The octane numbers of ethanol blended with gasoline a

Fuel 115, 727-739 DOI: 10.1016/j.fuel.2013.07.105

Citation Report

#	Article	IF	CITATIONS
2	Autoignition Characterization of Primary Reference Fuels and <i>n</i> -Heptane/ <i>n</i> -Butanol Mixtures in a Constant Volume Combustion Device and Homogeneous Charge Compression Ignition Engine. Energy & Fuels, 2013, 27, 7778-7789.	2.5	38
3	Design and Analysis of a Modified CFR Engine for the Octane Rating of Liquefied Petroleum Gases (LPG). SAE International Journal of Fuels and Lubricants, 0, 7, 283-300.	0.2	18
4	Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities. SAE International Journal of Fuels and Lubricants, 0, 7, 29-47.	0.2	33
5	Refining Economics of U.S. Gasoline: Octane Ratings and Ethanol Content. Environmental Science & Technology, 2014, 48, 11064-11071.	4.6	31
6	Proton NMR characterization of gasoline–ethanol blends. Fuel, 2014, 137, 335-338.	3.4	8
7	Excess molar volume of binary mixtures containing an oxygenate. Journal of Molecular Liquids, 2014, 199, 42-50.	2.3	43
8	Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity. Energy & Fuels, 2014, 28, 1418-1431.	2.5	27
9	Development of biofuels in South Africa: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 2014, 39, 1089-1100.	8.2	66
10	Alcohol combustion chemistry. Progress in Energy and Combustion Science, 2014, 44, 40-102.	15.8	687
11	Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed. Energy & Fuels, 2014, 28, 1432-1445.	2.5	35
12	New Headspace-Mass Spectrometry Method for the Discrimination of Commercial Gasoline Samples with Different Research Octane Numbers. Energy & Fuels, 2014, 28, 6249-6254.	2.5	16
13	Research Octane Numbers of Primary and Mixed Alcohols from Biomass-Based Syngas. Energy & Fuels, 2014, 28, 3185-3191.	2.5	7
14	Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends. , 0, , .		7
15	Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON. Combustion and Flame, 2015, 162, 2311-2321.	2.8	120
16	Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons. Korean Journal of Chemical Engineering, 2015, 32, 168-177.	1.2	28
17	A Novel Group Contribution Method for the Prediction of the Derived Cetane Number of Oxygenated Hydrocarbons. Energy & Fuels, 2015, 29, 5781-5801.	2.5	86
18	In cylinder visualization of stratified combustion of E85 and main sources of soot formation. Fuel, 2015, 159, 392-411.	3.4	17
19	Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling. Combustion and Flame, 2015, 162, 3971-3979.	2.8	41

#	Article	IF	CITATIONS
20	Octane Rating of Gasoline and Octane Booster Additives. Petroleum Science and Technology, 2015, 33, 1190-1197.	0.7	77
21	A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times. Fuel, 2015, 160, 458-469.	3.4	80
22	Modeling of thermodynamic properties of an oxygenate+aromatic hydrocarbon: Excess molar enthalpy. Journal of Industrial and Engineering Chemistry, 2015, 23, 299-306.	2.9	30
23	A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews, 2015, 42, 1393-1417.	8.2	343
24	Laminar Flame Characteristics of C1–C5 Primary Alcohol-Isooctane Blends at Elevated Temperature. Energies, 2016, 9, 511.	1.6	43
25	Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes. SAE International Journal of Fuels and Lubricants, 0, 9, 659-682.	0.2	46
26	A Historical Analysis of the Co-evolution of Gasoline Octane Number and Spark-Ignition Engines. Frontiers in Mechanical Engineering, 2016, 1, .	0.8	45
27	Improving the Efficiency of Conventional Spark-Ignition Engines Using Octane-on-Demand Combustion. Part I: Engine Studies. , 0, , .		27
28	Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines. SAE International Journal of Engines, 0, 9, 819-831.	0.4	41
29	Effects of ethanol, ethyl-tert-butyl ether and dimethyl-carbonate blends with gasoline on SI engine. Fuel, 2016, 183, 253-261.	3.4	49
30	Predicting fuel research octane number using Fourier-transform infrared absorption spectra of neat hydrocarbons. Fuel, 2016, 183, 359-365.	3.4	46
31	Removal of linear and monobranched alkane from aviation gasoline by 5A zeolite adsorption for octane number enhancement. Canadian Journal of Chemical Engineering, 2016, 94, 128-133.	0.9	8
32	Laminar Burning Velocities of Fuels for Advanced Combustion Engines (FACE) Gasoline and Gasoline Surrogates with and without Ethanol Blending Associated with Octane Rating . Combustion Science and Technology, 2016, 188, 692-706.	1.2	14
33	Effects of iso-octane/ethanol blend ratios on the observance of negative temperature coefficient behavior within the Ignition Quality Tester. Fuel, 2016, 186, 82-90.	3.4	22
34	Ethanol Clusters in Gasoline-Ethanol Blends. Industrial & Engineering Chemistry Research, 2016, 55, 9952-9955.	1.8	3
35	Lifecycle optimized ethanol-gasoline blends for turbocharged engines. Applied Energy, 2016, 181, 38-53.	5.1	37
36	Using Ethanol's Double Octane Boosting Effect with Low RON Naphtha-Based Fuel for an Octane on Demand SI Engine. SAE International Journal of Engines, 0, 9, 1460-1474.	0.4	16
37	Ultrasonic speeds, viscosities, refractive indices and FT-IR spectroscopic studies of an oxygenate with aliphatic and aromatic hydrocarbons at 298.15 K and 308.15 K. Journal of Molecular Liquids, 2016, 219, 1107-1123.	2.3	41

