. Bioinformatics, 2016, 32, 1436-1438.	1.8	48
45	Molecular biomarkers in drug-resistant epilepsy: Facts & possibilities. International Journal of Surgery, 2016, 36, 483-491.	1.1	13
46	Which insights have we gained from the kindling and post-status epilepticus models?. Journal of Neuroscience Methods, 2016, 260, 96-108.	1.3	62
47	ls autopsy tissue a valid control for epilepsy surgery tissue in micro <scp>RNA</scp> studies?. Epilepsia Open, 2017, 2, 90-95.	1.3	11
48	miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells. Archives of Virology, 2017, 162, 1495-1505.	0.9	24
49	Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1519-1538.	1.8	74
50	Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Scientific Reports, 2017, 7, 3328.	1.6	93
52	Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiology of Disease, 2017, 99, 12-23.	2.1	149
53	Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs. Epilepsia, 2017, 58, 2013-2024.	2.6	45
54	PTEN deletion increases hippocampal granule cell excitability in male and female mice. Neurobiology of Disease, 2017, 108, 339-351.	2.1	36
55	Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Scientific Reports, 2017, 7, 11592.	1.6	44
56	Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58, 27-38.	2.6	131
57	Aberrant Expression of miR-323a-5p in Patients with Refractory Epilepsy Caused by Focal Cortical Dysplasia. Genetic Testing and Molecular Biomarkers, 2017, 21, 3-9.	0.3	18

#	Article	IF	CITATIONS
58	miRNA-Mediated Regulation of Adult Hippocampal Neurogenesis; Implications for Epilepsy. Brain Plasticity, 2017, 3, 43-59.	1.9	33
59	Post-Status Epilepticus Models: Electrical Stimulation. , 2017, , 637-650.		5
60	The Challenge of microRNA as a Biomarker of Epilepsy. Current Neuropharmacology, 2017, 16, 37-42.	1.4	55
61	Pathophysiology and Clinical Utility of Non-coding RNAs in Epilepsy. Frontiers in Molecular Neuroscience, 2017, 10, 249.	1.4	32
62	MicroRNA hsa-miR-134 is a circulating biomarker for mesial temporal lobe epilepsy. PLoS ONE, 2017, 12, e0173060.	1.1	45
63	Chronically dysregulated NOTCH1 interactome in the dentate gyrus after traumatic brain injury. PLoS ONE, 2017, 12, e0172521.	1.1	22
64	microRNA-Mediated Regulation of Adult Hippocampal Neurogenesis; Implications for Hippocampus-dependent Cognition and Related Disorders?. , 2017, , 155-176.		0
65	Renin-Angiotensin System MicroRNAs, Special Focus on the Brain. , 2017, , .		1
66	mi <scp>R</scp> 147b: <scp>A</scp> novel key regulator of interleukin 1 betaâ€mediated inflammation in human astrocytes. Glia, 2018, 66, 1082-1097.	2.5	28
68	A distinct microRNA expression profile is associated with α[11C]-methyl-L-tryptophan (AMT) PET uptake in epileptogenic cortical tubers resected from patients with tuberous sclerosis complex. Neurobiology of Disease, 2018, 109, 76-87.	2.1	19
69	MicroRNAâ€induced silencing in epilepsy: Opportunities and challenges for clinical application. Developmental Dynamics, 2018, 247, 94-110.	0.8	53
70	Silencing rno-miR-155-5p in rat temporal lobe epilepsy model reduces pathophysiological features and cell apoptosis by activating Sestrin-3. Brain Research, 2018, 1689, 109-122.	1.1	44
72	Intracerebroventricular injection of miR-146a relieves seizures in an immature rat model of lithium-pilocarpine induced status epilepticus. Epilepsy Research, 2018, 139, 14-19.	0.8	18
73	Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine, 2018, 38, 127-141.	2.7	88
74	MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Frontiers in Molecular Neuroscience, 2018, 11, 442.	1.4	26
75	Discovery and validation of blood micro <scp>RNA</scp> s as molecular biomarkers of epilepsy: Ways to close current knowledge gaps. Epilepsia Open, 2018, 3, 427-436.	1.3	32