		CITATION REPORT		
#	Article		IF	CITATIONS
38	A blending rule for octane numbers of PRFs and TPRFs with ethanol. Fuel, 2016, 180, 1	75-186.	3.4	65
39	Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method. E Fuels, 0, , .	nergy &	2.5	13
40	Spray ignition experiments for alkylbenzenes and alkylbenzene/n-alkane blends. Fuel, 2	017, 195, 49-58.	3.4	10
41	Impact of fuel molecular structure on auto-ignition behavior – Design rules for future performance gasolines. Progress in Energy and Combustion Science, 2017, 60, 1-25.	high	15.8	160
42	Optimal octane number correlations for mixtures of toluene reference fuels (TRFs) and 2017, 188, 408-417.	ethanol. Fuel,	3.4	31
43	Pressure and temperature effects on fuels with varying octane sensitivity at high load i Combustion and Flame, 2017, 177, 49-66.	n SI engines.	2.8	120
44	Antiknock Properties of Blends of 2-Methylfuran and 2,5-Dimethylfuran with Reference Chemistry and Technology of Fuels and Oils, 2017, 53, 147-153.	Fuel.	0.2	9
45	Comparison of E10 and E85 spark ignited stratified combustion and soot formation. Full-23.	ıel, 2017, 205,	3.4	9
46	Model-Based Formulation of Biofuel Blends by Simultaneous Product and Pathway Des & amp; Fuels, 2017, 31, 4096-4121.	ign. Energy	2.5	49
47	Modeling End-Gas Autoignition of Ethanol/Gasoline Surrogate Blends in the Cooperativ Research Engine. Energy & Fuels, 2017, 31, 2378-2389.	e Fuel	2.5	40
48	Improved skeletal reduction on multiple gasoline-ethanol surrogates using a Jacobian-a approach under gasoline compression ignition (GCI) engine conditions. Fuel, 2017, 210	ided DRGEP), 617-624.	3.4	15
49	Impact of Fuel Composition and Intake Pressure on Lean Autoignition of Surrogate Gas CFR Engine. Energy & Fuels, 2017, 31, 11315-11327.	oline Fuels in a	2.5	21
50	Synergistic engine-fuel technologies for light-duty vehicles: Fuel economy and Greenho Emissions. Applied Energy, 2017, 208, 1538-1561.	use Gas	5.1	44
51	Study of the refractive index of gasoline+alcohol pseudo-binary mixtures. Analele Unive Constanța: Seria Chimie, 2017, 28, 18-24.	rsitÄfÈii Ovidius	0.2	4
52	Optimization of the octane response of gasoline/ethanol blends. Applied Energy, 2017	, 203, 778-793.	5.1	63
53	A high-pressure plug flow reactor for combustion chemistry investigations. Measureme Technology, 2017, 28, 105902.	nt Science and	1.4	9
54	Autoignition characteristics of oxygenated gasolines. Combustion and Flame, 2017, 18	36, 114-128.	2.8	63
55	Advances in rapid compression machine studies of low- and intermediate-temperature phenomena. Progress in Energy and Combustion Science, 2017, 63, 1-78.	autoignition	15.8	180

		CITATION REPORT	
#	Article	IF	CITATIONS
56	Maximizing the benefits of high octane fuels in spark-ignition engines. Fuel, 2017, 207, 470-4	487. 3.4	30
57	Proton exchange in gasoline-ethanol fuel blends. Fuel, 2017, 189, 440-442.	3.4	2
58	Understanding the effect of external-EGR on anti-knock characteristics of various ethanol refe fuel with RON 100 by using rapid compression machine. Proceedings of the Combustion Inst 36, 3507-3514.	erence itute, 2017, 2.4	6
59	Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane boo Proceedings of the Combustion Institute, 2017, 36, 3515-3522.	ster. 2.4	21
60	Autoignition of pentane isomers in a spark-ignition engine. Proceedings of the Combustion Ir 2017, 36, 3499-3506.	istitute, 2.4	11
61	Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode.	,2017,,.	9
62	Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustior 0, , .	ι Modes. ,	6
63	Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol. , 2017, , .		22
64	Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends. , 0, , .		2
65	Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI an Combustion Modes. , 0, , .	d CI	13
66	A new chemical kinetic method of determining RON and MON values for single component a multicomponent mixtures of engine fuels. Combustion and Flame, 2018, 195, 50-62.	nd 2.8	58
67	Exploring optimal operating conditions for wet ethanol use in spark ignition engines. Applied Engineering, 2018, 138, 523-533.	Thermal 3.0	33
68	Predicting Octane Number Using Nuclear Magnetic Resonance Spectroscopy and Artificial Ne Networks. Energy & Fuels, 2018, 32, 6309-6329.	2ural 2.5	102
69	2-Methylfuran: A bio-derived octane booster for spark-ignition engines. Fuel, 2018, 225, 349-	357. 3.4	26
70	A minimalist functional group (MFG) approach for surrogate fuel formulation. Combustion ar Flame, 2018, 192, 250-271.	ıd 2.8	71
71	Multi-fuel surrogate chemical kinetic mechanisms for real world applications. Physical Chemis Chemical Physics, 2018, 20, 10588-10606.	stry 1.3	40
72	Leveraging the benefits of ethanol in advanced engine-fuel systems. Energy Conversion and Management, 2018, 157, 480-497.	4.4	36
73	Manifestation of octane rating, fuel sensitivity, and composition effects for gasoline surrogat under advanced compression ignition conditions. Combustion and Flame, 2018, 192, 238-24	es 2.8 9	22

#	ARTICLE Effect of ethyl acetate addition on phase stability, octane number and volatility criteria of ethanol-gasoline blends. Egyptian Journal of Petroleum, 2018, 27, 567-572.	IF 1.2	CITATIONS
75	Perspectives on Water Usage for Biofuels Production. , 2018, , .		18
76	An Overview of Biofuel. , 2018, , 1-37.		5
77	Recent progress in gasoline surrogate fuels. Progress in Energy and Combustion Science, 2018, 65, 67-108.	15.8	302
78	Estimating fuel octane numbers from homogeneous gas-phase ignition delay times. Combustion and Flame, 2018, 188, 307-323.	2.8	32
79	Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance. , 0, , .		15
80	Influence of ethyl acetate addition on phase stability and fuel characteristics of hydrous ethanol-gasoline blends. Egyptian Journal of Petroleum, 2018, 27, 1333-1336.	1.2	10
81	Blending Octane Number of 1-Butanol and Iso-Octane with Low Octane Fuels in HCCI Combustion Mode. , 0, , .		1
82	Exploring Alternative Octane Specification Methods for Improved Gasoline Knock Resistance in Spark-Ignition Engines. Frontiers in Mechanical Engineering, 2018, 4, .	0.8	7
83	Azeotrope formation in gasoline–ethanol blends. Part 1 – Impact of nonionic on E10 distillation curve. Egyptian Journal of Petroleum, 2018, 27, 1167-1175.	1.2	8
84	The Influence of Intake Pressure and Ethanol Addition to Gasoline on Single- and Dual-Stage Autoignition in an HCCI Engine. Energy & Fuels, 2018, 32, 9822-9837.	2.5	5
85	Recent advances in production and upgrading of bio-oil from biomass: A critical overview. Journal of Environmental Chemical Engineering, 2018, 6, 5101-5118.	3.3	158
86	Spark Assist for CA50 Control and Improved Robustness in a Premixed LTGC Engine – Effects ofÂEquivalence Ratio and Intake Boost. , 0, , .		21
87	Downsizing Potential of Methanol Fueled DISIÂEngine with Variable Valve Timing and Boost Control. , 0, , .		20
88	Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode. , 2018, , .		3
89	Design and Validation of a GT Power Model of the CFR Engine towards the Development of a BoostedÂOctane Number. , 2018, , .		12
90	Standardized Gasoline Compression Ignition FuelsÂMatrix. , 0, , .		14
91	FACE Gasoline Surrogates Formulated by an Enhanced Multivariate Optimization Framework. Energy & amp; Fuels, 2018, 32, 7916-7932.	2.5	12