76	Differential expression of synaptic vesicle protein 2A after status epilepticus and during epilepsy in a lithium-pilocarpine model. Epilepsy and Behavior, 2018, 88, 283-294.	0.9	15
77	Potential Role of miRNAs as Theranostic Biomarkers of Epilepsy. Molecular Therapy - Nucleic Acids, 2018, 13, 275-290.	2.3	37

		CITATION REPORT		
#	Article		IF	CITATIONS
78	Neuroinflammatory Nexus of Pediatric Epilepsy. Journal of Pediatric Epilepsy, 2018, 07	, 032-039.	0.1	3
79	Glial responses during epileptogenesis in Mus musculus point to potential therapeutic ONE, 2018, 13, e0201742.	targets. PLoS	1.1	24
80	miR-124-3p is a chronic regulator of gene expression after brain injury. Cellular and Mc Sciences, 2018, 75, 4557-4581.	lecular Life	2.4	40
81	MicroRNA Expression Profiling in the Prefrontal Cortex: Putative Mechanisms for the C Effects of Adolescent High Fat Feeding. Scientific Reports, 2018, 8, 8344.	ognitive	1.6	14
82	Regulation of Ion Channels by MicroRNAs and the Implication for Epilepsy. Current Net Neuroscience Reports, 2018, 18, 60.	urology and	2.0	31
83	Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res 9-16.	search, 2018, 146,	0.8	51
84	Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and ir search of potential anti-epileptogenic strategies for temporal lobe epilepsy. Journal of Neuroinflammation, 2018, 15, 212.	ı vivo — in	3.1	48
85	Epilepsy an Update on Disease Mechanisms: The Potential Role of MicroRNAs. Frontier 2018, 9, 176.	s in Neurology,	1.1	13
86	Hypoxia-Induced MicroRNA-210 Targets Neurodegenerative Pathways. Non-coding RN.	A, 2018, 4, 10.	1.3	18
87	Targeting of microRNA-21-5p protects against seizure damage in a kainic acid-induced model via PTEN-mTOR. Epilepsy Research, 2018, 144, 34-42.	status epilepticus	0.8	26
88	Bioinformatics Analysis of Microarray Profiling Identifies That the miR-203-3p Target P Aggravates Seizure Activity in Mice. Journal of Molecular Neuroscience, 2018, 66, 146		1.1	3
89	Gene networks and microRNAs: Promises and challenges for treating epilepsies and th comorbidities. Epilepsy and Behavior, 2021, 121, 106488.	eir	0.9	4
90	Regulation of ADAM10 by MicroRNA-23a Contributes to Epileptogenesis in Pilocarpine Epilepticus Mice. Frontiers in Cellular Neuroscience, 2019, 13, 180.	P-Induced Status	1.8	8
91	Electrical stimulation of the ventral hippocampal commissure delays experimental epile associated with altered microRNA expression. Brain Stimulation, 2019, 12, 1390-1401	epsy and is	0.7	10
92	MicroRNAs change the games in central nervous system pharmacology. Biochemical P 2019, 168, 162-172.	harmacology,	2.0	18
93	Losmapimod Protected Epileptic Rats From Hippocampal Neuron Damage Through Inh MAPK Pathway. Frontiers in Pharmacology, 2019, 10, 625.	ibition of the	1.6	7
94	MicroRNAs as biomarkers and treatment targets in status epilepticus. Epilepsy and Bel 106272.	navior, 2019, 101,	0.9	16
95	Antagonizing Increased <i>miR-135a</i> Levels at the Chronic Stage of Experimental 1 Spontaneous Recurrent Seizures. Journal of Neuroscience, 2019, 39, 5064-5079.	LE Reduces	1.7	28

	CITATION	Report	
#	Article	IF	CITATIONS
96	LncRNA FTX inhibits hippocampal neuron apoptosis by regulating miR-21-5p/SOX7 axis in a rat model of temporal lobe epilepsy. Biochemical and Biophysical Research Communications, 2019, 512, 79-86.	1.0	43
97	Harmonization of pipeline for preclinical multicenter plasma protein and miRNA biomarker discovery in a rat model of post-traumatic epileptogenesis. Epilepsy Research, 2019, 149, 92-101.	0.8	17
98	miR-34a in Neurophysiology and Neuropathology. Journal of Molecular Neuroscience, 2019, 67, 235-246.	1.1	46
99	Increased matrix metalloproteinases expression in tuberous sclerosis complex: modulation by microRNA 146a and 147b <i>in vitro</i> . Neuropathology and Applied Neurobiology, 2020, 46, 142-159.	1.8	17