#	Article	IF	CITATIONS
92	The impact of physicochemical property interactions of iso-octane/ethanol blends on ignition timescales. Fuel, 2018, 224, 401-411.	3.4	15
93	Experimental study on combustion characteristics and emission performance of 2-phenylethanol addition in a downsized gasoline engine. Energy, 2018, 163, 894-904.	4.5	28
94	Analysis of auto-ignition characteristics of low-alcohol/iso-octane blends using combined chemical kinetics mechanisms. Fuel, 2018, 234, 836-849.	3.4	15
95	Understanding the effect of inhomogeneous fuel–air mixing on knocking characteristics of various ethanol reference fuels with RON 100 using rapid compression machine. Proceedings of the Combustion Institute, 2019, 37, 4911-4919.	2.4	10
96	Auto-ignition and deflagration characteristics of ethanol-gasoline/air at high temperature. Fuel, 2019, 255, 115768.	3.4	10
97	Predicting octane number from microscale flame dynamics. Combustion and Flame, 2019, 208, 5-14.	2.8	14
98	Two-stage ignition behavior and octane sensitivity of toluene reference fuels as gasoline surrogate. Combustion and Flame, 2019, 210, 100-113.	2.8	18
99	Modelling of Self-Ignition in Spark-Ignition Engine Using Reduced Chemical Kinetics for Gasoline Surrogates. Fluids, 2019, 4, 157.	0.8	4
100	Properties of gasoline-ethanol-methanol ternary fuel blend compared with ethanol-gasoline and methanol-gasoline fuel blends. Egyptian Journal of Petroleum, 2019, 28, 371-376.	1.2	28
101	Reformate-enriched gasoline-ethanol blends: Volatility criteria and azeotrope formation. Egyptian Journal of Petroleum, 2019, 28, 377-382.	1.2	4
102	Camphorane as a Renewable Diesel Blendstock Produced by Cyclodimerization of Myrcene. Energy & Fuels, 2019, 33, 9949-9955.	2.5	6
103	Chemical Ignition Characteristics of Ethanol Blending with Primary Reference Fuels. Energy & Fuels, 2019, 33, 10185-10196.	2.5	24
104	Alternative Fuels for Internal Combustion Engines. , 0, , .		10
105	Investigation of onboard fuel separation for passenger vehicles. Energy, 2019, 169, 1079-1089.	4.5	2
106	Predicting fuel low-temperature combustion performance using Fourier-transform infrared absorption spectra of neat hydrocarbons. Fuel, 2019, 242, 343-344.	3.4	3
107	Impact of octane sensitivity and thermodynamic conditions on combustion process of spark-ignition to compression-ignition through an optical rapid compression machine. Fuel, 2019, 253, 864-880.	3.4	7
108	Investigation of fuel dilution in ethanol spray MILD combustion. Applied Thermal Engineering, 2019, 159, 113898.	3.0	14
109	Oxidation of Ethanol Blended Gasoline Surrogates in a Flow Reactor. Energy & Fuels, 2019, 33, 3602-3609.	2.5	1

		CITATION REPORT	
#	Article	IF	CITATIONS
110	The research octane numbers of ethanol-containing gasoline surrogates. Fuel, 2019, 243, 306-313.	. 3.4	33
111	Measuring and predicting the vapor pressure of gasoline containing oxygenates. Fuel, 2019, 243, 630-644.	3.4	37
112	Discovery of novel octane hyperboosting phenomenon in prenol biofuel/gasoline blends. Fuel, 2019 239, 1143-1148.), 3.4	46
113	The influence of mixing ratio of low carbon mixed alcohols on knock combustion of spark ignition engines. Fuel, 2019, 240, 339-348.	3.4	12
114	Investigating auto-ignition behavior of n-heptane/iso-octane/ethanol mixtures for gasoline surrogates through rapid compression machine measurement and chemical kinetics analysis. Fuel, 2019, 241, 1095-1108.	3.4	23
115	Critical fuel property evaluation for potential gasoline and diesel biofuel blendstocks with low sample volume availability. Fuel, 2019, 238, 26-33.	3.4	9
116	Oxidation of ethanol and hydrocarbon mixtures in a pressurised flow reactor. Combustion and Flame, 2019, 199, 96-113.	2.8	9
117	Oxidation of PRFs and ethanol/iso-octane mixtures in a flow reactor and the implication for their octane blending. Proceedings of the Combustion Institute, 2019, 37, 649-656.	2.4	14
118	Octane Prediction from Infrared Spectroscopic Data. Energy & amp; Fuels, 2020, 34, 817-826.	2.5	20
119	Effects of blending C3-C4 alcohols on motor gasoline properties and performance of spark ignition engines: A review. Fuel Processing Technology, 2020, 197, 106194.	3.7	53
120	Effect of octane number and thermodynamic conditions on combustion process of spark ignition t compression ignition through a rapid compression machine. Fuel, 2020, 262, 116480.	0 3.4	10
121	Formulating gasoline surrogate for emulating octane blending properties with ethanol. Fuel, 2020, 261, 116243.	3.4	21
122	Influence of gasoline olefin and aromatic content on exhaust emissions of 15% ethanol blends. Fue 2020, 265, 116950.	<u>.</u> , 3.4	23
123	Investigation into pressure dependence of flame speed for fuels with low and high octane sensitivit through blending ethanol. Combustion and Flame, 2020, 212, 252-269.	-y 2.8	8
124	Gasoline-ethanol blend formulation to mimic laminar flame speed and auto-ignition quality in automotive engines. Fuel, 2020, 264, 116741.	3.4	41
125	Machine learning regression based group contribution method for cetane and octane numbers prediction of pure fuel compounds and mixtures. Fuel, 2020, 280, 118589.	3.4	33
126	RON and MON chemical kinetic modeling derived correlations with ignition delay time for gasoline and octane boosting additives. Combustion and Flame, 2020, 219, 359-372.	2.8	9
127	Investigation of fuel effects on the knock under lean burn conditions in a spark ignition engine. Fue 2020, 282, 118785.	el, 3.4	6

#	ARTICLE	IF	CITATIONS
128	Numerical assessment of methane number and critical compression ratio of gaseous alternative fuels: CFR engine quasi dimensional simulation approach. Thermal Science and Engineering Progress, 2020, 20, 100661.	1.3	1
129	Research on ethanol and toluene's synergistic effects on auto-ignition and pressure dependences of flame speed for gasoline surrogates. Combustion and Flame, 2020, 222, 196-212.	2.8	11
130	A kinetic investigation on the synergistic low-temperature reactivity, antagonistic RON blending of high-octane fuels: Diisobutylene and cyclopentane. Combustion and Flame, 2020, 220, 23-33.	2.8	16
131	Elucidating the differences in oxidation of high-performance \hat{I}_{\pm} - and \hat{I}_{\pm} - diisobutylene biofuels via Synchrotron photoionization mass spectrometry. Scientific Reports, 2020, 10, 21776.	1.6	2
132	Alcohol Fuels for Spark-Ignition Engines: Performance, Efficiency, and Emission Effects at Mid to High Blend Rates for Ternary Mixtures. Energies, 2020, 13, 6390.	1.6	10
133	Investigating the Effects of C ₃ and C ₄ Alcohol Blending on Ignition Quality of Gasoline Fuels. Energy & Fuels, 2020, 34, 8777-8787.	2.5	1
134	Octane Modeling of Isobutanol Blending into Gasoline. Energy & Fuels, 2020, 34, 8424-8431.	2.5	7
135	Novel Method to Estimate the Octane Ratings of Ethanol–Gasoline Mixtures Using Base Fuel Properties. Energy & Fuels, 2020, 34, 4632-4642.	2.5	15
136	Biofuels: Types and Process Overview. Clean Energy Production Technologies, 2020, , 1-36.	0.3	1
137	QSPR Studies on the Octane Number of Toluene Primary Reference Fuel Based on the Electrotopological State Index. ACS Omega, 2020, 5, 3878-3888.	1.6	6
138	Impact of ethanol on oxidation of iso-octane at low and intermediate temperatures. Combustion and Flame, 2020, 214, 167-183.	2.8	9
139	Blending Characteristics of Isooctene, MTBE, and TAME as Gasoline Components. Energy & Fuels, 2020, 34, 2816-2823.	2.5	47
140	Experimental comparison of combustion and emission characteristics between a market gasoline and its surrogate. Combustion and Flame, 2020, 214, 306-322.	2.8	19
141	Autoignition behavior of gasoline/ethanol blends at engine-relevant conditions. Combustion and Flame, 2020, 216, 369-384.	2.8	41
142	Quantification of gasoline-ethanol blend emissions effects. Journal of the Air and Waste Management Association, 2021, 71, 3-22.	0.9	7
143	A comparative analysis of knock severity in a Cooperative Fuel Research engine using binary gasoline–alcohol blends. International Journal of Engine Research, 2021, 22, 1997-2009.	1.4	7
144	Influences of isomeric butanol addition on anti-knock tendency of primary reference fuel and toluene primary reference fuel gasoline surrogates. International Journal of Engine Research, 2021, 22, 39-49.	1.4	27
145	Kinetic modelling of combustion in a spark ignition engine with water injection. Fuel, 2021, 283, 118814.	3.4	4