100	Biomarkers for epileptogenesis and its treatment. Neuropharmacology, 2020, 167, 107735.	2.0	70
101	microRNAâ€132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of proâ€epileptogenic factors in human cultured astrocytes. Glia, 2020, 68, 60-75.	2.5	49
102	Role of c-Jun N-Terminal Kinases (JNKs) in Epilepsy and Metabolic Cognitive Impairment. International Journal of Molecular Sciences, 2020, 21, 255.	1.8	18
103	Circulating microRNAs as potential biomarkers for genetic generalized epilepsies: a three microRNA panel. European Journal of Neurology, 2020, 27, 660-666.	1.7	23
104	The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas. Brain, 2020, 143, 131-149.	3.7	24
105	Chronic activation of antiâ€oxidant pathways and iron accumulation in epileptogenic malformations. Neuropathology and Applied Neurobiology, 2020, 46, 546-563.	1.8	21
106	Epilepsy miRNA Profile Depends on the Age of Onset in Humans and Rats. Frontiers in Neuroscience, 2020, 14, 924.	1.4	14
107	Insights into Potential Targets for Therapeutic Intervention in Epilepsy. International Journal of Molecular Sciences, 2020, 21, 8573.	1.8	22
108	Exosomal microRNA expression profiles of cerebrospinal fluid in febrile seizure patients. Seizure: the Journal of the British Epilepsy Association, 2020, 81, 47-52.	0.9	7
109	Lrp4 in hippocampal astrocytes serves as a negative feedback factor in seizures. Cell and Bioscience, 2020, 10, 135.	2.1	3
110	MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nature Reviews Neurology, 2020, 16, 506-519.	4.9	92
111	A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15977-15988.	3.3	41
112	MicroRNA-210 Regulates Dendritic Morphology and Behavioural Flexibility in Mice. Molecular Neurobiology, 2021, 58, 1330-1344.	1.9	6
113	Identification of clinically relevant biomarkers of epileptogenesis — a strategic roadmap. Nature Reviews Neurology, 2021, 17, 231-242.	4.9	54

#	Article	IF	CITATIONS
114	<i>miR</i> - <i>218</i> - <i>2</i> regulates cognitive functions in the hippocampus through complement component 3–dependent modulation of synaptic vesicle release. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
115	Mechanisms of microRNA‑142 in mitochondrial autophagy and hippocampal damage in a rat model of epilepsy. International Journal of Molecular Medicine, 2021, 47, .	1.8	11
116	Cloning and Functional Analysis of Rat Tweety-Homolog 1 Gene Promoter. Neurochemical Research, 2021, 46, 2463-2472.	1.6	0
117	Temporal Lobe Epilepsy: What do we understand about protein alterations?. Chemical Biology and Drug Design, 2021, 98, 377-394.	1.5	2
118	Role of microRNA‴129 in cancer and nonâ€ʿcancerous diseases (Review). Experimental and Therapeutic Medicine, 2021, 22, 918.	0.8	9
119	miRâ€485's antiâ€drug resistant epilepsy effects by regulating SV2A/PSDâ€95 and targeting ABCC1 and neuronal signalingâ€transduction proteins in hippocampus of rats. Brain and Behavior, 2021, 11, e2247.	1.0	3
120	Opportunities and challenges for microRNA-targeting therapeutics for epilepsy. Trends in Pharmacological Sciences, 2021, 42, 605-616.	4.0	39
121	Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. International Journal of Molecular Sciences, 2021, 22, 8601.	1.8	5
122	Repeated exposure to microcystin-leucine-arginine potentiates excitotoxicity induced by a low dose of kainate. Toxicology, 2021, 460, 152887.	2.0	6
123	A Warburg-like metabolic program coordinates Wnt, AMPK, and mTOR signaling pathways in epileptogenesis. PLoS ONE, 2021, 16, e0252282.	1.1	13
124	Multi-omics in mesial temporal lobe epilepsy with hippocampal sclerosis: Clues into the underlying mechanisms leading to disease. Seizure: the Journal of the British Epilepsy Association, 2021, 90, 34-50.	0.9	19