#	Article	IF	CITATIONS
146	A property database of fuel compounds with emphasis on spark-ignition engine applications. Applications in Energy and Combustion Science, 2021, 5, 100018.	0.9	17
147	Hybrid low-carbon high-octane oxygenated gasoline based on low-octane hydrocarbon fractions. Science of the Total Environment, 2021, 756, 142715.	3.9	34
149	Understanding the synergistic blending octane behavior of 2-methylfuran. Proceedings of the Combustion Institute, 2021, 38, 5625-5633.	2.4	6
150	The Role of Intermediate-Temperature Heat Release in Octane Sensitivity of Fuels with Matching Research Octane Number. Energy & Fuels, 2021, 35, 4457-4477.	2.5	11
151	A new approach for producing mid-ethanol fuels E30 based on low-octane hydrocarbon surrogate blends. Fuel Processing Technology, 2021, 213, 106688.	3.7	35
152	Mapping K factor variations and its causes in a modern, spark-ignition engine. Fuel, 2021, 290, 120012.	3.4	9
153	Experimental study of flash boiling spray with isooctane, hexane, ethanol and their binary mixtures. Fuel, 2021, 292, 120415.	3.4	19
154	Predicting Ignition Quality of Oxygenated Fuels Using Artificial Neural Networks. SAE International Journal of Fuels and Lubricants, 0, 14, .	0.2	10
155	Recent trends for introducing promising fuel components to enhance the anti-knock quality of gasoline: A systematic review. Fuel, 2021, 291, 120112.	3.4	83
156	Prediction of Gasoline Blend Ignition Characteristics Using Machine Learning Models. Energy & Fuels, 2021, 35, 9332-9340.	2.5	13
157	Experimental Investigation on the Effect of Blending Ethanol on Combustion Characteristic and Idle Performance in a Gasoline Rotary Engine. Journal of Thermal Science, 2021, 30, 1187-1198.	0.9	3
158	Autoignition and preliminary heat release of gasoline surrogates and their blends with ethanol at engine-relevant conditions: Experiments and comprehensive kinetic modeling. Combustion and Flame, 2021, 228, 57-77.	2.8	46
159	Experimental Validation of a Novel Generator of Gas Mixtures Based on Axial Gas Pulses Coupled to a Micromixer. Micromachines, 2021, 12, 715.	1.4	2
160	Construction of reduced mechanism and prediction of the RON of toluene primary reference fuel/ethanol/diisobutylene. Renewable Energy, 2021, 172, 862-881.	4.3	6
161	Influences of C5 esters addition on anti-knock and auto-ignition tendency of a gasoline surrogate fuel. International Journal of Engine Research, 2022, 23, 1782-1791.	1.4	6
162	Benzinli Bir Motorda Yakıt Olarak Kullanılan Sodyum Borhidrür Katkılı Metanol-Benzin Karışımlı Yakıtların Performans ve Emisyon Analizi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 0, , .	0.1	0
163	The Development of Combustion Strategy in Improving the Performances of SI-PFI Engine Using E50 of Gasoline-Bioethanol Fuel Blend. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2021, , 115-135.	0.2	0
164	Study on the Effects of Ethanol-gasoline Octane Number on Anti-knock Performance in Direct-injection Gasoline Engine. Combustion Science and Technology, 2023, 195, 530-556.	1.2	2