125	MiR-499a prevents astrocytes mediated inflammation in ischemic stroke by targeting PTEN. Non-coding RNA Research, 2021, 6, 146-152.	2.4	5
126	Efficient roles of miR-146a in cellular and molecular mechanisms of neuroinflammatory disorders: An effectual review in neuroimmunology. Immunology Letters, 2021, 238, 1-20.	1.1	13
127	Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy. Neurobiology of Disease, 2020, 144, 105048.	2.1	35
128	Acetazolamide Suppresses Multi-Drug Resistance-Related Protein 1 and P-Glycoprotein Expression by Inhibiting Aquaporins Expression in a Mesial Temporal Epilepsy Rat Model. Medical Science Monitor, 2017, 23, 5818-5825.	0.5	14
129	Identification of Endogenous Reference Genes for the Analysis of microRNA Expression in the Hippocampus of the Pilocarpine-Induced Model of Mesial Temporal Lobe Epilepsy. PLoS ONE, 2014, 9, e100529.	1.1	9
130	Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology. PLoS ONE, 2014, 9, e105521.	1.1	36
131	Meta-Analysis of MicroRNAs Dysregulated in the Hippocampal Dentate Gyrus of Animal Models of Epilepsy, ENeuro, 2017, 4, ENEURO 0152-17 2017	0.9	23

#	Article	IF	CITATIONS
132	Targeting Mitogen-Activated Protein Kinases by Natural Products: A Novel Therapeutic Approach for Inflammatory Bowel Diseases. Current Pharmaceutical Biotechnology, 2020, 21, 1342-1353.	0.9	14
137	Identifying the temporal electrophysiological and molecular changes that contribute to TSC-associated epileptogenesis. JCI Insight, 2021, 6, .	2.3	7
138	Pentylenetetrazole-induced kindling rat model: miR-182 and miR-27b-3p mediated neuroprotective effect of thymoquinone in the hippocampus. Neurological Research, 2022, 44, 726-737.	0.6	1
139	Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacological Reviews, 2022, 74, 387-438.	7.1	30
140	Effects of exosomes on adult hippocampal neurogenesis and neuropsychiatric disorders. Molecular Biology Reports, 2022, 49, 6763-6777.	1.0	6
141	Calcium-/Calmodulin-Dependent Protein Kinase II (CaMKII) Inhibition Induces Learning and Memory Impairment and Apoptosis. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-19.	1.9	14
142	New Insights Into the Role of Aberrant Hippocampal Neurogenesis in Epilepsy. Frontiers in Neurology, 2021, 12, 727065.	1.1	8
144	Detection of Deregulated miRNAs in Childhood Epileptic Encephalopathies. Journal of Molecular Neuroscience, 2022, 72, 1234-1242.	1.1	10
145	The Coordination of mTOR Signaling and Non-Coding RNA in Regulating Epileptic Neuroinflammation. Frontiers in Immunology, 0, 13, .	2.2	3
146	The Regulation, Functions, and Signaling of miR-153 in Neurological Disorders, and Its Potential as a Biomarker and Therapeutic Target. Current Molecular Medicine, 2023, 23, 863-875.	0.6	2
148	Stage- and Subfield-Associated Hippocampal miRNA Expression Patterns after Pilocarpine-Induced Status Epilepticus. Biomedicines, 2022, 10, 3012.	1.4	0
149	Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules, 2023, 13, 18.	1.8	7
150	miR-9a-5p expression is decreased in the hippocampus of rats resistant to lamotrigine: A behavioural, molecular and bioinformatics assessment. Neuropharmacology, 2023, 227, 109425.	2.0	3
151	Discovery and Validation of Circulating microRNAs as Biomarkers for Epileptogenesis after Experimental Traumatic Brain Injury–The EPITARGET Cohort. International Journal of Molecular Sciences, 2023, 24, 2823.	1.8	3
152	Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. International Journal of Molecular Sciences, 2023, 24, 2928.	1.8	8
153	Circulating miR-146a-5p and miR-132–3p as potential diagnostic biomarkers in epilepsy. Epilepsy Research, 2023, 191, 107089.	0.8	2
157	The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Functional and Integrative Genomics, 2023, 23, .	1.4	5