ARTICLE IF CITATIONS Auto-ignition and Anti-Knock Evaluation of Dicyclopentadiene-PRF and TPRF Blends., 0,,. 0 165 Unraveling the octane response of gasoline/ethanol blends: Paving the way to formulating gasoline 3.4 surrogates. Fuel, 2021, 299, 120882 Effect of cyclohexanol on phase stability and volatility behavior of hydrous ethanol-gasoline blends. 167 1.2 5 Egyptian Journal of Petroleum, 2021, 30, 7-12. Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to 168 4.5 compression-ignition (SICI) engine. Energy, 2021, 233, 121170. Rapid prediction of fuel research octane number and octane sensitivity using the AFIDA 169 3.4 11 constant-volume combustion chamber. Fuel, 2021, 301, 120969. Application of biomass derived products in mid-size automotive industries: A review. Chemosphere, 4.2 2021, 280, 130723. New insights into fuel blending effects: Intermolecular chemical kinetic interactions affecting 171 2.8 19 autoignition times and intermediate-temperature heat release. Combustion and Flame, 2021, 233, 111559. Experimental study of sprays with isooctane, hexane, ethanol and their binary mixtures under 2.5 9 different flash boiling intensities. International Journal of Heat and Mass Transfer, 2021, 179, 121715. Holistic approach to anti-knock agents: A high-throughput screening of aniline-like compounds. Fuel, 173 3.4 8 2021, 305, 121518. 174 Chemical kinetic basis of synergistic blending for research octane number. Fuel, 2022, 307, 121865. 3.4 Influence of ethanol blending ratios on in-cylinder soot processes and particulate matter emissions 175 12 3.4 in an optical direct injection spark ignition engine. Fuel, 2022, 308, 121944. Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-Ignition 1.4 Conditions. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, . Study of the influence of alcohols addition to gasoline on the distillation curve, and vapor pressure. 177 0.2 1 Analele UniversitÄfÈ, ii Ovidius ConstanÈ, a: Seria Chimie, 2019, 30, 122-126. Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine., 0,,. Prediction of Autoignition and Flame Properties for Multicomponent Fuels Using Machine Learning 179 8 Techniques., 0,,. Using RON Synergistic Effects to Formulate Fuels for Better Fuel Economy and Lower CO2 Emissions., Development of a Raman spectrometer for the characterization of gaseous hydrocarbons at high 181 1.1 10 temperatures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277, 107978. Octane number $\hat{a} \in \mathbb{M}$ s modeling with oxygenate/hydrocarbon sinergy included., 0, , .

#	Article	IF	CITATIONS
183	Optimizing an Octane Number of Motor Gasoline (MOGAS) 91 RON with Blending Methods. Indonesian Journal of Applied Physics, 2017, 7, 66.	0.1	0
184	Combustion characteristics of various fuels during research octane number testing on an instrumented CFR F1/F2 engine. Silniki Spalinowe, 2017, 171, 164-169.	0.4	16
185	LSSVM Combined with SPA Applied to Near-Infrared Quantitative Determination of the Octane in Fuel Petrol Samples. Open Journal of Applied Sciences, 2018, 08, 422-430.	0.2	0
186	Sensitivity Analysis of the Low Temperature Combustion Index to Driving Cycle and Vehicle Specifications. , 0, , .		1
187	On the HCCI Octane Boosting Effects of \hat{I}^3 -Valerolactone. , 0, , .		1
188	A research on fuel properties of bioethanol produced from waste bread. International Journal of Energy Applications and Technologies, 2019, 6, 96-101.	0.1	1
189	A Batch Blending System for Continuous Production of Multi-Component Fuel Blends for Engine Laboratory Tests. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 452-467.	2.0	0
190	Multi-output chemometrics model for gasoline compounding. Fuel, 2022, 310, 122274.	3.4	4
191	Comprehensive US database and model for ethanol blend effects on regulated tailpipe emissions. Science of the Total Environment, 2022, 812, 151426.	3.9	4
193	Towards Developing an Unleaded High Octane Test Procedure (RON>100) Using Toluene Standardization Fuels (TSF). SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 197-207.	2.0	4
194	Blending Behavior of Hydrocarbon and Oxygenate Molecules to Optimize RON and MON for Modern Spark-Ignition Engines (SI). , 0, , .		2
196	Feasibility of adding N-Butanol and di isopropyl ether with gasoline on its physico-chemical properties. Petroleum Science and Technology, 2022, 40, 486-503.	0.7	9
197	Influence of Iso-Butanol Blending with a Reference Gasoline and Its Surrogate on Spark-Ignition Engine Performance. Energy & Fuels, 2021, 35, 19665-19688.	2.5	9
198	Maximizing Net Fuel Economy Improvement from Fusel Alcohol Blends in Gasoline Using Multivariate Optimization. SSRN Electronic Journal, 0, , .	0.4	0
199	Optimization of fuel formulation using adaptive learning and artificial intelligence. , 2022, , 27-45.		0
200	Rapid Assessment of Gasoline Quality by near-Infrared (NIR) Deep Learning Model Combined with Fractional Derivative Pretreatment. Analytical Letters, 2022, 55, 1745-1756.	1.0	5
201	Supercritical Methanol Solvolysis and Catalysis for the Conversion of Delignified Woody Biomass into Light Alcohol Gasoline Bioblendstock. Advanced Sustainable Systems, 2022, 6, .	2.7	2
202	Investigation of combustion and particle number (PN) emissions in a spark induced compression ignition (SICI) engine for ethanol-gasoline blends. Fuel, 2022, 316, 123155.	3.4	12

#	ARTICLE	IF	CITATIONS
203	A Methodology for Designing Octane Number of Fuels Using Genetic Algorithms and Artificial Neural Networks. Energy & Fuels, 2022, 36, 3867-3880.	2.5	5
204	Maximizing net fuel economy improvement from fusel alcohol blends in gasoline using multivariate optimization. Fuel Communications, 2022, 11, 100059.	2.0	3
205	Understanding of the octane response of gasoline/MTBE blends. Fuel, 2022, 318, 123647.	3.4	12
206	The Use of Bioethanol-Isooctane Blend and the Effect of its Molecular Properties on Si Engine Performance and Exhaust Emissions. SSRN Electronic Journal, 0, , .	0.4	Ο
207	The formulation of a base fuel for gasoline-type bioblendstocks. Fuel, 2022, 324, 124665.	3.4	1
208	Possible use as biofuels of monoaromatic oxygenates produced by lignin catalytic conversion: A review. Catalysis Today, 2023, 408, 150-167.	2.2	4
209	First-Order Prediction of the Relative Performance of Infrared (IR) Absorption, Raman, and Combined (IR + Raman) Spectroscopy for Estimating Composition and Bulk Properties of Fuel Mixtures. IEEE Sensors Journal, 2022, 22, 16046-16054.	2.4	5
210	On knocking combustion development of oxygenated gasoline fuels in a cooperative fuel research engine. International Journal of Engine Research, 2023, 24, 2410-2421.	1.4	5
211	Assessment of hydrocarbons for gasoline surrogate: An optimization study. Fuel, 2022, 328, 125286.	3.4	2
212	Comprehensive US database and model for ethanol blend effects on air toxics, particle number, and black carbon tailpipe emissions. Atmospheric Environment: X, 2022, 16, 100185.	0.8	0
213	The Impact of Octane Number Boosters on Knock Characteristics in a Cooperative Fuel Research (CFR) Engine. , 0, , .		1
214	Fuels and Transportation. ACS Symposium Series, 0, , 83-129.	0.5	1
215	Artificial intelligence-driven design of fuel mixtures. Communications Chemistry, 2022, 5, .	2.0	8
216	Predicting octane number from species profiles: A deep learning model. Proceedings of the Combustion Institute, 2023, 39, 5269-5277.	2.4	3
217	Volatility criteria and physicochemical properties of the promising dimethyl carbonate-gasoline blends. Scientific Reports, 2022, 12, .	1.6	3
218	Autoignition, knock, detonation and the octane rating of hydrogen. Fuel, 2023, 332, 126201.	3.4	9
219	Quantitative evaluation of several chemical mechanisms for gasoline surrogate-ethanol blends and study of dominant chemistry under super-knock relevant conditions. Fuel, 2023, 334, 126627.	3.4	0
220	The role of limonene in the branching of straight chains in low-octane hydrocarbons. Renewable Energy, 2023, 204, 421-431.	4.3	3

#	Article	IF	CITATIONS
221	Auto-ignition propensity of ethanol-, isobutanol-, and 2-methyl-3-buten-2-ol-gasoline blends under premixed prevaporized conditions in a spark-ignition engine. Combustion and Flame, 2023, 251, 112685.	2.8	1
222	Experimental study on combustion and emission characteristics of ethanol-gasoline blends in a high compression ratio SI engine. Energy, 2023, 274, 127398.	4.5	5
223	Effects of different hydrogen bond donors on the extraction of gasoline additive ethanol using deep eutectic solvents formed by choline chloride and dihydric alcohol or dicarboxylic acid as extractant. Fuel, 2023, 346, 128382.	3.4	3
224	Characterization of non-ideal blending in infrared spectra of gasoline surrogates. Fuel, 2023, 344, 128134.	3.4	2
225	Bio-derived sustainable aviation fuels—On the verge of powering our future. , 2023, , 521-598.		2
228	Ethanol Utilization in Spark-Ignition Engines and Emission Characteristics. Green Energy and Technology, 2023, , 255-277.	0.4	0
233	Influence of Reformingby Non-Equilibrium Plasmaon Spontaneous Ignition of n-Heptane/Ethanol/N2/02 Mixture. , 0, , .		0
234	Explicit equations for designing surrogate gasoline formulations containing ethanol, isopentane, n-heptane, isooctane and toluene. , 0, , .		1
236	The blending behavior in infrared spectra of oxygenated fuel blends. , 2024, , .		0